Charmed-strange and bottom-strange positive parity mesons from Lattice QCD

Daniel Mohler

Fermilab Theory Group Batavia, IL, USA

BNL, February 2015

Collaborators: C. B. Lang, L. Leskovec, S. Prelovsek, R. M. Woloshyn

Phys. Rev. Lett. 111 (2013) 22, 222001; Phys. Rev. **D**90 (2014) 3, 034510;

arXiv:1501.01646

Outline

Motivation & Methods

- Motivation
- Lattices used
- Heavy quarks with the Fermilab method
- 2 Positive parity *D_s* mesons
 - $D^{(*)}K$ scattering and $D^*_{s0}(2317)$, $D_{s1}(2460)$

Positive parity B_s mesons B^(*)K scattering and J^P = 0⁺, 1⁺ B_s mesons

4 Conclusions & outlook

Motivation: Experimental D_s spectrum

Established states:

- $D_s (J^P = 0^-)$ and $D_s^* (1^-)$
- $D_{s0}^{*}(2317)(0^{+}), D_{s1}(2460)(1^{+}), D_{s1}(2536)(1^{+}), D_{s2}^{*}(2573)(2^{+})$
- More recent discoveries:
 - $D_{s1}^*(2700)$ seen by BaBar, Belle, LHCb (1⁻)
 - D^{*}_{sJ}(2860) seen by BaBar
 LHCb overlapping 1⁻ and 3⁻ states
 - D^{*}_{sJ}(3040) seen by BaBar (1⁺?,2⁻?)
 - questionable $D_{sJ}^{*}(2632)$ seen by SELEX (1⁻?)
- $j = \frac{1}{2}$ doublet almost mass-degenerate with non-strange states
- Some models suggest a tetraquark/molecular interpretations for controversial states
- (Most) lattice studies using single hadron (*cs̄*) interpolators get too large or badly determined masses
- Large m_{π} : $D_{s0}^{*}(2317)$ below *DK* threshold; Small m_{π} : $D_{s0}^{*}(2317) \approx DK$ threshold

A previous attempt

Mohler and Woloshyn, PRD 84 054503, 2011

- DK threshold turned out to be unphysical
- Even with light sea-quark masses the lowest states with $J^P = 0^+, 1^+$ remained unphysical
- Including the DK threshold explicitly might be vital

- E

ID	$N_L^3 imes N_T$	N_{f}	<i>a</i> [fm]	<i>L</i> [fm]	#configs	m_{π} [MeV]	<i>m</i> _K [MeV]
(1)	16 ³ × 32	2	0.1239(13)	1.98	280/279	266(3)(3)	552(2)(6)
(2)	$32^3 imes 64$	2+1	0.0907(13)	2.90	196	156(7)(2)	504(1)(7)

Ensemble (1) has 2 flavors of nHYP-smeared quarks

Gauge ensemble from Hasenfratz et al. PRD 78 054511 (2008) Hasenfratz et al. PRD 78 014515 (2008)

Ensemble (2) has 2+1 flavors of Wilson-Clover quarks

PACS-CS, Aoki et al. PRD 79 034503 (2009)

• On the small volume we use distillation On the larger volume we use stochastic distillation

Peardon et al. PRD 80, 054506 (2009);

Morningstar et al. PRD 83, 114505 (2011)

Heavy quarks using the Fermilab method

El-Khadra et al., PRD 55,3933

- We tune κ for the spin averaged kinetic mass (M_{ηc} + 3M_{J/Ψ})/4 to assume its physical value
- General form for the dispersion relation

Bernard et al. PRD83:034503,2011

$$E(p) = M_1 + rac{p^2}{2M_2} - rac{a^3W_4}{6}\sum_i p_i^4 - rac{(p^2)^2}{8M_4^3} + \dots$$

- We compare results from three different fit strategies
- Energy splittings are expected to be close to physical
- For MeV values of masses

$$M = \Delta M + M_{sa,phys}$$

	Ensemble (1)	Ensemble (2)	Experiment
m_{π}	266(3)(3)	156(7)(2)	139.5702(4)
m _K	552(1)(6)	504(1)(7)	493.677(16)
m_{ϕ}	1015.8(1.8)(10.7)	1018.4(2.8)(14.6)	1019.455(20)
m_{η_s}	732.3(0.9)(7.7)	692.9(0.5)(9.9)	688.5(2.2)*
$m_{J/\Psi} - m_{\eta_c}$	107.9(0.3)(1.1)	107.1(0.2)(1.5)	113.2(0.7)
$m_{D_s^*} - m_{D_s}$	120.4(0.6)(1.3)	142.1(0.7)(2.0)	143.8(0.4)
$m_{D^*} - m_D$	129.4(1.8)(1.4)	148.4(5.2)(2.1)	140.66(10)
$2m_{\overline{D}}-m_{\overline{cc}}$	890.9(3.3)(9.3)	882.0(6.5)(12.6)	882.4(0.3)
$2M_{\overline{D_s}} - m_{\overline{cc}}$	1065.5(1.4)(11.2)	1060.7(1.1)(15.2)	1084.8(0.6)
$m_{D_s} - m_D$	96.6(0.9)(1.0)	94.0(4.6)(1.3)	98.87(29)

 A single ensemble: Discrepancies due to discretization and unphysical light-quark masses expected

Daniel Mohler (Fermilab)

Low-lying charmonium spectrum

DM, S. Prelovsek, R. M. Woloshyn, PRD 87 034501 (2013);

• Serves as further confirmation of our heavy-quark approach

• Data from 1 ensemble; Errors statistical + scale setting

Daniel Mohler (Fermilab)

- Use almost physical light quarks
- Work with a partially quenched strange quark
 - Use ϕ meson and η_s to set strange quark mass
 - We obtain $\kappa_s = 0.13666$
- Improve charm quark tuning used for Fermilab charm
 - Use Landau link for $c_{sw,c} = \frac{1}{\mu_s^2}$
 - Empirically this reduces discretization effects
- Explicitly include DK interpolators into the basis

過 とうきょう とうとうき

Handled efficiently within the distillation method

Peardon et al. PRD 80, 054506 (2009) Morningstar et al. PRD 83, 114505 (2011)

< A

3

-

3 → 4 3

Energy levels for D_s with $J^P = 0^+$

DM, Lang, Leskovec, Prelovsek, Woloshyn, PRL 111 222001 (2013)

- With the combined basis we obtain a much better quality of the ground state plateau
- The variational method yields two low-lying levels and fits are unambiguous

Daniel Mohler (Fermilab)

(1) A sub-threshold state stable under the strong interaction

- We call this "bound state scenario"
- This is irrespective of the nature of the state
- One expects a negative scattering length in this case

See Sasaki and Yamazaki, PRD 74 114507 (2006) for details.

- (2) A resonance in a channel with attractive interaction
 - The lowest state corresponds to the scattering level shifted below threshold in finite volume
 - The additional level would indicate a QCD resonance
 - One expects a positive scattering length in this case

```
This is the situation for the D_0^*(2400)
```

```
DM, Prelovsek, Woloshyn, PRD 87 034501 (2013).
```

• We can test the plausibility of these scenarios using Lüscher's formula and an effective range approximation

M. Lüscher Commun. Math. Phys. 105 (1986) 153; Nucl. Phys. B 354 (1991) 531; Nucl. Phys. B 364 (1991) 237.

$$egin{aligned} \mathcal{K}^{-1} &= p \cot \delta(p) = rac{2}{\sqrt{\pi}L} Z_{00}(1;q^2) \ , \ &pprox rac{1}{a_0} + rac{1}{2} r_0 p^2 \ , \end{aligned}$$

• Results for ensembles (1) and (2)

$$a_0 = -0.756 \pm 0.025 \text{fm}$$
 $r_0 = 0.056 \pm 0.031 \text{fm}$ (1)
 $a_0 = -1.33 \pm 0.20 \text{fm}$ $r_0 = 0.27 \pm 0.17 \text{fm}$ (2)

A B A A B A

Results for the scattering length a_0

DM, Lang, Leskovec, Prelovsek, Woloshyn, PRL 111 222001 (2013)

• We compare to the predictions from an indirect calculation

Liu et al. PRD 87 014508 (2013).

• Our determination robustly leads to negative values.

Positive parity heavy-light mesons

Infinite volume bound states vs. experiment

- (Infinite volume)bound state: T-matrix pole for $\cot \delta(i|p_b|) = i$
- Using our a₀ and r₀ we can determine the binding momentum and calculate the corresponding Energy level

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Extending our calculation to the $D_{s1}(2460)$

• Assume the heavy quark limit is a good approximation $\rightarrow D_{s1}(2536)$ decays only in D-wave we extract just a naive energy level

set	a0 ^{D* K}	r ₀ ^{D* К}	(<i>ap</i> _B) ²	am _B	$m_K + m_{D^*} - m_B$	$m_B - \frac{1}{4}(m_{D_S} + 3m_{D_S^*})$
	[fm]	[fm]			[MeV]	[MeV]
Ensem	ble (1)					
	-0.665(25)	-0.106(37)	-0.0301(15)	1.3511(35)	93.2(4.7)(1.0)	404.6(4.5)(4.2)
Ensem	ıble (2)					
set 1	-1.15(19)	0.13(22)	-0.0071(22)	1.0336(60)	43.2(13.8)(0.6)	408(13)(5.8)
set 2	-1.11(11)	0.10(10)	-0.0073(16)	1.0331(41)	44.2(9.9)(0.6)	407.0(8.8)(5.8)
Experi	ment					
					44.7	383
			17			
		set m	$D_{s1}(2536) - \frac{1}{4}(m)$	$D_{s} + 3m_{D_{s}^{*}})$	$m_{D_{s1}(2536)} - m_K - m_D$	*
			[MeV]	U	[MeV]	
		Ensemble	1)			
			444(12)		-53(12)	
Ensemble (2)				
		set 1	507(10)		56(11)	
		set 2	501(8)		50(8)	
		Experiment				
-			459		31	

Resulting D_s P-wave spectrum

Remaining discrepancies of the size of discretization uncertainties

Many improvements possible

ъ

3 → 4 3

- Two p-wave states known from experiment: $B_{s1}(5830)$ with M = 5828.7(4) MeV $B_{s2}^*(5840)$ with M = 5839.96(20) MeV and $\Gamma = 1.6(5)$ MeV
- Discovered in two body decays into K⁻B⁺ at CDF/D0 and also seen by LHCb
- Remaining B^{*}_{s0} and B_{s1} states not measured LHCb is working on this
- Could be seen in electromagnetic transitions, transitions with a single π^0 or transitions through a virtual σ with $\sigma \rightarrow 2\pi$.

Bardeen, Eichten, Hill, PRD 68 054024 (2003)

• What can we say?

Predictions for B_s states (models or model+EFT)

	0+	1+
Covariant (U)ChPT	5726(28)	5778(26)
NLO UHMChPT	5696(20)(30)	5742(20)(30)
LO UChPT	5725(39)	5778(7)
LO χ -SU(3)	5643	5690
Bardeen, Eichten, Hill	5718(35)	5765(35)
rel. quark model 1	5804	5842
rel. quark model 2	5833	5865
rel. quark model 3	5830	5858

For references see arXiv:1501.01646

- Relevant thresholds at ${\approx}5773$ MeV and ${\approx}5819$ MeV
- Unitarized ChPT variants: dynamically generated states below threshold
- Quark model predictions: above threshold

Daniel Mohler (Fermilab)

Previous lattice results

 NRQCD b quarks and staggered light quarks States predicted slightly below the B^(*)K thresholds:

 $M_{B_{s0}^*} = 5752(16)(5)(25)$ $M_{B_{s1}} = 5806(15)(5)(25)$

Gregory et al. PRD 83 014506 (2011)

Static-light mesons with the transition amplitude method

McNeile, Michael, Thompson, PRD 70 054501 (2004)

 Static-light mesons plus interpolation between static light states and experiment D_s states

Green et al. PRD 69 094505 (2004)

Static-light states on quenched and 2 flavor lattices

Burch et al. PRD 79 014504 (2009)

< □ > < @ > < E > < E > E = のへの

Testing our tuning: charm and beauty

	Ensemble (1)	Ensemble (2)	Experiment
$m_{J/\Psi} - m_{\eta_c}$	107.9(0.3)(1.1)	107.1(0.2)(1.5)	113.2(0.7)
$m_{D_s^*} - m_{D_s}$	120.4(0.6)(1.3)	142.1(0.7)(2.0)	143.8(0.4)
$m_{D^*} - m_D$	129.4(1.8)(1.4)	148.4(5.2)(2.1)	140.66(10)
$2m_{\overline{D}}-m_{\overline{cc}}$	890.9(3.3)(9.3)	882.0(6.5)(12.6)	882.4(0.3)
$2M_{\overline{D_s}} - m_{\overline{cc}}$	1065.5(1.4)(11.2)	1060.7(1.1)(15.2)	1084.8(0.6)
$m_{D_s} - m_D$	96.6(0.9)(1.0)	94.0(4.6)(1.3)	98.87(29)
$m_{B^*} - m_B$	-	46.8(7.0)(0.7)	45.78(35)
$m_{B_{s^*}} - m_{B_s}$	-	47.1(1.5)(0.7)	$48.7^{+2.3}_{-2.1}$
$m_{B_s} - m_B$	-	81.5(4.1)(1.2)	87.35(23)
$m_Y - m_{\eta_b}$	-	44.2(0.3)(0.6)	62.3(3.2)
$2m_{\overline{B}}-m_{\overline{b}b}$	-	1190(11)(17)	1182.7(1.0)
$2m_{\overline{B_s}} - m_{\overline{bb}}$	-	1353(2)(19)	1361.7(3.4)
$2m_{B_c} - m_{\eta_b} - m_{\eta_c}$	-	169.4(0.4)(2.4)	167.3(4.9)

- Errors statistical and scale setting only
- Bottom quark slightly to light

 $-|p_B|^2 = 0.1$

-0.2

-0.2

-0.3

-0.02

-0.02

ap $\cot \delta$

 $^{0.3}_{0.2}$ ap cot δ

10.02

0.02

0.04

0.04

• Energy from the difference to the $B^{(*)}K$ threshold

(ap)

(ap)²

0.06

A further sanity check

Discretization errors expected to be smaller than for D_s

Uncertainties just statistics and scale setting

B_{so}^* and B_{s1} : Systematic uncertainties

source of uncertainty	expected size [MeV]
heavy-quark discretization	12
finite volume effects	8
unphysical Kaon, isospin & EM	11
b-quark tuning	3
dispersion relation	2
spin-average (experiment)	2
scale uncertainty	1
3 pt vs. 2 pt linear fit	2
total	19

 discretiation effects from HQET power counting also considering mass mismatches

Oktay, Kronfeld Phys.Rev. D78 014504 (2008)

Finite volume from difference between the energy level and the pole

Daniel Mohler (Fermilab)

	0+	1+
Covariant (U)ChPT	5726(28)	5778(26)
NLO UHMChPT	5696(20)(30)	5742(20)(30)
LO UChPT	5725(39)	5778(7)
LO χ -SU(3)	5643	5690
Bardeen, Eichten, Hill	5718(35)	5765(35)
rel. quark model	5804	5842
rel. quark model	5833	5865
rel. quark model	5830	5858
HPQCD 2010	5752(16)(5)(25)	5806(15)(5)(25)
this work	5713(11)(19)	5750(17)(19)

- Determining the the QCD spectrum close to thresholds has just begun
- Meson and baryon states close to threshold(s) can be attacked
- Coupled channel results encouraging (see David Wilson)
- Many improvements to what I presented possible (stay tuned)
- LHCb, Bellell and PANDA will gather a lot of data
 → I would like them to compare to QCD, not models!
- Extracting resonance parameters from lattice scattering phase shifts will need (some degree) of modeling, just like in experiment.

Thank you!

. . .

Composition of eigenstates

• Beware: Ambiguity in the normalization (eliminated by ratios)

Daniel Mohler (Fermilab)

Positive parity heavy-light mesons

BNL, February 2015 29 / 27