Finite volume quantization conditions for multiparticle states

Steve Sharpe University of Washington

The fundamental issue

- Lattice simulations are done in finite volumes
- Experiments are not

How do we connect these?

The fundamental issue

- Lattice simulations are done in finite volumes
- Experiments are not

How do we connect these?

The fundamental issue

- Lattice QCD can calculate energy levels of multiple particle systems in a box
- How are these related to scattering amplitudes?

Discrete energy spectrum

Scattering amplitudes

When is spectrum related to scattering amplitudes?

No "outside" region.
Spectrum NOT related to scatt. amps.
Depends on finite-density properties

There is an "outside" region. Spectrum IS related to scatt. amps. up to corrections proportional to

$$
e^{-M_{\pi} L}
$$

[Lüscher]

Systems considered today

Quantization conditions

Theoretically understood; numerical implementations mature [Mohler, Wilson]

What about including QED? [Beane, Davoudi]

Formalism under development [Hansen]

How implement numerically? [Doi]

Systems considered today

Transition amplitudes

Theoretically understood; [Agadjanov, Briceño]
numerical implementations expanding [Ishizuka, Kelly, Shultz]

Outline

- Motivation
- Theoretical status
- Key theoretical ingredients
- 2-particle quantization condition
- Future directions \& challenges

Studying resonances

- Most hadrons are resonances
- Resonances are not asymptotic states; show up in behavior of scatt. amplitudes
- FV methods determine scattering amplitudes indirectly

Studying resonances

- Most hadrons are resonances

- Resonances are not asymptotic states; show up in behavior of scatt. amplitudes
- FV methods determine scattering amplitudes indirectly

Studying resonances

- Most hadrons are resonances
- Resonances are not asymptotic states; show up in behavior of scatt. amplitudes
- FV methods aim to determine scattering amplitudes indirectly
- Many resonances have three particle decay channels

$$
\omega(782) \rightarrow \pi \pi \pi \quad K^{*} \longrightarrow K \pi \pi \quad N(1440) \rightarrow N \pi \pi
$$

Studying resonances

- Most hadrons are resonances
- Resonances are not asymptotic states; show up in behavior of scatt.amplitudes
- FV methods aim to determine scattering amplitudes indirectly
- Many resonances have three particle decay channels

$$
\omega(782) \rightarrow \pi \pi \pi \quad K^{*} \longrightarrow K \pi \pi \quad N(1440) \rightarrow N \pi \pi
$$

- Most resonances have multiple decay channels

$$
a_{0}(980) \longrightarrow \eta \pi, K \bar{K} \quad f_{0}(980) \longrightarrow \pi \pi, K \bar{K}
$$

Determining interactions

- For nuclear physics need NN and NNN interactions
- Input for effective field theory treatments of larger nuclei \& nuclear matter
- Meson interactions needed for understanding pion \& kaon condensates
- $\pi \pi, K \bar{K}, \pi \pi \pi, \pi K \bar{K}$, etc.

Calculating decay amplitudes

- Weak decay amplitudes allow tests of SM
- $K \rightarrow \pi \pi, \pi \pi \pi$
- $D \rightarrow \pi \pi, K \bar{K}, \eta \eta, 4 \pi, \ldots$.
- $\mathrm{B} \rightarrow \mathrm{K} \pi\left(+C^{+} E\right)$
- ...
- EM transition amplitudes probe hadron structure

$$
\rho \longrightarrow \pi \gamma^{*} \quad N \gamma^{*} \longrightarrow \Delta \longrightarrow N \pi
$$

Theoretical status

Status for 2 particles

- Long understood in NRQM [Huang \& Yang 57,]
- Quantization formula in QFT for energies below inelastic threshold converted into NRQM problem and solved by [Lüscher 86 \& 91]
- Solution generalized to arbitrary total momentum P, multiple (2 body) channels, general BCs and arbitrary spins [Rummukainen \& Gottlieb 85; Kim, Sachrajda \& SS 05; Bernard, Lage, Meißner \& Rusetsky 08; Hansen \& SS I2; Briceño \& Davoudi I2; ...]
- Relation between finite volume $\mathrm{I} \rightarrow 2$ weak amplitude (e.g. $\mathrm{K} \rightarrow \pi \mathrm{T}$) and infinite volume decay amplitude determined [Lellouch \& Lüscher 00]
- LL formula generalized to general P, to multiple (2 body) channels, and to arbitrary currents and general BCs (e.g. $\gamma^{*} \Pi \rightarrow \rho \rightarrow \pi \pi, \gamma^{*} N \rightarrow \Delta \rightarrow \pi N, \gamma D \rightarrow N N$) [Kim, Sachrajda \& SS 05; Christ, Kim \& Yamazaki 05; Meyer I2; Hansen \& SS I2; Briceño \& Davoudi I2;Agadjanov, Bernard, Meißner \& Rusetsky I4; Briceño, Hansen \& Walker-Loud I4; ...]
- Leading order QED effects on quantization condition determined [Beane \& Savage 14]

Status for 3 particles

- [Beane, Detmold \& Savage 07 and Tan 08] derived threshold expansion for n particles in NRQM, and argued it applied also in QFT
- [Polejaeva \& Rusetsky I2] showed in NREFT that 3 body spectrum determined by infinite-volume scattering amplitudes, using integral equation
- [Briceño \& Davoudi I2] used a dimer approach in NREFT, with s-wave interactions only, to determine relation between spectrum and a finite volume quantity, itself related to infinite-volume amplitudes by an integral equation
- [Hansen \& SS I4, I5] derived quantization condition in (fairly) general, relativistic QFT relating spectrum and \mathcal{M}_{2} and 3-body scattering quantity $K_{d f, 3}$; relation between $\mathrm{K}_{\mathrm{df}, 3} \& \mathcal{M}_{3}$ via integral equations now known
- [Meißner, Rios \& Rusetsky 14] determined volume dependence of 3-body bound state in unitary limit

Some key theoretical ingredients

Following method of [Kim, Sachrajda \& SS 05]

Set-up

- Work in continuum (assume that LQCD can control discretization errors)
- Cubic box of size L with periodic $B C$,
 and infinite (Minkowski) time
- Spatial loops are sums:
$\frac{1}{L^{3}} \sum_{\vec{k}}$
$\vec{k}=\frac{2 \pi}{L} \vec{n}$
- Easily extend to other BC (e.g. twisted)
- Consider general QFT with arbitrary vertices

Methodology

- Calculate (for some $\mathrm{P}=2 \pi \mathrm{n}_{\mathrm{P}} / \mathrm{L}$)

$$
C_{L}(E, \vec{P}) \equiv \int_{L} d^{4} x e^{-i \vec{P} \cdot \vec{x}+i E t}\langle\Omega| T \sigma(x) \sigma^{\dagger}(0)|\Omega\rangle_{L}
$$

- Poles in C_{L} occur at energies of finite-volume spectrum
- For 2 \& 3 particle states, $\sigma \sim \pi^{2} \& \pi^{3}$, respectively
- Use all-orders diagrammatic expansion, e.g.

Boxes indicated summation over finite-volume momenta

Key step 1

- Replace loop sums with integrals where possible
- Drop exponentially suppressed terms ($\sim \mathrm{e}^{-\mathrm{ML}}, \mathrm{e}^{-(M L)^{\wedge 2}}$, etc.) while keeping power-law dependence

$$
\frac{1}{L^{3}} \sum_{\vec{k}} g(\vec{k})=\int \frac{d^{3} k}{(2 \pi)^{3}} g(\vec{k})+\sum_{\vec{l} \neq 0} \int \frac{d^{3} k}{(2 \pi)^{3}} e^{i L \vec{l} \cdot \vec{k}} g(\vec{k})
$$

Key step 1

- Replace loop sums with integrals where possible
- Drop exponentially suppressed terms ($\sim e^{-M L}, e^{-(M L)^{\wedge} 2}$, etc.) while keeping power-law dependence

$$
\left.\frac{1}{L^{3}} \sum_{\vec{k}} g(\vec{k})=\int \frac{d^{3} k}{(2 \pi)^{3}} g(\vec{k})+\sum_{\vec{l} \neq 0} \int \frac{d^{3} k}{(2 \pi r}\right)^{i L l} \cdot \vec{k} k(\vec{k})
$$

Key step 2

- Use "sum=integral + [sum-integral]" if integrand has pole, with [KSS]

$$
\begin{gathered}
\left(\int \frac{d k_{0}}{2 \pi} \frac{1}{L^{3}} \sum_{\vec{k}}-\int \frac{d^{4} k}{(2 \pi)^{4}}\right) f(k) \frac{1}{k^{2}-m^{2}+i \epsilon} \frac{1}{(P-k)^{2}-m^{2}+i \epsilon} g(k) \\
=\int d \Omega_{q^{*}} d \Omega_{q^{*^{\prime}}} f^{*}\left(\hat{q}^{*}\right) \mathcal{F}\left(q^{*}, q^{*^{\prime}}\right) g^{*}\left(\hat{q}^{*^{\prime}}\right)+\text { exp. suppressed } \\
\begin{array}{c}
\mathrm{q}^{*} \text { is relative momentum } \\
\text { of pair on left in CM }
\end{array} \underbrace{}_{\text {Kinematic function }} \quad \begin{array}{c}
\text { Depaluated for ON-SHELL momenta on direction in CM }
\end{array}
\end{gathered}
$$

Focus on this loop

- Example

Key step 2

- Use "sum=integral + [sum-integral]" where integrand has pole, with [KSS]

$$
\begin{aligned}
& \left(\int \frac{d k_{0}}{2 \pi} \frac{1}{L^{3}} \sum_{\vec{k}}-\int \frac{d^{4} k}{(2 \pi)^{4}}\right) f(k) \frac{1}{k^{2}-m^{2}+i \epsilon} \frac{1}{(P-k)^{2}-m^{2}+i \epsilon} g(k) \\
& \quad=\int d \Omega_{q^{*}} d \Omega_{q^{*^{\prime}}} f^{*}\left(\hat{q}^{*}\right) \mathcal{F}\left(q^{*}, q^{*^{\prime}}\right) g^{*}\left(\hat{q}^{*^{\prime}}\right)
\end{aligned}
$$

- Decomposed into spherical harmonics, \mathcal{F} becomes

$$
\begin{aligned}
F_{\ell_{1}, m_{1} ; \ell_{2}, m_{2}} \equiv \quad & \eta\left[\frac{\operatorname{Req}^{*}}{8 \pi E^{*}} \delta_{\ell_{1} \ell_{2}} \delta_{m_{1} m_{2}}+\right. \\
& \left.\frac{i}{2 \pi E L} \sum_{\ell, m} x^{-\ell} \mathcal{Z}_{\ell m}^{P}\left[1 ; x^{2}\right] \int d \Omega Y_{\ell_{1}, m_{1}}^{*} Y_{\ell, m}^{*} Y_{\ell_{2}, m_{2}}\right]
\end{aligned}
$$

$x \equiv q^{*} L /(2 \pi)$ and $\mathcal{Z}_{\ell m}^{P}$ is a generalization of the zeta-function

Key step 2

- Use "sum=integral + [sum-integral]" where integrand has pole, with [KSS]

$$
\begin{gathered}
\left(\int \frac{d k_{0}}{2 \pi} \frac{1}{L^{3}} \sum_{\vec{k}}-\int \frac{d^{4} k}{(2 \pi)^{4}}\right) f(k) \frac{1}{k^{2}-m^{2}+i \epsilon} \frac{1}{(P-k)^{2}-m^{2}+i \epsilon} g(k) \\
\quad=\int d \Omega_{q^{*}} d \Omega_{q^{*^{\prime}}} f^{*}\left(\hat{q}^{*}\right) \mathcal{F}\left(q^{*}, q^{*^{\prime}}\right) g^{*}\left(\hat{q}^{*^{\prime}}\right)
\end{gathered}
$$

- Diagrammatically

Variant of key step 2

- For generalization to 3 particles use (modified) PV prescription instead of í

$$
\begin{gathered}
\left(\int \frac{d k_{0}}{2 \pi} \frac{1}{L^{3}} \sum_{\vec{k}}-\widetilde{P V} \int \frac{d^{4} k}{(2 \pi)^{4}}\right) f(k) \frac{1}{k^{2}-m^{2}+\chi} \frac{1}{(P-k)^{2}-m^{2}+\chi} g(k) \\
\quad=\int d \Omega_{q^{*}} d \Omega_{q^{*^{\prime}}} f^{*}\left(\hat{q}^{*}\right) \widetilde{\mathcal{F}^{2}}\left(q^{*}, q^{*^{\prime}}\right) g^{*}\left(\hat{q}^{*^{\prime}}\right)
\end{gathered}
$$

- Key properties of F_{Pv} : real and no unitary cusp at threshold [see Max's talk]

Key step 3

- Identify potential singularities: can use time-ordered PT (i.e. do k_{0} integrals)
- Example

Key step 3

- 2 out of 6 time orderings:

$$
\frac{1}{E-\omega_{1}^{\prime}-\omega_{2}^{\prime}-\omega_{3}^{\prime}-\omega_{4}^{\prime}} \quad \frac{1}{E-\omega_{1}-\omega_{2}}
$$

$$
\frac{1}{E-\omega_{1}-\omega_{2}-\omega_{3}-\omega_{4}} \quad \frac{1}{\sum_{j=1,6} \omega_{j}}
$$

$$
\varliminf_{\text {On-shell energy }} \omega_{j}=\sqrt{\vec{k}_{j}^{2}+M^{2}}
$$

Key step 3

- 2 out of 6 time orderings:

- If restrict $0<\mathrm{E}^{*}<4 \mathrm{M}$ then only 2-particle "cuts" have singularities, and these occur only when both particles go on-shell

Combining key steps 1-3

- For each diagram, determine which momenta must be summed, and which can be integrated
- In our example, find:

Must sum momenta
passing through box

Combining key steps 1-3

- For each diagram, determine which momenta must be summed, and which can be integrated
- In our example, find:

Must sum momenta
passing through box

- Then repeatedly use sum=integral + "sum-integral" to simplify

2-particle quantization condition

Following method of [Kim, Sachrajda \& SS 05]

- Apply previous analysis to 2-particle correlator ($0<\mathrm{E}^{*}<4 \mathrm{M}$)

- Collect terms into infinite-volume Bethe-Salpeter kernels

- Apply previous analysis to 2-particle correlator
- Collect terms into infinite-volume Bethe-Salpeter kernels

- Leading to

$$
\begin{aligned}
C_{L}(E, \vec{P})=\sigma^{\dagger} & \sigma \sigma+\sigma^{\dagger} \\
& +\sigma^{\dagger}: i B \\
& (i B) \\
& \sigma+\cdots+
\end{aligned}
$$

- Next use sum identity

- And regroup according to number of "F cuts"

$$
\begin{aligned}
& \begin{aligned}
C_{L}(E, \vec{P}) & =C_{\infty}(E, \vec{P}) \leftarrow \text { zero F cuts } \\
& +\underbrace{\left\{\sigma^{\dagger}+\cdots\right.}_{\text {one } \mathbf{F} \text { cut }}+i B)+\cdots\}
\end{aligned} \\
& \text { matrix elements: }
\end{aligned}
$$

- Next use sum identity

- And keep regrouping according to number of "F cuts"

$$
C_{L}(E, \vec{P})=C_{\infty}(E, \vec{P})+A A A^{\prime}
$$

the infinite-volume, on-shell $\mathbf{2 \rightarrow 2}$ scattering amplitude

- Next use sum identity

- Alternate form if use PV-tilde prescription:

$$
C_{L}(E, \vec{P})=C_{\infty}^{\widetilde{P V}}(E, \vec{P})+A_{P \bar{V}} A_{\overline{P V}}^{\prime}
$$

the infinite-volume, on-shell $\mathbf{2 \rightarrow 2}$ K-matrix

- Final result:

$$
\begin{aligned}
C_{L}(E, \vec{P}) & =C_{\infty}(E, \vec{P}) \\
& +A A^{\prime}+A \text { AM } \\
& +A A^{\prime} \\
C_{L}(E, \vec{P}) & =C_{\infty}(E, \vec{P})+\sum_{n=0}^{\infty} A^{\prime} i F\left[i \mathcal{M}_{2 \rightarrow 2} i F\right]^{n} A
\end{aligned}
$$

- Correlator is expressed in terms of infinite-volume, physical quantities and kinematic functions encoding the finite-volume effects
- Final result:

$$
\begin{aligned}
& C_{L}(E, \vec{P})=C_{\infty}(E, \vec{P}) \\
& \\
& C_{L}(E, \vec{P})=C_{\infty}(E, \vec{P})+\sum_{n=0}^{\infty} A^{\prime} i F\left[i \mathcal{M}_{2 \rightarrow 2} i F\right]^{n} A \\
& C_{L}(E, \vec{P})=C_{\infty}(E, \vec{P})+A^{\prime} i F \frac{1}{1-i \mathcal{M}_{2 \rightarrow 2} i F} A_{R} \\
& C_{\substack{\text { no poles, } \\
\text { only cuts }}}^{\text {no poles, }} \begin{array}{c}
\text { only cuts }
\end{array} \\
& C_{L}(E, \vec{P}) \text { diverges whenever } i F \frac{1}{1-i \mathcal{M}_{2 \rightarrow 2} i F} \text { diverges }
\end{aligned}
$$

2-particle quantization condition
 $$
C_{L}(E, \vec{P})=C_{\infty}(E, \vec{P})+A^{\prime} i F \frac{1}{1-i \mathcal{M}_{2 \rightarrow 2} i F} A
$$

- At fixed L \& P, the finite-volume spectrum E_{1}, E_{2}, \ldots is given by solutions to

$$
\Delta_{L, \vec{P}}(E)=\operatorname{det}\left[(i F)^{-1}-i \mathcal{M}_{2 \rightarrow 2}\right]=0
$$

- \mathcal{M} is diagonal in I,m: $i \mathcal{M}_{2 \rightarrow 2 ; \ell^{\prime}, m^{\prime} ; \ell, m} \propto \delta_{\ell, \ell^{\prime}} \delta_{m, m^{\prime}}$
- F is off-diagonal, since the box violates rotation symmetry
- To make useful, truncate by assuming that \mathcal{M} vanishes above $I_{\text {max }}$
- For example, if $I_{\max }=0$, obtain

$$
i \mathcal{M}_{2 \rightarrow 2 ; 00 ; 00}\left(E_{n}^{*}\right)=\left[i F_{00 ; 00}\left(E_{n}, \vec{P}, L\right)\right]^{-1}
$$

[^0]
Equivalent K-matrix form

$$
C_{L}(E, \vec{P})=C_{\infty}(E, \vec{P})+A^{\prime} i F_{\widetilde{\mathrm{PV}}} \frac{1}{1+\mathcal{K}_{2} F_{\overrightarrow{\mathrm{PV}}}} A
$$

- At fixed L \& P, the finite-volume spectrum E_{1}, E_{2}, \ldots is given by solutions to

$$
\Delta_{L, \vec{P}}(E)=\operatorname{det}\left[\left(F_{\widetilde{P V}}\right)^{-1}+\mathcal{K}_{2}\right]=0
$$

- \mathcal{K}_{2} is diagonal in $1, m$
- Fpv $_{\text {is }}$ isf-diagonal, since the box violates rotation symmetry
- To make useful, truncate by assuming that \mathcal{K}_{2} vanishes above $I_{\max }$
- For example, if $I_{\max }=0$, obtain

$$
i \mathcal{K}_{2 ; 00 ; 00}\left(E_{n}^{*}\right)=\left[i F_{\widetilde{P V} ; 00 ; 00}\left(E_{n}, \vec{P}, L\right)\right]^{-1}
$$

Future directions \& challenges

Many challenges remain!

- Extend $\mathrm{I} \rightarrow 2$ work to include arbitrary spin particles (so can use for N)
- First step in NREFT taken for $\gamma^{*} N \rightarrow \Delta \rightarrow \pi N$ [Agadjanov et al. I4]
- Develop general formalism for $2 \rightarrow 2$ transitions (e.g. resonance form factors)
- Fully develop 3 body formalism
- Allow two particle sub channels to be resonant
- Extend to non-identical particles, particles with spin
- Generalize LL factors to $\mathrm{I} \rightarrow 3$ decay amplitudes (e.g. for $\mathrm{K} \rightarrow \pi \mathrm{m} \boldsymbol{\pi}$)
-
- Develop models of amplitudes so that new results can be implemented in simulations (e.g. following $K \pi, K \eta$ coupled channel analysis of [Dudek, Edwards, Thomas \& Wilson I4])

Many challenges remain!

- Onwards to 4 particles?!?

Thank you! Questions?

Backup Slides

3-particle correlator

Full propagator $+\cdots$

[^0]: Generalization of s-wave Lüscher equation to moving frame [Rummukainen \& Gottlieb]

