$K \rightarrow \pi \pi$ decay amplitudes from improved Wilson fermion

at BNL 2015/02/05
N. Ishizuka , K.I. Ishikawa, A. Ukawa, T. Yoshie

We present our results of $K \rightarrow \pi \pi$ decay amplitudes for both $\Delta I=1 / 2$ and $3 / 2$.

- $N_{f}=2+1$ improved Wilson fermion

$$
a=0.091 \mathrm{fm}, L a=2.91 \mathrm{fm}
$$

$$
m_{\pi}=280 \mathrm{MeV}\left(m_{K} \sim 2 \times m_{\pi}\right)
$$

Decay process : $K(\mathbf{0}) \rightarrow \pi(\mathbf{0}) \pi(\mathbf{0})$

1. Introduction

Long-standing problems of the Lattice QCD in the neutral K meson system :

- Understanding $\Delta I=1 / 2$ rule
- Calculation of $\epsilon^{\prime} / \epsilon$ from $S M$.

Precise verification of SM.
Possibility of the beyond SM.

We need calculates two decay amplitudes :

$$
A_{I}=\langle K| H|\pi \pi ; I\rangle \quad(I=0,2)
$$

issues:
(1) relation between the amplitude on the lattice (Euclid) and that in the continuum (Minkowski).
: solved by Lellouch and Lüscher
Lellouch and Lüscher, Math.Phys.219(2001)31.
(2) large fluctuation from the dis-connected diagram.

Calculations has been unsuccessful for a long time.

First calculation of the K decay amplitudes decay for $\Delta I=1 / 2$:

```
RBC-UKQCD
    Nf}=2+1 Domain wall fermion, a=0.114 fm
    - }\mp@subsup{m}{\pi}{}=422\textrm{MeV},La=1.8\textrm{fm}\quad\mathrm{ PRD84(2011)114503
    - }\mp@subsup{m}{\pi}{}=330\textrm{MeV},La=2.7\textrm{fm}\mathrm{ LAT2011 [ arXiv:1110.2143]
```

For the Wilson fermion, operator renormalization for parity odd part of $\Delta S=1 \mathrm{op}$. :

$$
\begin{array}{r}
Q_{i}^{\overline{\mathrm{MS}}}(\mu)=\sum_{j} Z_{i j}(\mu) \bar{Q}_{j}^{\mathrm{Lat}}(i, j=1,2, \cdots 10) \\
\bar{Q}_{j}^{\mathrm{Lat}}=Q_{j}-\alpha_{j} P, \frac{P=\bar{s} \gamma_{5} d}{} \begin{array}{r}
P \text { does not give finite } \mathrm{c} \\
\text { This is not true fo }
\end{array} \\
Z_{i j}(\mu): \text { same form as for the chiral sym. preserved case } \\
\text { (from CPS symmetry) }
\end{array}
$$

P does not give finite contributions in the continuum. This is not true for the Wilson fermion.

The calculation of the amplitudes is also possible with Wilson fermion, if we subtract the lower dimensional operator with a renormalization condition :

$$
\alpha_{j}=\langle 0| Q_{j}|K\rangle /\langle 0| P|K\rangle
$$

Calculation cost : Wilson fermion \ll Domain wall fermion Statistical improvement is expected by using Wilson fermion.

2. Method

Parameter

$N_{f}=2+1$ improved Wilson fermion + Iwasaki gauge action
$32^{3} \times 64, a=0.091 \mathrm{fm}, L a=2.91 \mathrm{fm}$
$m_{\pi}=275.7(15) \mathrm{MeV}, m_{K}=579.8(13) \mathrm{MeV}$

$$
m_{K} \sim 2 \times m_{\pi} \quad\left(m_{K}-2 \cdot m_{\pi}=28.3 \mathrm{MeV}\right)
$$

Decay process : $K(\mathbf{0}) \rightarrow \pi(\mathbf{0}) \pi(\mathbf{0})$

Configurations:
PACS-CS (original) : 2,000 MD step
New : 10,000 MD step

$$
\text { \# of conf. = } 480 \text { (every } 25 \text { MD step) }
$$

Our preliminary results
have been presented at Lat2013 and Lat2014.
arXiv:1311.0958, arXiv:1410.8237.

Time correlation function

$$
\begin{aligned}
& G^{I}\left(Q_{i}\right)(t)=\frac{1}{T} \sum_{\delta=0}^{T-1}\langle 0| W_{K}\left(t_{K}+\delta\right) \bar{Q}_{i}(t+\delta) W_{\pi \pi}^{I}\left(t_{\pi}+\delta\right)|0\rangle \\
& \text { (: periodic BC. in time) } \\
& t_{K}=24, t_{\pi}=0, t=\mathrm{run} \\
& \bar{Q}_{i}=Q_{i}-\alpha_{i} P \\
& P=\bar{s} \gamma_{5} d \\
& \alpha_{i}=\langle 0| Q_{i}|K\rangle /\langle 0| P|K\rangle \\
& W_{K}(t), W_{\pi \pi}^{I}(t) \text { : Wall source for } K \text { and } \pi \pi \text { with the iso-spoin } I \\
& \text { (: used with Coulomb gauge fixing at time slice of the wall sources) }
\end{aligned}
$$

Note our convention: $\quad K^{0}=-\bar{s} \gamma_{5} d$

Calculation of quark loop at weak operators

Quark contractions :

Calculation of Quark loop :
Stochastic method

+ Hopping parameter expansion technique (HPE)
+ Truncated solver method (TSM)
(G.S.Bali et.al, Comp.Phys.Comm. 181(2010)1570.)

Hopping parameter expansion technique (HPE)

Wilson fermion :

$$
\begin{aligned}
S^{W}=\bar{\psi} W \psi & =\bar{\psi}(M-D) \psi=\bar{\psi} M(1-\bar{D}) \psi \quad\left(\bar{D}=M^{-1} D\right) \\
(M \psi)(x) & =\left[1-\kappa C_{S W}(\sigma \cdot F(x)) / 2\right] \psi(x) \\
(D \psi)(x) & =\kappa \sum_{\mu}\left[\left(1-\gamma_{\mu}\right) U_{\mu}(x) \psi(x+\mu)+\left(1+\gamma_{\mu}\right) U_{\mu}^{\dagger}(x-\mu) \psi(x-\mu)\right]
\end{aligned}
$$

Quark propagator :

$$
\begin{aligned}
Q=W^{-1}=(1-\bar{D})^{-1} M^{-1}=\sum_{n=0}^{\infty} \bar{D}^{n} M^{-1}=\sum_{n=0}^{k-1} \bar{D}^{n} M^{-1}+\bar{D}^{k} W^{-1} & (\text { for any } k) \\
=M^{-1}+\bar{D} M^{-1}+\bar{D}^{2} M^{-1}+\bar{D}^{3} M^{-1}+\bar{D}^{4} W^{-1} & (\text { for } k=4)
\end{aligned}
$$

Quark loop :

$$
\begin{aligned}
Q(x, x) & =\left[M^{-1}+\bar{D} M^{-1}+\bar{D}^{2} M^{-1}+\bar{D}^{3 /} M^{-1}+\bar{D}^{4} W^{-1}\right](x, x) \\
& =\left[M^{-1}+\bar{D}^{2} M^{-1}+\bar{D}^{4} W^{-1}\right](x, x)
\end{aligned}
$$

Calculation of the quark loop by the stochastic method

$$
\begin{aligned}
Q(\mathbf{x}, t ; \mathbf{x}, t) & =\frac{1}{N_{R}} \sum_{i=1}^{N_{R}} \xi_{i}^{*}(\mathbf{x}, t) S_{i}(\mathbf{x}, t) \quad\left(\delta^{3}(\mathbf{x}-\mathbf{y})=\lim _{N_{R} \rightarrow \infty} \frac{1}{N_{R}} \sum_{i=1}^{N_{R}} \xi_{i}^{*}(\mathbf{x}, t) \xi_{i}(\mathbf{y}, t)\right) \\
S_{i}(\mathbf{x}, t) & =\sum_{\mathbf{y}}\left[M^{-1}+\bar{D}^{2} M^{-1}+\bar{D}^{4} W^{-1}\right](\mathbf{x}, t ; \mathbf{y}, t) \xi_{i}(\mathbf{y}, t)
\end{aligned}
$$

Truncated solver method (TSM)

$$
\begin{aligned}
& Q(\mathbf{x}, t ; \mathbf{x}, t)=\frac{1}{N_{R}} \sum_{i=1}^{N_{R}} \xi_{i}^{*}(\mathbf{x}, t)\left[S_{i}(\mathbf{x}, t)-S_{i}^{T}(\mathbf{x}, t)\right]+\frac{1}{N_{T}} \sum_{i=N_{R}+1}^{N_{T}+N_{R}} \xi_{i}^{*}(\mathbf{x}, t) S_{i}^{T}(\mathbf{x}, t) \\
& S_{i}(\mathbf{x}, t)=\sum_{\mathbf{y}}\left[M^{-1}+\bar{D}^{2} M^{-1}+\bar{D}^{4} W^{-1}\right](\mathbf{x}, t ; \mathbf{y}, t) \xi_{i}(\mathbf{y}, t) \\
& S_{i}^{T}(\mathbf{x}, t): \text { with } W^{-1} \text { calculated with a loose stopping condition } \\
& N_{R}=1 \quad \text { tor. }<10^{-14} \quad \quad\left(\text { tor. }=\left|W W^{-1}-\xi\right| /|\xi|\right) \\
& N_{T}=5 \quad \text { tor. }<1.2 \times 10^{-6}
\end{aligned}
$$

2. Results

Effect of TSM

$$
\begin{aligned}
Q(\mathbf{x}, t ; \mathbf{x}, t) & =\frac{1}{N_{R}} \sum_{i=1}^{N_{R}} \xi_{i}^{*}(\mathbf{x}, t)\left[S_{i}(\mathbf{x}, t)-S_{i}^{T}(\mathbf{x}, t)\right]+\frac{1}{N_{T}} \sum_{i=N_{R}+1}^{N_{T}+N_{R}} \xi_{i}^{*}(\mathbf{x}, t) S_{i}^{T}(\mathbf{x}, t) \\
\left(N_{R}\right. & \left.=1, N_{T}=5\right) \\
S_{i}(\mathbf{x}, t) & =\sum_{\mathbf{y}}\left[M^{-1}+\bar{D}^{2} M^{-1}+\bar{D}^{4} W^{-1}\right](\mathbf{x}, t ; \mathbf{y}, t) \xi_{i}(\mathbf{y}, t)
\end{aligned}
$$

$$
G^{I=0}\left(Q_{2}\right) \text { at } t=9
$$

$$
\begin{array}{rll}
x=0: & Q(\mathbf{x}, t ; \mathbf{x}, t)=\xi_{i}^{*}(\mathbf{x}, t) S_{i}(\mathbf{x}, t) & \text { for } i=1 \\
x=1: & Q(\mathbf{x}, t ; \mathbf{x}, t)=\xi_{i}^{*}(\mathbf{x}, t) S_{i}^{T}(\mathbf{x}, t) & \text { for } i=1 \\
x=2 \cdots 6: & Q(\mathbf{x}, t ; \mathbf{x}, t)=\xi_{i}^{*}(\mathbf{x}, t) S_{i}^{T}(\mathbf{x}, t) & \text { for } i=2 \cdots 6 \\
x=7: & Q(\mathbf{x}, t ; \mathbf{x}, t)=\frac{1}{6} \sum_{i=1}^{6} \xi_{i}^{*}(\mathbf{x}, t) S_{i}^{T}(\mathbf{x}, t)
\end{array}
$$

The correction terms are negligible.
We use $x=7$ for calculations of the decay amplitudes.
$G^{I=0}\left(Q_{2}\right)$ from type-3 and type-4 $\left(t_{K}=24, t_{\pi}=0, Q(t)\right.$: run)

TSM reduces the statistical error

$$
G^{I=0}\left(Q_{2}\right)\left(t_{K}=24, t_{\pi}=0, Q(t): \text { run }\right)
$$

w/o TSM

w TSM

type-4 is large !! type-4 ~ type-1
$G^{I=0}\left(Q_{6}\right)$ from type-3 and type-4 $\left(t_{K}=24, t_{\pi}=0, Q(t):\right.$ run $)$

- Q_{j}
- $\alpha_{j} \cdot P$
- $\bar{Q}_{j}=Q_{j}-\alpha_{j} P$

- Q_{j}
- $\alpha_{j} \cdot P$
- $\bar{Q}_{j}=Q_{j}-\alpha_{j} P$

$$
G^{I=0}\left(Q_{6}\right)\left(t_{K}=24, t_{\pi}=0, Q(t): \text { run }\right)
$$

Time correlation function of $\pi \pi \rightarrow \pi \pi$

$$
\begin{aligned}
& G(t)=A^{I} \cdot\left(\mathrm{e}^{-E_{\pi \pi}^{I} t}+\mathrm{e}^{-E_{\pi \pi}^{T}(T-t)}\right)+C^{I} \\
& C^{I}: \text { around-the-world effect }
\end{aligned}
$$

$$
2 \times m_{\pi}=0.2535(14)
$$

$$
E_{\pi \pi}^{I=2}=0.2567(14) \quad(\text { from LW })
$$

$$
N_{\pi \pi}^{I=2}=\langle 0| W_{\pi \pi}^{I=2}|\pi \pi ; I=2\rangle=1.5852(85) \times 10^{10}
$$

$$
t=[9,32]
$$

$$
E_{\pi \pi}^{I=0}=0.2499(83) \quad(\text { from LW })
$$

$$
N_{\pi \pi}^{I=0}=\langle 0| W_{\pi \pi}^{I=0}|\pi \pi ; I=0\rangle=1.552(42) \times 10^{10}
$$

$$
t=[9,12]
$$

Extraction of the amplitudes

Effective amplitude :

$$
\begin{aligned}
& M^{I}\left(Q_{i}\right)(t)=G^{I}\left(Q_{i}\right)(t) \cdot F_{L L}^{I} /\left(N_{K} N_{\pi \pi}^{I}\right) \cdot \mathrm{e}^{m_{K}\left(t_{K}-t\right)+E_{\pi \pi}^{I}\left(t-t_{\pi}\right)} \times \frac{(-1)}{(\text { for our convention of }} \\
& \longrightarrow \quad M^{I}\left(Q_{i}\right)=\langle K| \bar{Q}_{i}|\pi \pi ; I\rangle \quad \text { for } t_{K} \gg t \gg t_{\pi} \\
& \quad\left(t_{K}=24, t_{\pi}=0, t: \text { run }\right) \\
& N_{K}=\langle 0| W_{K}|K\rangle \quad E_{\pi \pi}^{I} \quad: \text { energy of }|\pi \pi ; I\rangle \\
& N_{\pi \pi}^{I}=\langle 0| W_{\pi \pi}^{I}|\pi \pi ; I\rangle \quad \text { (from K and } \pi \pi \text { correlation function) }
\end{aligned}
$$

Lellouch - Lüscher factor :

$$
\begin{aligned}
\left(F_{L L}^{I}\right)^{2} & =\langle K \mid K\rangle \cdot\langle\pi \pi ; I \mid \pi \pi ; I\rangle / V^{2} \\
& =(4 \pi)\left(\frac{\left(E_{\pi \pi}^{I}\right)^{2} m_{K}}{p^{3}}\right)\left(p \frac{\partial \delta^{I}(p)}{\partial p}+q \frac{\partial \phi(q)}{\partial q}\right)
\end{aligned}
$$

$$
\begin{aligned}
& E_{\pi \pi}^{I}=2 \sqrt{p^{2}+m_{\pi}^{2}} \\
& q=p L /(2 \pi) \\
& \tan \phi(q)=-\pi^{3 / 2} q / Z_{00}\left(1: q^{2}\right) \\
& Z_{00}\left(s: q^{2}\right)=\frac{1}{\sqrt{4 \pi}} \sum_{\mathbf{n} \in \mathbb{Z}^{3}}\left(n^{2}-q^{2}\right)^{-s}
\end{aligned}
$$

for $I=0$ stat. of SC. phase is not enough. the factor for non-interacting case is used.
for $I=2$ the factor is estimated, neglecting the cubic term of

$$
F_{L L}^{I=2} / F_{L L}^{\text {free }}=0.9254(64)
$$

$$
\delta^{I}(p)=a \cdot p+\mathrm{O}\left(p^{3}\right)
$$

Effective amplitudes ($t_{K}=22,24,26, t_{\pi}=0, Q(t):$ run $)$

The around-the-world effect for two pion state can be avoided for the time range $t=[9,12]$.

Physical decay amplitudes

From the lattice to the continuum :

$$
Q_{i}^{\overline{\mathrm{MS}}}(\mu)=\sum_{j} Z_{i j}(\mu) \bar{Q}_{j}^{\mathrm{Lat}} \quad(i, j=1,2, \cdots 10)
$$

with perturbative renormalization factor (1 loop).
Y. Taniguchi, JHEP04(2012)143.
matching point: $\mu=1 / a$

$$
\text { (also } \mu=\pi / a \text { to estimate higher order effect) }
$$

Coefficient function: G. Bychalla, A.J.Buras, M.E. Lautenbacher, RMP 68(1996)125.

$$
H=\sum_{i} C_{i}(\mu) Q_{i}^{\overline{\mathrm{MS}}}(\mu)=\frac{G_{F}}{\sqrt{2}} V_{u d}^{*} V_{u s} \sum_{i}\left(z_{i}(\mu)+\tau y_{i}(\mu)\right) Q_{i}^{\overline{\mathrm{MS}}}(\mu)
$$

Physical decay amplitudes:

$$
\begin{aligned}
& A_{I}=\langle K| H|\pi \pi ; I\rangle=\sum_{i j} C_{i}(\mu) Z_{i j}(\mu) M^{I}\left(Q_{j}\right) \\
& M^{I}\left(Q_{i}\right): \text { matrix element on the lattice }
\end{aligned}
$$

Physical decay amplitudes

	$\mu=1 / a$	$\mu=\pi / a$	RBC-UKQCD	Exp	
$a(\mathrm{fm})$	0.091	0.114	0.114		
$m_{\pi}(\mathrm{MeV})$	280	330	422	140	
$\operatorname{ReA}_{2}\left(\times 10^{-8} \mathrm{GeV}\right)$	$2.426(38)$	$2.460(38)$	$2.668(14)$	$4.911(31)$	$1.479(4)$
$\operatorname{ReA}_{0}\left(\times 10^{-8} \mathrm{GeV}\right)$	$60(36)$	$56(32)$	$31.1(45)$	$38.0(82)$	$33.2(2)$
$\operatorname{Re} A_{0} / \operatorname{Re} A_{2}$	$25(15)$	$23(13)$	$12.0(17)$	$7.7(17)$	$22.45(6)$
$\operatorname{ImA}_{2}\left(\times 10^{-12} \mathrm{GeV}\right)$	$-1.14(13)$	$-0.7457(83)$	$-0.6509(34)$	$-0.5502(40)$	
$\operatorname{ImA}_{0}\left(\times 10^{-12} \mathrm{GeV}\right)$	$-67(56)$	$-52(48)$	$-33(15)$	$-25(22)$	
$\operatorname{Re}\left(\epsilon^{\prime} / \epsilon\right)\left(\times 10^{-3}\right)$	$0.8(25)$	$0.9(25)$	$2.0(17)$	$2.7(26)$	$1.66(23)$
$\left(\right.$ used $\left.\left\|\epsilon^{\operatorname{EXP}}\right\|=2.22 \times 10^{-3}\right)$					

- Stat. error of our A_{0} is much larger than those of RBC-UKQCD at $m_{\pi}=330 \mathrm{MeV}$ They used a different two-pion operator from ours and set the fitting range closer to the operator.
- Matching point dependence is very large for ImA_{2}.
- Enhancement of $\Delta I=1 / 2$ process is seen.
- Further improvement of statistics is necessary for $\epsilon^{\prime} / \epsilon$.
arXiv:1110.2143 (RBC-UKQCD) $m_{\pi}=330 \mathrm{MeV}$

effective mass of $\pi \pi \rightarrow \pi \pi(I=0)$

$E=0.3922(126)$

$$
E=0.3639(55)
$$

Error is reduced by taking non-zero δ.
Reason?

Contribution of the matrix element on the lattice

i		
1	$\operatorname{Re} A_{0}(\mathrm{GeV})$	Ime $A_{0}(\mathrm{GeV})$
2	$-4(11) \times 10^{-08}$	0
3	$\frac{6.8(28) \times 10^{-07}}{-1.25(65) \times 10^{-08}}$	$-2.5(13) \times 10^{-11}$
4	$5.3(20) \times 10^{-08}$	$6.6(25) \times 10^{-11}$
5	$1.5(59) \times 10^{-09}$	$1.7(68) \times 10^{-12}$
6	$-8.4(46) \times 10^{-08}$	$-1.03(56) \times 10^{-10}$
7	$2.58(19) \times 10^{-10}$	$6.81(50) \times 10^{-13}$
8	$-6.26(45) \times 10^{-10}$	$-3.84(28) \times 10^{-12}$
9	$1.02(48) \times 10^{-11}$	$-3.4(16) \times 10^{-12}$
10	$0.0(14) \times 10^{-11}$	$-0.1(64) \times 10^{-13}$
$\underline{\text { Total }}$	$6.0(36) \times 10^{-07}$	$-6.7(56) \times 10^{-11}$

$$
\begin{aligned}
A_{I}= & \langle K| H|\pi \pi ; I\rangle=\sum_{i} \bar{A}_{i} \\
& \bar{A}_{i}=\sum_{j} C_{j}(\mu) Z_{j i}(\mu) M^{I}\left(Q_{i}\right)
\end{aligned}
$$

$M^{I}\left(Q_{i}\right)$: bare matrix element on the lattice

5. Summary

We calculate $K \rightarrow \pi \pi$ decay amplitudes
for the process $K(\mathbf{0}) \rightarrow \pi(\mathbf{0}) \pi(\mathbf{0})$ at $m_{\pi}=280 \mathrm{MeV}\left(m_{K} \sim 2 \times m_{\pi}\right)$

- $N_{f}=2+1 \quad$ improved Wilson fermion with

Non-perturbative subtraction of the lower dimensional operator .

- Calculation of quark loop by

Stochastic method with HPE and TSM

We found :

- TSM is an efficient method.
- For Q_{2}, the contribution of type-4 (OZI-suppression diag.) is large.
type-4 ~ type-1 (: Wilson fermion?)
- Stat. error of our A_{0} is much larger than those of RBC-UKQCD.

Improvement of the K and $\pi ा \pi$ operator is necessary.

- Matching point dependence is very large for ImA_{2}.

Non-perturbative renormalization factor is needed.

- Enhancement of $\Delta I=1 / 2$ process is seen.

$$
\operatorname{Re} A_{0} / \operatorname{Re} A_{2}=25 \pm 15
$$

- Further improvement of statistics is necessary for $\epsilon^{\prime} / \epsilon$.

Improvement of the K and $\pi \pi$ operator is necessary.

Back-up

Comparison with PRL 110,152001(2013) by RBC-UKQCD

$$
\begin{aligned}
& \operatorname{Re} A_{2}=((1)+(2)) \\
& \operatorname{Re} A_{0}=(2 \times(1)-(2))
\end{aligned}
$$

Contraction (2).

RBC-UKQCD

$$
\begin{aligned}
& m_{\pi}=330 \mathrm{MeV} \\
& t_{K}=0, t_{\pi}=20
\end{aligned}
$$

Ours

Note our convention : $K^{0}=-\bar{s} \gamma_{5} d$

