
Lattice QCD calculation of long distance
contribution to εK

Ziyuan Bai

Columbia University
RBC and UKQCD collaboration

February 5, 2015



Outline

I Introduction and theoretic background.

I Evaluation of ImM00̄ and εK .

I Preliminary results and short distance correction.

I Outlook and summary.



Introduction

I One of the most important test of the Standard Model: CP violating
observables εK , with the experimental value.

|εK | = 2.228(11)× 10−3

I All previous attempt to calculate εK involve only the short distance part,
(evaluating the kaon bag parameter BK ). The estimate of long distance
contribution is a few percent, but not preceisely calculated.

I Previous method for the calculation of ∆MK , with the technique of
evaluating the space time integrated four point correlator, can also be
used to calculate the long distance part of εK .



Introduction

I Our major challenge includes:

1. different from the ∆MK calculation, we focus on the CP violating part
of kaon mixing. More operators and more diagrams to evaluate on lattice.

2. In the ∆MK calculation, all the diagrams are convergent. However, in
our εK calculation, most of our four point diagrams have an log(a)
ultraviolet divergence and therefore treatment of the divergence is required.



Theoretical background: K 0 − K 0 mixing

I Let i , j stand for K 0 and K 0, from the kaon mixing theory we obtain:

I dispersive part:

Mij = P
∑
α

〈i |HW |α〉〈α|HW |j〉
mK − Eα

I absorptive part:

Γij =
∑
α

2π〈i |HW |α〉〈α|HW |j〉δ(mK − Eα)

I We have the εK :

εK =
exp(iπ/4)√

2∆MK

(ImM00̄ + 2ξ ReM00̄)

ξ =
ImA0

ReA0



Evaluation of ImM00̄

I Two types of diagram contribute to the ∆S = 2, K 0 − K 0 mixing process:
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Figure : two types of ∆S = 2 diagram

I Write the sum over three types of quark (u,c,t) into two terms
(λi = VidV

∗
is , and λu + λc + λt = 0 has been used).

The usual way is to eliminate up:∑
i=u,c,t

λi6 p
p2 + m2

i

= λc

{ 6 p
p2 + m2

c
− 6 p

p2 + m2
u

}
+ λt

{ 6 p
p2 + m2

t

− 6 p
p2 −m2

u

}
(1)



Evaluation of ImM00̄

I We choose to eliminate the charm.

∑
i=u,c,t

λi6 p
p2 + m2

i

= λu

{ 6 p
p2 + m2

u
− 6 p

p2 + m2
c

}
+ λt

{ 6 p
p2 + m2

t

− 6 p
p2 −m2

c

}
(2)

I This choice has the following advantages:

1. Take the product of the two internal quark lines:
λuλu term: has no imaginary parts (λu is real).
λtλt term: pure perturbative.
Therefore, only focus on the λuλt term.

2. Connected diagrams for the current-current operators don’t have a pion
intermediate state (all internal quark involve charm).



Evaluation of ImM00̄: ∆S = 1 weak Hamiltonian

.

I We calculate 〈K 0|TH∆S=1
W (x)H∆S=1

W (y)|K 0〉 in four flavor theory. The
H∆S=1

W is given by:

H∆S=1
eff =

GF

2

 ∑
q,q′=u,c

V ∗q′sVqd

∑
i=1,2

CiQ
q′q
i − λt

6∑
i=3

CiQi

 (3)

Qq′,q
1 =

∑
q,q′=u,c

V ∗q′,sVq,d (s̄iq
′
j )V−A(q̄jdi )V−A (4)

Qq′,q
2 =

∑
q,q′=u,c

V ∗q′,sVq,d (s̄iq
′
i )V−A(q̄jdj )V−A (5)

Q3 = (s̄idi )V−A

∑
q=u,d,s,c

(q̄jqj )V−A (6)

Q4 = (s̄idj )V−A

∑
q=u,d,s,c

(q̄jqi )V−A (7)

Q5 = (s̄idi )V−A

∑
q=u,d,s,c

(q̄jqj )V +A (8)

Q6 = (s̄idj )V−A

∑
q=u,d,s,c

(q̄jqi )V +A (9)



Evaluation of ImM00̄: 2nd order weak process.

I By multiplying two H∆S=1
W , we get:

THW (x)HW (y) =
G 2

F

2
λuλt

2∑
i=1

6∑
j=1

Ci Cj Qi,j (10)

Qi,j = T
[
2Qcc

i (x)Qcc
j (y)− Quu

i (x)Qcc
j (y)− Qcc

i (x)Quu
j (y)

−Quc
i (x)Qcu

j (y)− Qcu
i (x)Quc

j (y)
]
, (j = 1, 2)

Qi,j = T
[
(Qcc

i (x)− Quu
i (y))Qj (y) + Qj (x)(Qcc

i (y)− Quu
i (y))

]
, (j = 3, ..., 6)

I The Ci are the Wilson Coefficient.

I As in the ∆MK calculation, evaluate the integrated correlator:

A =
1

2

ta∑
t2=1

tb∑
t1=ta

〈0|T
{
K

0
(tf )HW (t2)HW (t1)K

0
(ti )
}
|0〉 (11)



Evaluation of ImM00̄

I After insertion of a complete set of intermediate states, we have:

A = N2
K e−MK (tf−ti )

{∑
n

〈K̄ 0|Hw |n〉〈n|Hw |K 0〉
MK −Mn

(
−T +

e(MK−Mn)T − 1

MK −Mn

)}
(12)

I By doing a linear fit with T , we can find the M00̄.

I Two different parts for the intermediate states |n〉:
1. En > mK : contribution to the exponential terms is highly suppressed,
leaving only terms proportional to T, plus constant terms.

2. En < mK : their exponentially growing term should be identified and
subtracted.



Evaluation of ImM00̄

I Four points diagrams:

type 1 type 2

u− c

c

d

s d

s
d

s d

s

u− c

c

i = 1, 2, j = 1, 2

uu− cc

d

s d

s
d

s d

s

uu− cc

i = 1, 2, j = 3, 4, 5, 6

I In all these diagrams, the momentum in the internal quark lines are cutoff
by a unphysical scale ∝ 1/a (inverse lattice spacing). The divergence piece
should therefore be identified and corrected.



Evaluation of ImM00̄

I Four points diagrams.

type 3 type 4

d s

s
d

u− c c

d

s d

su− c c

d

s

s

s d

u− cV − /+ A

type 5

I Leave these to future work!



Simulation details

I 243 × 64 Iwasaki lattice, mπ = 329 MeV, and mK = 575 MeV. quenched
charm, mc = 0.363 (949 MeV).

I Use wall source propagator for the kaon source and sink, and random
volume source for the self loop.

I Use Lanczos algorithm with 300 eigenvectors.

I The main goal of this calculation:

1.To understand the size of long distance contribution.

2. Develop log(a) correction method.

I For the present analysis, we focus on type 1 and 2 diagrams :

1. Smaller statistical noise.

2. Short distance part easier to evaluate in continuum.



Short distance divergence

I For the case of ∆MK calculation, our diagrams are convergent.

x y

p1

p2

p3

p4

d

s d

s

α, a

β, b γ, c

δ, d

V − AV − A

u− c

u− c∫
d4pγµ(1− γ5)(

/p −mu

/p2 + m2
u

− /p −mc

/p2 + m2
c

)γν(1− γ5)(
/p −mu

/p2 + m2
u

− /p −mc

/p2 + m2
c

) (13)

=

∫
d4pγµ(1− γ5)

/p(m2
c −m2

u)

(/p2 + m2
u)(/p2 + m2

c )
γν(1− γ5)

/p(m2
c −m2

u)

(/p2 + m2
u)(/p2 + m2

c )
(14)

I We get this equation because the V − A structure of the vertex made the
m on the numerator disappear. And the final expression is not divergent
when p is high.



Short distance divergence

I In the εK calculation, with both the two weak operator Q1, Q2, one of the
internal quark lines is a single charm.

x y

p1

p2

p3

p4

d

s d

s

α, a

β, b γ, c

δ, d

V − AV − A
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c∫
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− /p −mu
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/p −mc
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) (15)

=

∫
d4pγµ(1− γ5)

/p(m2
c −m2

u)

(/p2 + m2
u)(/p2 + m2

c )
γν(1− γ5)(

/p

/p2 + m2
c

) (16)

I Ultraviolet logarithm divergence, when the two weak vertex are close to
each other. Cutoff by the unphysical scale ∝ 1/a on lattice. therefore the
divergent part must be corrected.



Short distance divergence

I Gluonic penguin diagrams are also log divergent!
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Short distance divergence: Rome-Southamption method

I Use a local operator OLL = (s̄d)(s̄d), to represent the short distance
divergent part of 〈K 0|THW (x)HW (y)|K 0〉

I Use Rome-Southamption method, work under momentum scale µ and find
the coefficient C lat

i,j (µ2) that∑
x,y

〈K 0|TQj (x)Qj (y)|K 0〉SD = C lat
i,j (µ2)

∑
x

〈K 0|OLL(x)|K 0〉 (17)

I Then work in continuum under same µ, find the physical short distance
part, which can be represented by a coefficient C cont

i,j (µ2). Finally, the
correct correlator :

A → A− C lat(µ2)
∑

x

〈K 0|OLL(x)|K 0〉+ C cont(µ2)
∑

x

〈K 0|OLL(x)|K 0〉

(18)



Short distance divergence: Evaluation of C lat

I To work out the coefficient C lat on lattice, use the off-shell amputated
Green function for our weak Hamiltonian and the OLL operator, projected
on the projection operator Pα,β,γ,δ:(

Γamp
α,β,γ,δ(p)− C lat (µ2)Γamp,SD

α,β,γ,δ(p)
)

Pα,β,γ,δ = 0 (19)

Γαβγδ(p) = 〈sα(p1)d̄β(p2)

∫
d4x1

∫
d4x2HW (x1)HW (x2)sγ(p3)d̄δ(p4)〉. (20)

ΓSD
αβγδ(p) = 〈sα(p1)d̄β(p2)

∫
d4xOLL(x)sγ(p3)d̄δ(p4)〉. (21)

I If the lattice momentum has relatively high scale, then the major
contribution to Γαβγδ(p) is from short distance. Therefore C lat can
correctly represent the divergent part of our correlator.



Short distance divergence: Evaluation of C lat

I choose momentum:
|p1| = |p2| = |p3| = |p4| = µ, |p1 − p2| = |p3 − p4| = µ,
p1 + p4 = p2 + p3 (net momentum flow is 0).

x y

p1

p2

p3

p4

d

s d

s

α, a

β, b γ, c

δ, d

V − /+ A

α, a
s

p2
p4

δ, dd

γ, cp3

s

β, b

d
p1

V − /+ A

x

y

d s

s d

α, a

β, b
γ, c

δ, d

Γµ Γµ

p1
p3

p2 p4

d s

s d

α, a

β, b
γ, c

δ, d

Γµ

Γµ

p1
p3

p2 p4



Short distance divergence: Evaluation of C lat

I Use:

p1 =
2π

La
(M,M, 0, 0), p2 =

2π

La
(M, 0,M, 0)

p3 =
2π

La
(0,M, 0,M), p4 =

2π

La
(0, 0,M,M)

(22)

I To study the short distance divergence of our correlator, we impose a
space-time cutoff R:

Γαβγδ(p) = 〈sα(p1)d̄β(p2)

∫
d4x1

∫
|x1−x2|2<R2

d4x2HW (x1)HW (x2)sγ(p3)d̄δ(p4)〉.

(23)

I Small R dependence when R ≥ 5: C lat really represent short distance part!

cutoff 3 4 5 7 none

C lat
11 0.1726 0.1881 0.1903 0.1905 0.1904

C lat
22 0.0489 0.0520 0.0522 0.0522 0.0522

Table : C lat
i,j : coefficient for Qi Qj .



Short distance divergence: Evaluation of C lat

I Energy scale µ dependence of C lat(µ2):
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Figure : Short distance coefficients for energy scale µ = 1.41GeV − 2.6GeV .
Red line is a logarithm fit.



Preliminary results: Wilson coefficients

I We use the basis for operators (Quu
1 , Quu

2 , Q3, Q4, Q5, Q6). The Wilson
coefficient for Qcc

i , Qcu
i , and Quc

i will be the same to Quu
i (i = 1, 2).

I We can find the Wilson coefficient in MS at µ = 2.15 GeV:

C MS =
(
−0.2967 1.1385 0.0217 −0.0518 0.0102 −0.0671

)
(24)

I Use NPR to find the lattice Wilson coefficient, renormalized at µ = 2.15
GeV.

6∑
i=1

C MS
i QMS

i =
6∑

i=1

C lat
i Q lat

i , (25)

C lat =
(
−0.2373(1) 0.6885(1) 0.0113(8) −0.0213(10) 0.0085(8) −0.0256(8)

)
(26)



Preliminary results

I Integrated correlator before and after short distance correcton:
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Figure : Integrated correlator, only Q1Q1 and Q2Q2 are plotted.



Preliminary results

I Different contribution to ImM00̄, before and after subtraction of short
distance contribution. Error comes from both the fitting of correlator and
the Wilson coefficients.

before after before after
Q1Q1 -0.7241(61) -0.0786(59)
Q1Q2 0.9112(101) 0.0637(099) Q2Q2 -2.3472(281) -0.7816(282)
Q1Q3 0.1181(60) 0.0506(27) Q2Q3 -0.0190(21) 0.0242(22)
Q1Q4 -0.0116(11) 0.0161(12) Q2Q4 0.2216(81) 0.1182(51)
Q1Q5 -0.0681(048) -0.0035(009) Q2Q5 0.3461(245) 0.2917(208)
Q1Q6 0.1577(059) 0.0828(051) Q2Q6 0.0863(121) 0.2914(137)

Table : Imaginary part of M00̄, before/ after subtraction of short distance
contribution.



Preliminary results

I We therefore obtain the λuλt contribution to M00̄. Before the subtraction
of short distance part:

M00̄ = (3.16(10)− 1.32(4))× 10−15MeV

I After the subtraction of short distance part:

M00̄ = (−1.79(99) + 0.75(41))× 10−16MeV

I To obtain correct results, we still need to calculate the physical short
distance contribution in continuum and add them back.

I We can find the εK from:

εk =
exp(iπ/4)√

2∆MK

(ImM00̄ + 2ξ ReM00̄) (27)

I The value for ξ can be obtained from lattice calculation of kaon to two
pion A0. Currently, we can set this term to 0, and we use the experimental
value ∆MK = 3.483(6)× 10−12MeV .



Preliminary results

I The long distance contribution to λuλt part of εK is:

I before short distance correction.

|εK | = 2.69(8)× 10−4,

I after short distance correction.

|εK | = 1.52(84)× 10−5,

I The experimental value(with all parts):

|εK | = 2.228(11)× 10−3

I We have relatively large error on the εK after short distance subtraction,
because there is huge cancellation between different contribution to εK ,
but the error is not cancelled.



Outlook and summary

I To obtain complete calculation of λuλt part of εK , we have to:

1. Find the correct short distance contribution from continuum for the box
diagram topology, and add it back to our results. Then our type 1 and 2
diagrams for the box topology is complete.

2. Include all the diagrams (type 3, 4, 5), do the corresponding NPR to
remove the short distance artifact, and find the short distance contribution
in continuum for the disconnected topology and add to our results.

3. Work on a lattice with more physical kinematics, including lighter pion,
unquenched charm, and larger physical volume.


