SINGLE-HADRON STATES IN A FINITE VOLUME IN THE PRESENCE OF QED INTERACTIONS

ZOHREH DAVOUDI MIT

IN COLLABORATION WITH MARTIN J. SAVAGE PHYS.REV.D 90, 054503 (2014)

QED IS SPECIAL IN A FINITE VOLUME

 GAUSS'S LAW + PERIODICITY?Hilf and Polley, Phys. Lett. B 131, 412 (1983)
Duncan, Eichten and Thacker, Phys. Rev. Lett. 76, 3894 (1996)
Hayakawa and Uno, Prog. Theor. Phys. 120, 413 (2008)

QED IS SPECIAL IN A FINITE VOLUME GAUSS'S LAW + PERIODICITY?

Hilf and Polley, Phys. Lett. B 131, 412 (1983)
Duncan, Eichten and Thacker, Phys. Rev. Lett. 76, 3894 (1996)
Hayakawa and Uno, Prog. Theor. Phys. 120, 413 (2008)

QED IS SPECIAL IN A FINITE VOLUME

$$
\begin{aligned}
\delta S & =\int d^{4} x\left[\partial_{\mu} F^{\mu \nu}(x)-e Q \bar{\psi}(x) \gamma^{\nu} \psi(x)\right] \delta\left(A_{\nu}(x)\right) \\
& =\int d t \frac{1}{L^{3}} \sum_{\mathbf{q}} \delta\left(\tilde{A}_{\nu}(t, \mathbf{q})\right) \int_{L^{3}} d^{3} \mathbf{x} e^{i \mathbf{q} \times x}\left[\partial_{\mu} F^{\mu \nu}(t, \mathbf{x})-\epsilon Q \bar{\psi}(t, \mathbf{x}) \gamma^{\nu} \psi(t, \mathbf{x})\right]
\end{aligned}
$$

QED IS SPECIAL IN A FINITE VOLUME

$$
\begin{aligned}
\delta S= & \int d^{4} x\left[\partial_{\mu} F^{\mu \nu}(x)-e Q \bar{\psi}(x) \gamma^{\nu} \psi(x)\right] \delta\left(A_{\nu}(x)\right) \\
= & \int d t \frac{1}{L^{3}} \sum_{\mathbf{q}} \delta\left(\tilde{A}_{\nu}(t, \mathbf{q})\right) \int_{\mathbf{L}^{3}} d^{3} \mathbf{x} e^{i \mathbf{q} \cdot \mathbf{x}}\left[\partial_{\mu} F^{\mu \nu}(t, \mathbf{x})-e Q \bar{\psi}(t, \mathbf{x}) \gamma^{\nu} \psi(t, \mathbf{x})\right] \\
& \mathbf{q}=0 \rightarrow \partial_{\mu} F^{\mu \nu}=j^{\nu} \rightarrow \int \mathbf{E} \cdot d \mathbf{A}=\int d V j^{0}=e Q
\end{aligned}
$$

QED IS SPECIAL IN A FINITE VOLUME

 SOLUTION: ADD A UNIFORM BACKGROUND CHARGE/CURRENT DENSITY$$
\mathcal{L}^{Q E D} \rightarrow \mathcal{L}^{Q E D}-b^{\nu} A_{\nu} \quad\left(j^{\nu} \rightarrow j^{\nu}+b^{\nu}\right)
$$

REQUIRING $\int d V b^{0}=-e Q$ RESTORES GAUSS'S LAW.

QED IS SPECIAL IN A FINITE VOLUME

HOW DO WE IMPLEMENT THIS?
$\mathcal{L}^{Q E D} \rightarrow \mathcal{L}^{Q E D}-b^{\nu} A_{\nu}$
$\frac{\delta S}{\delta b^{\nu}}=0 \rightarrow-\int d t d^{3} x A_{\nu}(\mathbf{x}, t)=0 \rightarrow \widetilde{A}_{\nu}(\mathbf{q}=0 ; t)=0$

QED IS SPECIAL IN A FINITE VOLUME

 COULOMB POTENTIAL OF A POINT CHARGE WITHOUT THE UNIFORM CHARGE DENSITY

QED IS SPECIAL IN A FINITE VOLUME

 COULOMB POTENTIAL OF A POINT CHARGE WITH THE UNIFORM CHARGE DENSITY

PREVIOUS INVESTIGATIONS OF QED FINITE-VOLUME EFFECTS ON MASSES

- VECTOR-DOMINANCE MODELS Bardeen, Bijnens and Gerard, Phys. Rev. Lett. 62 Blum, et al., Phys. Rev. D 76, 114508 (2007)
- CHIRAL PERTURBATION THEORY Hayakawa and Uno, Prog. Theor. Phys. 120, 413 (2008) Blum, et al., Phys. Rev. D 82, 094508 (2010)
Thomas, Lang and Young (2014), nucl-th:1406.4579
- SCALAR AND SPINOR QED Borsanyi, et al., arXiv:1406088.

CURRENT WORK 2D, Martin J. Svagege, Phys, Rev. D90, 054503 (20044)

- SYSTEMATICALLY INCLUDING COMPOSITENESS CONTRIBUTIONS
- THE FIRST COMPLETE $\mathcal{O}\left(\frac{1}{L^{4}}\right)$ CALCULATION
- COMPLETELY GENERAL: APPLICABLE TO HADRONS AND NUCLEI

A CLASSICAL EXAMPLE: CHARGED SPHERE IN A FINITE VOLUME

SELF ENERGY
$U(R, L)=\frac{1}{2} \int d^{3} r d^{3} r^{\prime} \rho V\left(\mathbf{r}-\mathbf{r}^{\prime}\right)$

$$
\rho=\frac{e Q}{\frac{4}{3} \pi R^{3}}
$$

A CLASSICAL EXAMPLE: CHARGED SPHERE IN A FINITE VOLUME

SELF ENERGY

$$
\begin{array}{r}
U(R, L)=\frac{1}{2} \int d^{3} r d^{3} r^{\prime} \rho V\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \\
\rho=\frac{e Q}{\frac{4}{3} \pi R^{3}} \\
V\left(\mathbf{r}-\mathbf{r}^{\prime}\right)=\frac{e Q}{4 \pi\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}
\end{array}
$$

A CLASSICAL EXAMPLE: CHARGED SPHERE IN A FINITE VOLUME

SELF ENERGY

$$
\begin{array}{r}
U(R, L)=\frac{1}{2} \int d^{3} r d^{3} r^{\prime} \rho V\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \\
\rho=\frac{e Q}{\frac{4}{3} \pi R^{3}} \\
V\left(\mathbf{r}-\mathbf{r}^{\prime}\right)=\frac{e Q}{4 \pi\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}
\end{array}
$$

ZERO MODE REMOVED
$V\left(\mathbf{r}-\mathbf{r}^{\prime}\right)=\frac{1}{L^{3}} \sum_{\mathbf{k} \in \frac{2 \pi \mathbf{n}}{L}, \mathbf{n} \neq \mathbf{0}} \frac{e^{i \mathbf{k} \cdot\left(\mathbf{r}-\mathbf{r}^{\prime}\right)}}{\mathbf{k}^{2}}=V^{(\infty)}\left(\mathbf{r}-\mathbf{r}^{\prime}\right)+\sum_{\mathbf{m} \neq \mathbf{0}} \int \frac{d^{3} k}{(2 \pi)^{2}} \frac{e^{i \mathbf{k} \cdot\left(\mathbf{r}-\mathbf{r}^{\prime}\right)}}{\mathbf{k}^{2}} e^{i \mathbf{k} \cdot \mathbf{m} L}$

A CLASSICAL EXAMPLE: CHARGED SPHERE IN A FINITE VOLUME

SELF ENERGY
$U(R, L)=\frac{1}{2} \int d^{3} r d^{3} r^{\prime} \rho V\left(\mathbf{r}-\mathbf{r}^{\prime}\right)$

$$
\begin{aligned}
& \rho=\frac{e Q}{\frac{4}{3} \pi R^{3}} \\
& V\left(\mathbf{r}-\mathbf{r}^{\prime}\right)=\frac{e Q}{4 \pi\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}
\end{aligned}
$$

EXPANSION IN R / L

$$
\begin{gathered}
U(R, L)=\frac{3}{5} \frac{(Q e)^{2}}{4 \pi R}+\frac{(Q e)^{2}}{8 \pi L} c_{1}+\frac{(Q e)^{2}}{10 L}\left(\frac{R}{L}\right)^{2}+\cdots \\
c_{1}=-2.83729
\end{gathered}
$$

A CLASSICAL EXAMPLE: CHARGED SPHERE IN A FINITE VOLUME

SELF ENERGY

$$
\begin{array}{r}
U(R, L)=\frac{1}{2} \int d^{3} r d^{3} r^{\prime} \rho V\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \\
\rho=\frac{e Q}{\frac{4}{3} \pi R^{3}} \\
V\left(\mathbf{r}-\mathbf{r}^{\prime}\right)=\frac{e Q}{4 \pi\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}
\end{array}
$$

EXPANSION IN R / L

$$
\begin{aligned}
& U(R, L)= \frac{3}{5} \frac{(Q e)^{2}}{4 \pi R}+\frac{(Q e)^{2}}{8 \pi L} c_{1}+\frac{(Q e)^{2}}{10 L}\left(\frac{R}{L}\right)^{2}+\cdots \\
& \text { INDEPENDENT OF R } \quad \frac{(Q e)^{2}}{6 L^{3}}\left\langle r^{2}\right\rangle \text { with }\left\langle r^{2}\right\rangle=\frac{3}{5} R^{2}
\end{aligned}
$$

A NON-RELATIVISTIC EFFECTIVE FIELD THEORY APPROACH

HEAVY-FIELD FORMALISM

Isgur and Wise, Phys. Lett. B 232, 113 (1989)
Isgur and Wise, Phys. Lett. B 237, 527 (1990)
Jenkins and Manohar, Phys. Lett. B 255, 558 (1991)
Thacker and Lepage, Phys.Rev. D 43, 196 (1991)
Labelle (1992), hep-ph/9209266.
Manohar, Phys. Rev. D 56, 230 (1997)
Luke and Savage, Phys. Rev. D 57, 413 (1998)
Hill and Paz, Phys. Rev. Lett. 107, 160402 (2011)
Chen, Rupak and Savage, Nucl. Phys. A 653, 386 (1999)

COMPOSITE SPIN-O PARTICLES

NR-QED LAGRANGIAN

$\mathcal{L}_{\phi}=\phi^{\dagger}\left[i D_{0}+\frac{|\mathbf{D}|^{2}}{2 m_{\phi}}+\frac{|\mathbf{D}|^{4}}{8 m_{\phi}^{3}}+\frac{e\left\langle r^{2}\right\rangle_{\phi}}{6} \nabla \cdot \mathbf{E}+2 \pi \tilde{\alpha}_{E}^{(\phi)}|\mathbf{E}|^{2}+2 \pi \tilde{\beta}_{M}^{(\phi)}|\mathbf{B}|^{2}+i e c_{M} \frac{\left\{D^{i},(\nabla \times \mathbf{B})^{i}\right\}}{8 m_{\phi}^{3}}+\cdots\right] \phi$
MATCHING

$D_{0}=\partial_{0}+i e Q A_{0}$
$\mathbf{D}=\vec{\nabla}-i e Q \mathbf{A}$

$$
\tilde{\alpha}_{E}^{(\phi)}=\alpha_{E}^{(\phi)}-\frac{\alpha_{e} Q}{3 m_{\phi}}\left\langle r^{2}\right\rangle_{\phi}
$$

$$
\widetilde{\beta}_{M}^{(\phi)}=\beta_{M}^{(\phi)}
$$

$$
c_{M}=\frac{2}{3} m_{\phi}^{2}\left\langle r^{2}\right\rangle_{\phi}
$$

COMPOSITE SPIN-0 PARTICLES

```
PROPAGATOR
= + - +}
———+ -0-0-0+
~}+
```

$$
\begin{aligned}
& \text { O }\left(\frac{1}{m_{\phi}}\right) \\
& \circ\left(\frac{1}{m_{8}}+x_{3}^{2}\right)
\end{aligned}
$$

VERTICES

COMPOSITE SPIN-O PARTICLES

 WHAT IS $\delta m_{\phi}=m_{\phi}^{V}-m_{\phi}^{\infty}$?LEADING ORDER

$$
\delta m_{\phi}^{(\mathrm{LO})}=\frac{\alpha_{e} Q^{2}}{2 \mathrm{~L}} c_{1}
$$

NEXT-TO-LEADING ORDER

Also by:
Hayakawa and Uno, Prog. Theor. Phys. 120, 413 (2008) Borsanyi, et al., arXiv:1406088.

$$
\delta m_{\phi}^{(\mathrm{NLO})}=\frac{\alpha_{e} Q^{2}}{m_{\phi} L^{2}} c_{1}
$$

$$
\sum_{\mathbf{n} \neq 0} \frac{1}{|n|^{2}}=\pi c_{1}, \quad \sum_{\mathbf{n} \neq 0} \frac{1}{|n|}=c_{1}=-2.83729, \quad \sum_{\mathbf{n} \neq 0}^{\hat{0}} 1=-1, \sum_{\mathbf{n} \neq 0}|\mathbf{n}|=c_{-1}=-0.266596 .
$$

COMPOSITE SPIN-O PARTICLES

 WHAT IS $\delta m_{\phi}=m_{\phi}^{V}-m_{\phi}^{\infty}$?NEXT-TO-NEXT-TO-LEADING ORDER

$$
\delta m_{\phi}^{\left(\mathrm{N}^{2} \mathrm{LO}\right)}=\frac{2 \pi \alpha_{e} Q}{3 L^{3}}\left\langle r^{2}\right\rangle_{\phi}
$$

NEXT-TO-NEXT-TO-NEXT-TO-LEADING ORDER

VOLUME-DEPENDENCE OF KAON AND PION MASSES

COMPOSITE SPIN-1/2 PARTICLES

NR-QED LAGRANGIAN

$$
\begin{array}{r}
\mathcal{L}_{\psi}=\psi^{\dagger}\left[i D_{0}+\frac{|\mathbf{D}|^{2}}{2 M_{\psi}}+\frac{|\mathbf{D}|^{4}}{8 M_{\psi}^{3}}+c_{F} \frac{e}{2 M_{\psi}} \sigma \cdot \mathbf{B}+c_{D} \frac{e}{8 M_{\psi}^{2}} \nabla \cdot \mathbf{E}+i c_{S} \frac{e}{8 M_{\psi}^{2}} \sigma \cdot(\mathbf{D} \times \mathbf{E}-\mathbf{E} \times \mathbf{D})+\right. \\
\left.2 \pi \tilde{\alpha}_{E}^{(\psi)}|\mathbf{E}|^{2}+2 \pi \tilde{\beta}_{M}^{(\psi)}|\mathbf{B}|^{2}+i c_{M} \frac{\left\{D^{i},(\nabla \times \mathbf{B})^{i}\right\}}{8 M_{\psi}^{3}}+\cdots\right] \psi
\end{array}
$$

MATCHING

$$
\begin{aligned}
& c_{F}=Q+\kappa_{\psi}+\mathcal{O}\left(\alpha_{e}\right) \\
& c_{D}=Q+\frac{4}{3} M_{\psi}^{2}\left\langle r^{2}\right\rangle_{\psi}+\mathcal{O}\left(\alpha_{e}\right) \\
& c_{S}=2 c_{F}-Q \\
& c_{M}=\left(c_{D}-c_{F}\right) / 2 \\
& \tilde{\alpha}_{E}^{(\psi)}=\alpha_{E}^{(\psi)}-\frac{\alpha_{e}}{4 M_{\psi}^{3}}\left(Q^{2}+\kappa_{\psi}^{2}\right)-\frac{\alpha_{e} Q}{3 M_{\psi}}\left\langle r^{2}\right\rangle_{\psi} \\
& \tilde{\beta}_{M}^{(\psi)}=\beta_{M}^{(\psi)}+\frac{\alpha_{e} Q^{2}}{4 M_{\psi}^{3}}
\end{aligned}
$$

COMPOSITE SPIN-1/2 PARTICLES

 WHAT IS $\delta M_{\psi}=M_{\psi}^{V}-M_{\psi}^{\infty}$?NEW CONTRIBUTIONS:

NNLO

RESULT

$$
\begin{aligned}
\delta M_{\psi}= & \frac{\alpha_{e} Q^{2}}{2 L} c_{1}+\frac{\alpha_{e} Q^{2}}{M_{\psi} L^{2}} c_{1}+\frac{2 \pi \alpha_{e} Q}{3 L^{3}}\left\langle r^{2}\right\rangle_{\psi}+\frac{\pi \alpha_{e}}{M_{\psi}^{2} L^{3}}\left[\frac{1}{2} Q^{2}+\left(Q+\kappa_{\psi}\right)^{2}\right] \\
& -\frac{4 \pi^{2}}{L^{4}}\left(\tilde{\alpha}_{E}^{(\psi)}+\tilde{\beta}_{M}^{(\psi)}\right) c_{-1}+\frac{\pi^{2} \alpha_{e} Q}{M_{\psi}^{3} L^{4}}\left(\frac{4}{3} M_{\psi}^{2}\left\langle r^{2}\right\rangle_{\psi}-\kappa_{\psi}\right) c_{-1}-\frac{\alpha_{e} \pi^{2}}{M_{\psi}^{3} L^{4}} \kappa_{\psi}\left(Q+\kappa_{\psi}\right) c_{-1}
\end{aligned}
$$

COMPOSITE SPIN-1/2 PARTICLES

 WHAT IS $\delta M_{\psi}=M_{\psi}^{V}-M_{\psi}^{\infty}$?NEW CONTRIBUTIONS:
NNLO

NNNLO

VOLUME-DEPENDENCE OF PROTON AND NEUTRON MASSES

VOLUME-DEPENDENCE OF LIGHT NUCLEI: DEUTERON AND HELIUM-4

MAGNETIC MOMENT OF MUON

 Finite-volume corrections to κ_{μ} ?
$\rightarrow \quad$ QED

RESULT

$$
\kappa_{\mu} \equiv \frac{g_{\mu}-2}{2}=\frac{\alpha_{e}}{2 \pi}\left[1+\frac{\pi c_{1}}{M_{\mu} \mathrm{L}}+\mathcal{O}\left(\frac{1}{M_{\mu}^{2} \mathrm{~L}^{2}}\right)\right]
$$

1ppm PRECISION REQUIRES $\sim(60 \mathrm{~nm})^{3}$ VOLUMES!!

WHY SHOULD WE CONTROL FINITE-VOLUME EFFECTS IN SINGLE-HADRON SECTOR?

- MASS SPLITTING IN HADRONIC MULTIPLETS e.g. Blum, et al., Phys. Rev. D 82, 094508 (2010)

- SINGLE-HADRON MATRIX ELEMENTS e.g. Corrasco, et al., arXiv:1502.0025 (2015)

- HADRONIC CONTRIBUTIONS TOMUON $g-2$ e.g. Blum, et al., Phys. Rev. Lett. 114,

- MULTI-HADRON PROCESSES WITH QED Beane and Savage,

Phys. Rev. D 90, 074511 (2014)

- NREFT IS A SIMPLE AND GENERAL FORMALISM

CONCLUSION

- ELIMINATION OF ZERO MODE GIVES RISE TO A SENSIBLE QED IN A FINITE VOLUME.

- CHARGED PARTICLES ARE LARGELY AFFECTED BY THE FINITE BOUNDARY OF THE VOLUME.
- NEUTRAL PARTICLES RECEIVE CORRECTIONS TO THEIR MASSES DUE TO THEIR MAGNETIC MOMENT (IF ANY) AND THEIR POLARIZABILITIES.
- THE DIRECT EVALUATION OF MUON MAGNETIC MOMENT TO REQUIRED PRECISION REQUIRES UNFEASIBLY LARGE VOLUMES

THANK YOU

