$K \to \pi \pi \ {\rm decay} \ {\rm amplitudes} \\ {\rm from} \ {\rm improved} \ {\rm Wilson} \ {\rm fermion}$

at BNL 2015/02/05 <u>N. Ishizuka</u>, K.I. Ishikawa, A. Ukawa, T. Yoshie

We present our results of $K\to\pi\pi$ decay amplitudes for both $\Delta I=1/2~$ and ~3/2 .

• $N_f = 2 + 1$ improved Wilson fermion $a = 0.091 \,\mathrm{fm}$, $La = 2.91 \,\mathrm{fm}$ $m_\pi = 280 \,\mathrm{MeV}$ ($m_K \sim 2 \times m_\pi$) Decay process : $K(\mathbf{0}) \rightarrow \pi(\mathbf{0})\pi(\mathbf{0})$

1. Introduction

Long-standing problems of the Lattice QCD in the neutral K meson system :

- Understanding $\Delta I=1/2~{\rm rule}$
- Calculation of ϵ'/ϵ from SM.

We need calculates two decay amplitudes :

$$A_I = \langle K | H | \pi \pi; I \rangle \quad (I = 0, 2)$$

issues :

(1) relation between the amplitude on the lattice (Euclid) and that in the continuum (Minkowski).

: solved by Lellouch and Lüscher

Lellouch and Lüscher, Math.Phys.219(2001)31.

(2) large fluctuation from the dis-connected diagram.

Calculations has been unsuccessful for a long time.

First calculation of the K decay amplitudes decay for $\Delta I = 1/2$:

RBC-UKQCD
 $N_f = 2 + 1$ **Domain wall fermion**, $a = 0.114 \, \text{fm}$ • $m_{\pi} = 422 \, \text{MeV}$, $La = 1.8 \, \text{fm}$ **PRD84(2011)114503**• $m_{\pi} = 330 \, \text{MeV}$, $La = 2.7 \, \text{fm}$ **LAT2011 [arXiv:1110.2143]**

For the Wilson fermion, operator renormalization for parity odd part of $\Delta S = 1$ op. :

$$\begin{split} Q_i^{\overline{\text{MS}}}(\mu) &= \sum_j Z_{ij}(\mu) \, \overline{Q}_j^{\text{Lat}} \left(i, j = 1, 2, \cdots 10 \right) \\ \overline{Q}_j^{\text{Lat}} &= Q_j - \alpha_j P \ , \ P = \overline{s} \gamma_5 d \\ \overline{Z}_{ij}(\mu) : \text{ same form as for the chiral sym. preserved case} \end{split}$$

(from CPS symmetry)

The calculation of the amplitudes is also possible with Wilson fermion, if we subtract the lower dimensional operator with a renormalization condition :

 $\alpha_j = \langle 0|Q_j|K\rangle / \langle 0|P|K\rangle$

Calculation cost : Wilson fermion << Domain wall fermion

Statistical improvement is expected by using Wilson fermion.

2. Method

Parameter

 $N_f = 2 + 1$ improved Wilson fermion + Iwasaki gauge action $32^3 \times 64$, $a = 0.091 \,\mathrm{fm}$, $La = 2.91 \mathrm{fm}$ $m_\pi = 275.7(15) \,\mathrm{MeV}$, $m_K = 579.8(13) \,\mathrm{MeV}$ $m_K \sim 2 \times m_\pi$ ($m_K - 2 \cdot m_\pi = 28.3 \,\mathrm{MeV}$) Decay process : $K(\mathbf{0}) \rightarrow \pi(\mathbf{0})\pi(\mathbf{0})$

Configurations :

PACS-CS (original): 2,000 MD step New: 10,000 MD step

of conf. = 480 (every 25 MD step)

Our preliminary results have been presented at Lat2013 and Lat2014. arXiv:1311.0958, arXiv:1410.8237.

Time correlation function

$$G^{I}(Q_{i})(t) = \frac{1}{T} \sum_{\delta=0}^{T-1} \langle 0 | W_{K}(t_{K} + \delta) \overline{Q}_{i}(t + \delta) W_{\pi\pi}^{I}(t_{\pi} + \delta) | 0 \rangle$$
(: periodic BC. in time)

$$t_{K} = 24 , \ t_{\pi} = 0 , \ t = \text{run}$$

$$\overline{Q}_{i} = Q_{i} - \alpha_{i}P$$

$$P = \bar{s}\gamma_{5}d$$

$$\alpha_{i} = \langle 0 | Q_{i} | K \rangle / \langle 0 | P | K \rangle$$

 $W_K(t), W^I_{\pi\pi}(t)$: Wall source for K and $\pi\pi$ with the iso-spoin I

(: used with Coulomb gauge fixing at time slice of the wall sources)

Note our convention : $K^0 = -\bar{s}\gamma_5 d$

Calculation of quark loop at weak operators

Calculation of Quark loop :

Stochastic method

+ Hopping parameter expansion technique (HPE)

+ Truncated solver method (TSM)

(G.S.Bali et.al, Comp.Phys.Comm. 181(2010)1570.)

Hopping parameter expansion technique (HPE)

Wilson fermion :

Quark propagator :

$$Q = W^{-1} = (1 - \overline{D})^{-1} M^{-1} = \sum_{n=0}^{\infty} \overline{D}^n M^{-1} = \sum_{n=0}^{k-1} \overline{D}^n M^{-1} + \overline{D}^k W^{-1} \quad (\text{ for any } k \)$$
$$= M^{-1} + \overline{D} M^{-1} + \overline{D}^2 M^{-1} + \overline{D}^3 M^{-1} + \overline{D}^4 W^{-1} \quad (\text{ for } k = 4 \)$$
$$\text{rk loop :}$$

Quark loop:

$$Q(x,x) = \left[M^{-1} + \overline{D}M^{-1} + \overline{D}^2 M^{-1} + \overline{D}^3 M^{-1} + \overline{D}^4 W^{-1} \right] (x,x)$$
$$= \left[M^{-1} + \overline{D}^2 M^{-1} + \overline{D}^4 W^{-1} \right] (x,x)$$

Calculation of the quark loop by the stochastic method

$$Q(\mathbf{x},t;\mathbf{x},t) = \frac{1}{N_R} \sum_{i=1}^{N_R} \xi_i^*(\mathbf{x},t) S_i(\mathbf{x},t) \left(\delta^3(\mathbf{x}-\mathbf{y}) = \lim_{N_R \to \infty} \frac{1}{N_R} \sum_{i=1}^{N_R} \xi_i^*(\mathbf{x},t) \xi_i(\mathbf{y},t) \right)$$
$$S_i(\mathbf{x},t) = \sum_{\mathbf{y}} \left[M^{-1} + \overline{D}^2 M^{-1} + \overline{D}^4 W^{-1} \right] (\mathbf{x},t;\mathbf{y},t) \xi_i(\mathbf{y},t) - \frac{1}{2} M^{-1} + \overline{D}^2 M^{-1} + \overline{D}^4 W^{-1} \right] (\mathbf{x},t;\mathbf{y},t) \xi_i(\mathbf{y},t) - \frac{1}{2} M^{-1} + \overline{D}^4 W^{-1} = \frac{1}{2} M^{-1} + \frac{1}{2} M^{-$$

Truncated solver method (TSM)

$$Q(\mathbf{x}, t; \mathbf{x}, t) = \frac{1}{N_R} \sum_{i=1}^{N_R} \xi_i^*(\mathbf{x}, t) \left[S_i(\mathbf{x}, t) - S_i^T(\mathbf{x}, t) \right] + \frac{1}{N_T} \sum_{i=N_R+1}^{N_T+N_R} \xi_i^*(\mathbf{x}, t) S_i^T(\mathbf{x}, t)$$

$$S_i(\mathbf{x},t) = \sum_{\mathbf{y}} \left[M^{-1} + \overline{D}^2 M^{-1} + \overline{D}^4 W^{-1} \right] (\mathbf{x},t;\mathbf{y},t) \ \xi_i(\mathbf{y},t)$$

 $S_i^T(\mathbf{x},t)$: with W^{-1} calculated with a loose stopping condition

 $N_R = 1$ tor. $< 10^{-14}$ (tor. $= |WW^{-1} - \xi|/|\xi|$) $N_T = 5$ tor. $< 1.2 \times 10^{-6}$

2. Results Effect of TSM

$$Q(\mathbf{x}, t; \mathbf{x}, t) = \frac{1}{N_R} \sum_{i=1}^{N_R} \xi_i^*(\mathbf{x}, t) \left[S_i(\mathbf{x}, t) - S_i^T(\mathbf{x}, t) \right] + \frac{1}{N_T} \sum_{i=N_R+1}^{N_T+N_R} \xi_i^*(\mathbf{x}, t) S_i^T(\mathbf{x}, t)$$

($N_R = 1$, $N_T = 5$)
 $S_i(\mathbf{x}, t) = \sum_{\mathbf{y}} \left[M^{-1} + \overline{D}^2 M^{-1} + \overline{D}^4 W^{-1} \right] (\mathbf{x}, t; \mathbf{y}, t) \xi_i(\mathbf{y}, t)$

$$G^{I=0}(Q_2)$$
 at $t=9$

$$G^{I=0}(Q_6)$$
 at $t=9$

The correction terms are negligible.

We use x=7 for calculations of the decay amplitudes.

 $G^{I=0}(Q_2)$ from type-3 and type-4 ($t_K = 24, t_{\pi} = 0, Q(t) : \text{run}$)

TSM reduces the statistical error

11

$$G^{I=0}(Q_2)$$
 ($t_K = 24, t_\pi = 0, Q(t) : \text{run}$)

<u>12</u>

 $G^{I=0}(Q_6)$ from type-3 and type-4 ($t_K = 24, t_{\pi} = 0, Q(t) : \text{run}$)

$$G^{I=0}(Q_6)$$
 ($t_K = 24, t_{\pi} = 0, Q(t) : \text{run}$)

<u>14</u>

Time correlation function of $\pi\pi \to \pi\pi$

<u>15</u>

Extraction of the amplitudes

Effective amplitude :

$$\begin{split} M^{I}(Q_{i})(t) &= G^{I}(Q_{i})(t) \cdot F_{LL}^{I} / (N_{K} N_{\pi\pi}^{I}) \cdot e^{m_{K}(t_{K}-t) + E_{\pi\pi}^{I}(t-t_{\pi})} \times (-1) \\ & \longrightarrow \qquad M^{I}(Q_{i}) &= \langle K | \overline{Q}_{i} | \pi\pi; I \rangle \quad \text{for } t_{K} \gg t \gg t_{\pi} \\ & (for our convention of \\ (t_{K} = 24, t_{\pi} = 0, t : \text{run}) \\ & N_{K} &= \langle 0 | W_{K} | K \rangle \quad E_{\pi\pi}^{I} : \text{ energy of } | \pi\pi; I \rangle \\ & N_{\pi\pi}^{I} &= \langle 0 | W_{\pi\pi}^{I} | \pi\pi; I \rangle \quad (\text{ from K and } \pi\pi \text{ correlation function}) \\ \\ \text{Lellouch - Lüscher factor :} \\ & (F_{LL}^{I})^{2} &= \langle K | K \rangle \cdot \langle \pi\pi; I | \pi\pi; I \rangle / V^{2} \\ &= (4\pi) \left(\frac{(E_{\pi\pi}^{I})^{2} m_{K}}{p^{3}} \right) \left(p \frac{\partial \delta^{I}(p)}{\partial p} + q \frac{\partial \phi(q)}{\partial q} \right) \\ \end{split}$$

for *I=0* stat. of SC. phase is not enough. the factor for non-interacting case is used.

for *I=2* the factor is estimated, neglecting the cubic term of $\delta^{I}(p) = a \cdot p + O(p^{3})$ $F_{LL}^{I=2}/F_{LL}^{\text{free}} = 0.9254(64)$

Effective amplitudes $(t_K = 22, 24, 26, t_\pi = 0, Q(t) : run)$

The around-the-world effect for two pion state can be avoided for the time range t=[9,12].

Physical decay amplitudes

From the lattice to the continuum :

$$Q_i^{\overline{\mathrm{MS}}}(\mu) = \sum_j Z_{ij}(\mu) \overline{Q}_j^{\mathrm{Lat}} \quad (i, j = 1, 2, \dots 10)$$

with perturbative renormalization factor (1 loop).

Y. Taniguchi, JHEP04(2012)143.

matching point : $\mu = 1/a$

(also $\mu = \pi/a$ to estimate higher order effect)

Coefficient function : G. Bychalla, A.J.Buras, M.E. Lautenbacher, RMP 68(1996)125.

$$H = \sum_{i} C_i(\mu) Q_i^{\overline{\mathrm{MS}}}(\mu) = \frac{G_F}{\sqrt{2}} V_{ud}^* V_{us} \sum_{i} \left(z_i(\mu) + \tau y_i(\mu) \right) Q_i^{\overline{\mathrm{MS}}}(\mu)$$

Physical decay amplitudes :

$$A_I = \langle K|H|\pi\pi; I \rangle = \sum_{ij} C_i(\mu) Z_{ij}(\mu) M^I(Q_j)$$

 $M^{I}(Q_{i})$: matrix element on the lattice

Physical decay amplitudes

	$\mu = 1/a$	$\mu = \pi/a$	R	RBC-UKQCD				
$a({ m fm})$	0.091		0.114	0.114				
$m_{\pi}({ m MeV})$	280		330	422	140			
$\operatorname{ReA}_2(\times 10^{-8}\mathrm{GeV})$	2.426(38)	2.460(38)	2.668(14)	4.911(31)	1.479(4)			
$\operatorname{ReA}_0(\times 10^{-8}\mathrm{GeV})$	60(36)	56(32)	31.1(45)	38.0(82)	33.2(2)			
${ m Re}A_0/{ m Re}A_2$	25(15)	23(13)	12.0(17)	7.7(17)	22.45(6)			
$\mathrm{ImA}_2(\times 10^{-12}\mathrm{GeV})$	-1.14(13)	-0.7457(83)	-0.6509(34)	-0.5502(40)				
$\mathrm{Im}A_0(\times 10^{-12}\mathrm{GeV})$	-67(56)	-52(48)	-33(15)	-25(22)				
$\operatorname{Re}(\epsilon'/\epsilon) (\times 10^{-3})$	0.8(25)	0.9(25)	2.0(17)	2.7(26)	1.66(23)			
$(\text{used } \epsilon^{\text{EXP}} = 2.22 \times 10^{-3})$								

- Stat. error of our A_0 is much larger than those of RBC-UKQCD at $m_{\pi} = 330 \,\mathrm{MeV}$ They used a different two-pion operator from ours and set the fitting range closer to the operator.
- Matching point dependence is very large for ${\rm Im}A_2$.
- Enhancement of $\Delta I = 1/2$ process is seen.
- Further improvement of statistics is necessary for $\,\epsilon'/\epsilon\,$.

Error is reduced by taking non-zero $\,\delta\,$.

Reason ?

Contribution of the matrix element on the lattice

 $\mu = 1/a$

i	${ m Re}A_2({ m GeV})$	$\mathrm{Ime}A_{2}\left(\mathrm{GeV}\right)$	<i>i</i>	$ReA_0 (GeV)$	$\mathrm{Ime}A_0(\mathrm{GeV})$
1	$-1.887(29) \times 10^{-08}$	0	1	$-4(11) \times 10^{-08}$	0
2	$4.330(68) \times 10^{-08}$	0	2	$6.8(28) \times 10^{-07}$	0
7	$1.053(12) \times 10^{-10}$	$2.772(32) \times 10^{-13}$	3	$-1.25(65) \times 10^{-08}$	$-2.5(13) \times 10^{-11}$
8	$-2.722(31) \times 10^{-10}$	$-1.670(19) \times 10^{-12}$	4	$5.3(20) \times 10^{-08}$	$6.6(25) \times 10^{-11}$
9	$-1.140(18) \times 10^{-12}$	$3.762(59) \times 10^{-13}$	5	$1.5(59) \times 10^{-09}$	$1.7(68) \times 10^{-12}$
10	$3.771(59) \times 10^{-10}$	$-1.756(27) \times 10^{-13}$	6	$-8.4(46) \times 10^{-08}$	$-1.03(56) \times 10^{-10}$
Total	$2.426(38) \times 10^{-08}$	$-1.192(14) \times 10^{-12}$	7	$2.58(19) \times 10^{-10}$	$6.81(50) \times 10^{-13}$
			8	$-6.26(45) \times 10^{-10}$	$-3.84(28) \times 10^{-12}$
			9	$1.02(48) \times 10^{-11}$	$-3.4(16) \times 10^{-12}$
			10	$0.0(14) \times 10^{-11}$	$-0.1(64) \times 10^{-13}$
			Total	$6.0(36) \times 10^{-07}$	$-6.7(56) \times 10^{-11}$

$$A_{I} = \langle K | H | \pi \pi; I \rangle = \sum_{i} \bar{A}_{i}$$
$$\bar{A}_{i} = \sum_{j} C_{j}(\mu) Z_{ji}(\mu) M^{I}(Q_{i})$$
$$M^{I}(Q_{i}) : \text{ hare matrix element}$$

 $M^{I}(Q_{i})$: bare matrix element on the lattice

5. Summary

We calculate $K \rightarrow \pi \pi$ decay amplitudes

for the process $K(\mathbf{0}) \to \pi(\mathbf{0})\pi(\mathbf{0})$ at $m_{\pi} = 280 \text{MeV} (m_K \sim 2 \times m_{\pi})$

- $N_f = 2 + 1$ improved Wilson fermion with Non-perturbative subtraction of the lower dimensional operator .
- Calculation of quark loop by Stochastic method with HPE and TSM

We found :

- TSM is an efficient method.
- For Q₂, the contribution of type-4 (OZI-suppression diag.) is large.
 type-4 ~ type-1 (: Wilson fermion ?)
- Stat. error of our A_0 is much larger than those of RBC-UKQCD. Improvement of the *K* and $\pi\pi$ operator is necessary.
- Matching point dependence is very large for ImA_2 . Non-perturbative renormalization factor is needed.
- Enhancement of $\Delta I = 1/2$ process is seen.

 $\mathrm{Re}A_0/\mathrm{Re}A_2 = 25 \pm 15$

• Further improvement of statistics is necessary for ϵ'/ϵ . Improvement of the *K* and $\pi\pi$ operator is necessary.

Back-up

Comparison with PRL 110,152001(2013) by RBC-UKQCD

 $\operatorname{Re}A_2 = ((1) + (2))$ $\operatorname{Re}A_0 = (2 \times (1) - (2))$

Contraction (1).

 $t_K = 0, t_{\pi} = 20$

 $t_{\pi} = 0, t_K = 24$

Note our convention : $K^0 = -\bar{s}\gamma_5 d$

20

24

28