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❖ Rare kaons decays                       and                   are flavour 
changing neutral current processes (FCNC)

❖ They are heavily suppressed in the Standard Model and sensitive 
to New Physics

❖ Each type of process contains 3 decays:       ,        and

❖                   will be discussed in the next talk (X. Feng)

❖                            : long-distance dominated

❖                              : feature indirect/direct CP-violation interference



❖ Euclidean formulation
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Spectral representation:

EM current (weak contribution negligible)

Effective               weak Hamiltonian
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E: “Eye” S: “Saucer”

Names: E. Goode
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Neutral case additional diagrams:
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Euclidean spectral representation
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Integrated correlator on a finite time interval                 :

❖ growing exponential for

❖ need to be removed to obtain the Minkowski amplitude

❖ generated by 1, 2 and 3-pion intermediate states
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Removing the single-pion divergence

1. Reconstruct the divergent single-pion term by 
computing       and         matrix elements for  
and                transitions

2. One can show that the physical amplitude is invariant 
under                                   ,       can be tuned to cancel 
the               matrix element
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No two-pion intermediate state

After integrating   , only two independent momenta.



Removing the 3-pion divergence

❖ One needs                    matrix elements

13



Removing the 3-pion divergence

❖ One needs                    matrix elements

❖ On the lattice: unknown and probably very challenging

13



Removing the 3-pion divergence

❖ One needs                    matrix elements

❖ On the lattice: unknown and probably very challenging

❖ [arXiv:1408.5933] proposed a theory for the quantisation 
of 3-pion states in a finite volume  
(cf. also S. Sharpe’s talk yesterday)

13



Removing the 3-pion divergence

❖ One needs                    matrix elements

❖ On the lattice: unknown and probably very challenging

❖ [arXiv:1408.5933] proposed a theory for the quantisation 
of 3-pion states in a finite volume  
(cf. also S. Sharpe’s talk yesterday)

❖ Only a problem for pion masses less than ~165 MeV
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Individual operator renormalisation

❖ The vector current is conserved and does not need 
renormalisation

❖ The renormalisation of the weak hamiltonian is also 
know and is much more simple with chiral fermions  
(cf. e.g. [Z. Bai, et al. PRL, 113(1), p. 112003, 2014]).
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UV divergences may appear in loops between       and          :

with 

u, cu, c

P
µ �µJµ,ij

J⌫

Same divergence structure than HVP
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Short distance operator product

17

OPE with lattice regularisation:

❖ vector case: WI lower dimensions by 2: mass 
independent logarithmic divergence

❖ GIM subtraction cancels mass independent divergences 

dim 2 dim -2 irrelevant
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Finite-size effects
❖ Cuts in diagram: power-law finite volume effects  

(cf. e.g. S. Sharpe’s talk yesterday)

❖ Possible with 3-pion on-shell intermediate states:  
 
 
 
 

❖ All other finite-size effects: exponentially suppressed
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Lattice setup
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❖ DWF action,                 lattice with spacing ~0.12 fm

❖                    ,                              and

❖                                             ,

❖ only W and C connected diagrams

❖ gauge fixed wall sources, sequential current insertion

0 5 2314 28

integration range
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EM current matrix element
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Rare kaon decay correlation function
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Rare kaon decay correlation function
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❖ We know how to define the di-lepton rare kaon decay matrix element in 
Euclidean space-time

❖ Intermediate states with energy less than the kaon one have to be 
subtracted: possibly 1,2 or 3-pion states

❖ Two methods for the single-pion state

❖ No 2-pion intermediate state

❖ Short-distance behaviour completely regulated by GIM mechanism and 
gauge-invariance

❖ If no on-shell 3-pion intermediate state: exponentially suppressed finite-
size effects

❖ Preliminary lattice calculations agree with theory
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Outlook

29

❖ Try different kinematics, time positions

❖ How to include efficiently S, E and disconnected 
diagrams?

❖ Aim at lighter quark masses

❖ How to deal with the 3-pion intermediate state at the 
physical point?



Thank you!


