

6 th of February 2015 - MNME 2015 (BNL, USA)
$K \rightarrow \pi \ell^{+} \ell^{-}$decays on the lattice

Southanmpton

Antonin J. Portelli (RBC-UKQCD collaborations)

Motivations

Motivations

* Rare kaons decays $K \rightarrow \pi \ell^{+} \ell^{-}$and $K \rightarrow \pi \bar{\nu} \nu$ are flavour changing neutral current processes (FCNC)

Motivations

* Rare kaons decays $K \rightarrow \pi \ell^{+} \ell^{-}$and $K \rightarrow \pi \bar{\nu} \nu$ are flavour changing neutral current processes (FCNC)
* They are heavily suppressed in the Standard Model and sensitive to New Physics

Motivations

* Rare kaons decays $K \rightarrow \pi \ell^{+} \ell^{-}$and $K \rightarrow \pi \bar{\nu} \nu$ are flavour changing neutral current processes (FCNC)
* They are heavily suppressed in the Standard Model and sensitive to New Physics
* Each type of process contains 3 decays: K^{+}, K_{S}^{0} and K_{L}^{0}

Motivations

* Rare kaons decays $K \rightarrow \pi \ell^{+} \ell^{-}$and $K \rightarrow \pi \bar{\nu} \nu$ are flavour changing neutral current processes (FCNC)
* They are heavily suppressed in the Standard Model and sensitive to New Physics
* Each type of process contains 3 decays: K^{+}, K_{S}^{0} and K_{L}^{0}
* $K \rightarrow \pi \bar{\nu} \nu$ will be discussed in the next talk (X. Feng)

Motivations

* Rare kaons decays $K \rightarrow \pi \ell^{+} \ell^{-}$and $K \rightarrow \pi \bar{\nu} \nu$ are flavour changing neutral current processes (FCNC)
* They are heavily suppressed in the Standard Model and sensitive to New Physics
* Each type of process contains 3 decays: K^{+}, K_{S}^{0} and K_{L}^{0}
* $K \rightarrow \pi \bar{\nu} \nu$ will be discussed in the next talk (X. Feng)
* $K^{+} \rightarrow \pi^{+} \ell^{+} \ell^{-}$: long-distance dominated

Motivations

* Rare kaons decays $K \rightarrow \pi \ell^{+} \ell^{-}$and $K \rightarrow \pi \bar{\nu} \nu$ are flavour changing neutral current processes (FCNC)
* They are heavily suppressed in the Standard Model and sensitive to New Physics
* Each type of process contains 3 decays: K^{+}, K_{S}^{0} and K_{L}^{0}
* $K \rightarrow \pi \bar{\nu} \nu$ will be discussed in the next talk (X. Feng)
* $K^{+} \rightarrow \pi^{+} \ell^{+} \ell^{-}$: long-distance dominated
* $K_{L / S}^{0} \rightarrow \pi^{0} \ell^{+} \ell^{-}$: feature indirect/ direct CP-violation interference
* Euclidean formulation
* Ultraviolet \& infrared behaviour
* Preliminary lattice results
* Summary \& perspectives

Euclidean formulation

Minkowski amplitude

$$
\mathscr{A}_{\mu}^{c}\left(q^{2}\right)=\int \mathrm{d}^{4} x\left\langle\pi^{c}(\mathbf{p})\right| \mathrm{T}\left[J_{\mu}(0) H_{W}(x)\right]\left|K^{c}(\mathbf{k})\right\rangle
$$

Minkowski amplitude

$$
\mathscr{A}_{\mu}^{c}\left(q^{2}\right)=\int \mathrm{d}^{4} x\left\langle\pi^{c}(\mathbf{p})\right| \mathrm{T}\left[J_{\mu}(0) H_{W}(x)\right]\left|K^{c}(\mathbf{k})\right\rangle
$$

Minkowski amplitude

$$
\mathscr{A}_{\mu}^{c}\left(q^{2}\right)=\int \mathrm{d}^{4} x\left\langle\pi^{c}(\mathbf{p})\right| \mathrm{T}\left[J_{\mu}(0) H_{W}(x)\right]\left|K^{c}(\mathbf{k})\right\rangle
$$

Minkowski amplitude

$$
\mathscr{A}_{\mu}^{c}\left(q^{2}\right)=\int \mathrm{d}^{4} x\left\langle\pi^{c}(\mathbf{p})\right| \mathrm{T}\left[J_{\mu}(0) H_{W}(x)\right]\left|K^{c}(\mathbf{k})\right\rangle
$$

Spectral representation:

$$
\begin{aligned}
\mathscr{A}_{\mu}^{c}\left(q^{2}\right) & =i \int_{0}^{+\infty} \mathrm{d} E \frac{\rho(E)}{2 E} \frac{\left\langle\pi^{c}(\mathbf{p})\right| J_{\mu}(0)|E, \mathbf{k}\rangle\langle E, \mathbf{k}| H_{W}(0)\left|K^{c}(\mathbf{k})\right\rangle}{E_{K}(\mathbf{k})-E+i \varepsilon} \\
& -i \int_{0}^{+\infty} \mathrm{d} E \frac{\rho_{S}(E)}{2 E} \frac{\left\langle\pi^{c}(\mathbf{p})\right| H_{W}(0)|E, \mathbf{p}\rangle\langle E, \mathbf{p}| J_{\mu}(0)\left|K^{c}(\mathbf{k})\right\rangle}{E-E_{\pi}(\mathbf{p})+i \varepsilon}
\end{aligned}
$$

Euclidean correlation function

$$
\Gamma_{\mu}^{(4) c}(x, \mathbf{k}, \mathbf{p})=\left\langle\phi_{\pi^{c}}\left(t_{\pi}, \mathbf{p}\right) \mathrm{T}\left[J_{\mu}(0) H_{W}(x)\right] \phi_{K^{c}}\left(t_{K}, \mathbf{k}\right)^{\dagger}\right\rangle
$$

Euclidean correlation function

$$
\Gamma_{\mu}^{(4) c}(x, \mathbf{k}, \mathbf{p})=\left\langle\phi_{\pi^{c}}\left(t_{\pi}, \mathbf{p}\right) \mathrm{T}\left[J_{\mu}(0) H_{W}(x)\right] \phi_{K^{c}}\left(t_{K}, \mathbf{k}\right)^{\dagger}\right\rangle
$$

Euclidean correlation function

$$
\Gamma_{\mu}^{(4) c}(x, \mathbf{k}, \mathbf{p})=\left\langle\phi_{\pi^{c}}\left(t_{\pi}, \mathbf{p}\right) \mathrm{T}\left[J_{\mu}(0) H_{W}(x)\right] \phi_{K^{c}}\left(t_{K}, \mathbf{k}\right)^{\dagger}\right\rangle
$$

For $-t_{\pi}, t_{K} \rightarrow+\infty$:

$$
\Gamma_{\mu}^{(4) c}(x, \mathbf{k}, \mathbf{p})=\underbrace{\frac{Z_{\pi} Z_{K}^{\dagger} e^{-t_{\pi} E_{\pi}(\mathbf{p})} e^{t_{K} E_{K}(\mathbf{k})}}{4 E_{\pi}(\mathbf{p}) E_{K}(\mathbf{k})}} \underbrace{\left\langle\pi^{c}(\mathbf{p})\right| \mathrm{T}\left[J_{\mu}^{b}(0) H_{W}(x)\right]\left|K^{c}(\mathbf{k})\right\rangle}
$$

Euclidean correlation function

$$
\Gamma_{\mu}^{(4) c}(x, \mathbf{k}, \mathbf{p})=\left\langle\phi_{\pi^{c}}\left(t_{\pi}, \mathbf{p}\right) \mathrm{T}\left[J_{\mu}(0) H_{W}(x)\right] \phi_{K^{c}}\left(t_{K}, \mathbf{k}\right)^{\dagger}\right\rangle
$$

For $-t_{\pi}, t_{K} \rightarrow+\infty$:

$$
\Gamma_{\mu}^{(4) c}(x, \mathbf{k}, \mathbf{p})=\underbrace{\frac{Z_{\pi} Z_{K}^{\dagger} e^{-t_{\pi} E_{\pi}(\mathbf{p})} e^{t_{K} E_{K}(\mathbf{k})}}{4 E_{\pi}(\mathbf{p}) E_{K}(\mathbf{k})}}_{\downarrow} \underbrace{\left\langle\pi^{c}(\mathbf{p})\right| \mathrm{T}\left[J_{\mu}^{b}(0) H_{W}(x)\right]\left|K^{c}(\mathbf{k})\right\rangle}
$$

can be obtained from 2-point functions

Euclidean correlation function

$$
\Gamma_{\mu}^{(4) c}(x, \mathbf{k}, \mathbf{p})=\left\langle\phi_{\pi^{c}}\left(t_{\pi}, \mathbf{p}\right) \mathrm{T}\left[J_{\mu}(0) H_{W}(x)\right] \phi_{K^{c}}\left(t_{K}, \mathbf{k}\right)^{\dagger}\right\rangle
$$

For $-t_{\pi}, t_{K} \rightarrow+\infty$:

$$
\begin{aligned}
& \Gamma_{\mu}^{(4) c}(x, \mathbf{k}, \mathbf{p})=\underbrace{\frac{Z_{\pi} Z_{K}^{\dagger} e^{-t_{\pi} E_{\pi}(\mathbf{p})} e^{t_{K} E_{K}(\mathbf{k})}}{4 E_{\pi}(\mathbf{p}) E_{K}(\mathbf{k})}}_{\downarrow} \underbrace{\left\langle\pi^{c}(\mathbf{p})\right| \mathrm{T}\left[J_{\mu}^{b}(0) H_{W}(x)\right]\left|K^{c}(\mathbf{k})\right\rangle}_{\text {can be obtained from 2-point functions }} \\
& \tilde{\Gamma}_{\mu}^{(4) c}(x, \mathbf{k}, \mathbf{p})
\end{aligned}
$$

Quark Wick contractions

E: "Eye"

W: "Wing"

S: "Saucer"

Quark Wick contractions

Quark Wick contractions

Neutral case additional diagrams:

Euclidean spectral representation

Integrated correlator on a finite time interval $\left[-T_{a}, T_{b}\right]$:

$$
\begin{aligned}
\int \mathrm{d}^{3} \mathbf{x} \int_{-T_{a}}^{T_{b}} \mathrm{~d} t \tilde{\Gamma}_{\mu}^{(4) c}(t, \mathbf{x}, \mathbf{k}, \mathbf{p})= & -\int_{0}^{+\infty} \mathrm{d} E \frac{\rho(E)}{2 E} \frac{\left\langle\pi^{c}(\mathbf{p})\right| J_{\mu}(0)|E, \mathbf{k}\rangle\langle E, \mathbf{k}| H_{W}(0)\left|K^{c}(\mathbf{k})\right\rangle}{E_{K}(\mathbf{k})-E} \\
& \times\left(1-e^{\left[E_{K}(\mathbf{k})-E\right] T_{a}}\right) \\
+ & \int_{0}^{+\infty} \mathrm{d} E \frac{\rho_{S}(E)}{2 E} \frac{\left\langle\pi^{c}(\mathbf{p})\right| H_{W}(0)|E, \mathbf{p}\rangle\langle E, \mathbf{p}| J_{\mu}(0)\left|K^{c}(\mathbf{k})\right\rangle}{E-E_{\pi}(\mathbf{p})} \\
& \times\left(1-e^{-\left[E-E_{\pi}(\mathbf{p})\right] T_{b}}\right)
\end{aligned}
$$

Euclidean spectral representation

Integrated correlator on a finite time interval $\left[-T_{a}, T_{b}\right]$:

$$
\begin{aligned}
\int \mathrm{d}^{3} \mathbf{x} \int_{-T_{a}}^{T_{b}} \mathrm{~d} t \tilde{\Gamma}_{\mu}^{(4) c}(t, \mathbf{x}, \mathbf{k}, \mathbf{p})= & -\int_{0}^{+\infty} \mathrm{d} E \frac{\rho(E)}{2 E} \frac{\left\langle\pi^{c}(\mathbf{p})\right| J_{\mu}(0)|E, \mathbf{k}\rangle\langle E, \mathbf{k}| H_{W}(0)\left|K^{c}(\mathbf{k})\right\rangle}{E_{K}(\mathbf{k})-E} \\
& \times\left(1-e^{\left[E_{K}(\mathbf{k})-E\right] T_{a}}\right) \\
+ & \int_{0}^{+\infty} \mathrm{d} E \frac{\rho_{S}(E)}{2 E} \frac{\left\langle\pi^{c}(\mathbf{p})\right| H_{W}(0)|E, \mathbf{p}\rangle\langle E, \mathbf{p}| J_{\mu}(0)\left|K^{c}(\mathbf{k})\right\rangle}{E-E_{\pi}(\mathbf{p})} \\
& \times\left(1-e^{-\left[E-E_{\pi}(\mathbf{p})\right] T_{b}}\right)
\end{aligned}
$$

* growing exponential for $E<E_{K}(\mathbf{k})$

Euclidean spectral representation

Integrated correlator on a finite time interval $\left[-T_{a}, T_{b}\right]$:

$$
\begin{aligned}
\int \mathrm{d}^{3} \mathbf{x} \int_{-T_{a}}^{T_{b}} \mathrm{~d} t \tilde{\Gamma}_{\mu}^{(4) c}(t, \mathbf{x}, \mathbf{k}, \mathbf{p})= & -\int_{0}^{+\infty} \mathrm{d} E \frac{\rho(E)}{2 E} \frac{\left\langle\pi^{c}(\mathbf{p})\right| J_{\mu}(0)|E, \mathbf{k}\rangle\langle E, \mathbf{k}| H_{W}(0)\left|K^{c}(\mathbf{k})\right\rangle}{E_{K}(\mathbf{k})-E} \\
& \times\left(1-e^{\left[E_{K}(\mathbf{k})-E\right] T_{a}}\right) \\
+ & \int_{0}^{+\infty} \mathrm{d} E \frac{\rho_{S}(E)}{2 E} \frac{\left\langle\pi^{c}(\mathbf{p})\right| H_{W}(0)|E, \mathbf{p}\rangle\langle E, \mathbf{p}| J_{\mu}(0)\left|K^{c}(\mathbf{k})\right\rangle}{E-E_{\pi}(\mathbf{p})} \\
& \times\left(1-e^{-\left[E-E_{\pi}(\mathbf{p})\right] T_{b}}\right)
\end{aligned}
$$

* growing exponential for $E<E_{K}(\mathbf{k})$
* need to be removed to obtain the Minkowski amplitude

Euclidean spectral representation

Integrated correlator on a finite time interval $\left[-T_{a}, T_{b}\right]$:

$$
\begin{aligned}
\int \mathrm{d}^{3} \mathbf{x} \int_{-T_{a}}^{T_{b}} \mathrm{~d} t \tilde{\Gamma}_{\mu}^{(4) c}(t, \mathbf{x}, \mathbf{k}, \mathbf{p})= & -\int_{0}^{+\infty} \mathrm{d} E \frac{\rho(E)}{2 E} \frac{\left\langle\pi^{c}(\mathbf{p})\right| J_{\mu}(0)|E, \mathbf{k}\rangle\langle E, \mathbf{k}| H_{W}(0)\left|K^{c}(\mathbf{k})\right\rangle}{E_{K}(\mathbf{k})-E} \\
& \times\left(1-e^{\left[E_{K}(\mathbf{k})-E\right] T_{a}}\right) \\
+ & \int_{0}^{+\infty} \mathrm{d} E \frac{\rho_{S}(E)}{2 E} \frac{\left\langle\pi^{c}(\mathbf{p})\right| H_{W}(0)|E, \mathbf{p}\rangle\langle E, \mathbf{p}| J_{\mu}(0)\left|K^{c}(\mathbf{k})\right\rangle}{E-E_{\pi}(\mathbf{p})} \\
& \times\left(1-e^{-\left[E-E_{\pi}(\mathbf{p})\right] T_{b}}\right)
\end{aligned}
$$

* growing exponential for $E<E_{K}(\mathbf{k})$
* need to be removed to obtain the Minkowski amplitude
* generated by 1, 2 and 3-pion intermediate states

Removing the single-pion divergence

1. Reconstruct the divergent single-pion term by computing J_{μ} and H_{W} matrix elements for $\pi \rightarrow \pi \gamma^{*}$ and $K \rightarrow \pi$ transitions

Removing the single-pion divergence

1. Reconstruct the divergent single-pion term by computing J_{μ} and H_{W} matrix elements for $\pi \rightarrow \pi \gamma^{*}$ and $K \rightarrow \pi$ transitions
2. One can show that the physical amplitude is invariant under $H_{W} \mapsto H_{W}+c_{S} \bar{s} d, c_{S}$ can be tuned to cancel the $K \rightarrow \pi$ matrix element

Two-pion intermediate states

Two-pion intermediate states

Two-pion intermediate states

After integrating ℓ, only two independent momenta.

Two-pion intermediate states

After integrating ℓ, only two independent momenta.
No two-pion intermediate state

Removing the 3-pion divergence

* One needs $K \rightarrow \pi \pi \pi$ matrix elements

Removing the 3-pion divergence

* One needs $K \rightarrow \pi \pi \pi$ matrix elements
* On the lattice: unknown and probably very challenging

Removing the 3-pion divergence

* One needs $K \rightarrow \pi \pi \pi$ matrix elements
* On the lattice: unknown and probably very challenging
* [arXiv:1408.5933] proposed a theory for the quantisation of 3-pion states in a finite volume (cf. also S. Sharpe's talk yesterday)

Removing the 3-pion divergence

* One needs $K \rightarrow \pi \pi \pi$ matrix elements
* On the lattice: unknown and probably very challenging
* [arXiv:1408.5933] proposed a theory for the quantisation of 3-pion states in a finite volume (cf. also S. Sharpe's talk yesterday)
* Only a problem for pion masses less than $\sim 165 \mathrm{MeV}$

Ultraviolet \& infrared behaviour

Individual operator renormalisation

* The vector current is conserved and does not need renormalisation

Individual operator renormalisation

* The vector current is conserved and does not need renormalisation
* The renormalisation of the weak hamiltonian is also know and is much more simple with chiral fermions (cf. e.g. [Z. Bai, et al. PRL, 113(1), p. 112003, 2014]).

Short distance operator product

UV divergences may appear in loops between J_{μ} and H_{W} :

Short distance operator product

UV divergences may appear in loops between J_{μ} and H_{W} :

Same divergence structure than HVP

Short distance operator product

OPE with lattice regularisation:

$$
\Pi_{\mu \nu, i j}^{f}(q) \underset{a \rightarrow 0}{=} C_{\mu \nu, i j}^{1}+C_{\mu \nu, i j}^{\bar{f} f}\left\langle m_{f} \bar{f} f\right\rangle+\ldots
$$

Short distance operator product

OPE with lattice regularisation:

$$
\Pi_{\mu \nu, i j}^{f}(q) \underset{a \rightarrow 0}{=} C_{\mu \nu, i j}^{1}+C_{\mu \nu, i j}^{\bar{f} f}\left\langle m_{f} \bar{f} f\right\rangle+\ldots
$$

Short distance operator product

OPE with lattice regularisation:

$$
\begin{gathered}
\Pi_{\mu \nu, i j}^{f}(q) \underset{a \rightarrow 0}{=} C_{\mu \nu, i j}^{1}+C_{\mu \nu, i j}^{\bar{f} f}\left\langle m_{f} \bar{f} f\right\rangle+\ldots \\
\operatorname{dim} 2 \\
\operatorname{dim}-2
\end{gathered}
$$

Short distance operator product

OPE with lattice regularisation:

$$
\Pi_{\mu \nu, i j}^{f}(q) \underset{a \rightarrow 0}{=} C_{\mu \nu, i j}^{1}+C_{\mu \nu, i j}^{\bar{f} f}\left\langle m_{f} \bar{f} f\right\rangle+\ldots
$$

Short distance operator product

OPE with lattice regularisation:

$$
\begin{array}{r}
\Pi_{\mu \nu, i j}^{f}(q) \underset{a \rightarrow 0}{=} C_{\mu \nu, i j}^{1}+C_{\mu \nu, i j}^{\bar{f} f}\left\langle m_{f} \bar{f} f\right\rangle+\ldots \\
\operatorname{dim} 2 \\
\operatorname{dim}-2
\end{array}
$$

* vector case: WI lower dimensions by 2: mass independent logarithmic divergence

Short distance operator product

OPE with lattice regularisation:

$$
\begin{array}{r}
\Pi_{\mu \nu, i j}^{f}(q) \underset{a \rightarrow 0}{=} C_{\mu \nu, i j}^{1}+C_{\mu \nu, i j}^{\bar{f} f}\left\langle m_{f} \bar{f} f\right\rangle+\ldots \\
\operatorname{dim} 2 \\
\operatorname{dim}-2
\end{array}
$$

* vector case: WI lower dimensions by 2: mass independent logarithmic divergence
* GIM subtraction cancels mass independent divergences

Finite-size effects

* Cuts in diagram: power-law finite volume effects (cf. e.g. S. Sharpe's talk yesterday)

Finite-size effects

* Cuts in diagram: power-law finite volume effects (cf. e.g. S. Sharpe's talk yesterday)
* Possible with 3-pion on-shell intermediate states:

Finite-size effects

* Cuts in diagram: power-law finite volume effects (cf. e.g. S. Sharpe's talk yesterday)
* Possible with 3-pion on-shell intermediate states:

* All other finite-size effects: exponentially suppressed

Preliminary lattice results

Lattice setup

* DWF action, 64×24^{3} lattice with spacing $\sim 0.12 \mathrm{fm}$

Lattice setup

* DWF action, 64×24^{3} lattice with spacing $\sim 0.12 \mathrm{fm}$
* $N_{f}=2+1, M_{\pi} \simeq 420 \mathrm{MeV}$ and $M_{K} \simeq 600 \mathrm{MeV}$

Lattice setup

* DWF action, 64×24^{3} lattice with spacing $\sim 0.12 \mathrm{fm}$
* $N_{f}=2+1, M_{\pi} \simeq 420 \mathrm{MeV}$ and $M_{K} \simeq 600 \mathrm{MeV}$
* $K(2 \pi / L, 0,0) \rightarrow \pi(0,0,0), q^{2} \simeq-0.09 \mathrm{GeV}^{2}$

Lattice setup

* DWF action, 64×24^{3} lattice with spacing $\sim 0.12 \mathrm{fm}$
* $N_{f}=2+1, M_{\pi} \simeq 420 \mathrm{MeV}$ and $M_{K} \simeq 600 \mathrm{MeV}$
* $K(2 \pi / L, 0,0) \rightarrow \pi(0,0,0), q^{2} \simeq-0.09 \mathrm{GeV}^{2}$
* only W and C connected diagrams

Lattice setup

* DWF action, 64×24^{3} lattice with spacing $\sim 0.12 \mathrm{fm}$
* $N_{f}=2+1, M_{\pi} \simeq 420 \mathrm{MeV}$ and $M_{K} \simeq 600 \mathrm{MeV}$
* $K(2 \pi / L, 0,0) \rightarrow \pi(0,0,0), q^{2} \simeq-0.09 \mathrm{GeV}^{2}$
* only W and C connected diagrams
* gauge fixed wall sources, sequential current insertion

2-point function fit

EM current matrix element

Weak Hamiltonian matrix element

c_{S} determination

Rare kaon decay correlation function

Rare kaon decay correlation function

Summary \& outlook

Summary

Summary

* We know how to define the di-lepton rare kaon decay matrix element in Euclidean space-time

Summary

* We know how to define the di-lepton rare kaon decay matrix element in Euclidean space-time
- Intermediate states with energy less than the kaon one have to be subtracted: possibly 1,2 or 3 -pion states

Summary

* We know how to define the di-lepton rare kaon decay matrix element in Euclidean space-time
* Intermediate states with energy less than the kaon one have to be subtracted: possibly 1,2 or 3-pion states
* Two methods for the single-pion state

Summary

* We know how to define the di-lepton rare kaon decay matrix element in Euclidean space-time
- Intermediate states with energy less than the kaon one have to be subtracted: possibly 1,2 or 3-pion states
* Two methods for the single-pion state
* No 2-pion intermediate state

Summary

* We know how to define the di-lepton rare kaon decay matrix element in Euclidean space-time
- Intermediate states with energy less than the kaon one have to be subtracted: possibly 1,2 or 3-pion states
* Two methods for the single-pion state
* No 2-pion intermediate state
* Short-distance behaviour completely regulated by GIM mechanism and gauge-invariance

Summary

- We know how to define the di-lepton rare kaon decay matrix element in Euclidean space-time
* Intermediate states with energy less than the kaon one have to be subtracted: possibly 1,2 or 3-pion states
* Two methods for the single-pion state
* No 2-pion intermediate state
* Short-distance behaviour completely regulated by GIM mechanism and gauge-invariance
* If no on-shell 3-pion intermediate state: exponentially suppressed finitesize effects

Summary

* We know how to define the di-lepton rare kaon decay matrix element in Euclidean space-time
* Intermediate states with energy less than the kaon one have to be subtracted: possibly 1,2 or 3-pion states
* Two methods for the single-pion state
* No 2-pion intermediate state
* Short-distance behaviour completely regulated by GIM mechanism and gauge-invariance
* If no on-shell 3-pion intermediate state: exponentially suppressed finitesize effects
* Preliminary lattice calculations agree with theory

Outlook

Outlook

* Try different kinematics, time positions

Outlook

* Try different kinematics, time positions
* How to include efficiently S, E and disconnected diagrams?

Outlook

* Try different kinematics, time positions
* How to include efficiently S, E and disconnected diagrams?
* Aim at lighter quark masses

Outlook

* Try different kinematics, time positions
* How to include efficiently S, E and disconnected diagrams?
* Aim at lighter quark masses
* How to deal with the 3-pion intermediate state at the physical point?

Thank you!

