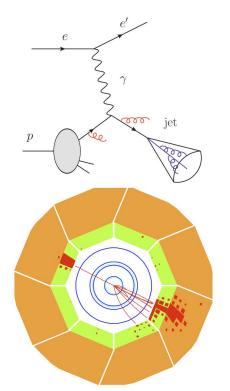


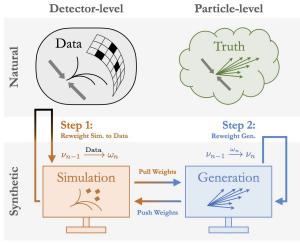
Multi-differential Jet Substructure Measurement in High Q² DIS Events with HERA-II Data

Vinicius M. Mikuni, Ben Nachman

1: Definition of measure observables



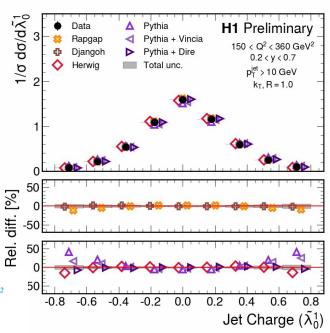
2: Unfolding methodology



EdgeConv

Rel.

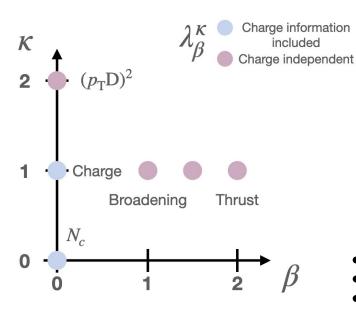
3: Multi-differential cross section results



Jet angularities

Use jet observables to study different aspects of QCD physics:

- IRC safe λ_a^1 , a = [0,0.5,1] and unsafe $\mathbf{p}_{\mathbf{T}}\mathbf{D}$ angularities
- Charge dependent observables:
 - $\mathbf{Q_i}$ and $\mathbf{N_c}$
- Study the evolution of the observables with energy scale
 Q² = -q²



z_i: longitudinal momentum fraction
 q_i: charge

• R distance from jet axis in (eta,phi)

$$\lambda_eta^\kappa = \sum_{i \in \mathrm{int}} z_i^\kappa \left(rac{R_i}{R_0}
ight)^\kappa$$

$$\tilde{\lambda}_0^{\kappa} = Q_{\kappa} = \sum_{i \in \mathrm{int}} q_i \times z_i^{\kappa}.$$

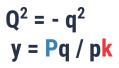
Experimental setup

Using **228 pb⁻¹** of data collected by the **H1 Experiment** during 2006 and 2007 at 318 GeV center-of-mass energy

Phase space definition:

- 0.2 < y < 0.7
- $0^2 > 150 \text{ GeV}^2$
- Jet $p_{T} > 10 \text{ GeV}$
- $-1 < \eta_{\text{lab}} < 2.5$

Jets are clustered with kt algorithm with **R=1.0**



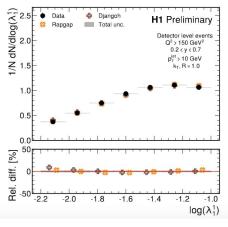
27.5 GeV e⁺⁻ (k) 920 GeV p (P)

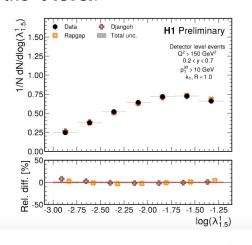
P: incoming proton 4-vector **k:** incoming electron 4-vector

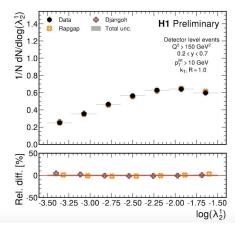
q=k-k': 4-momentum transfer

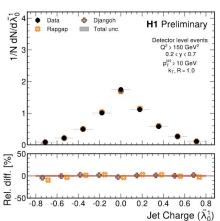
Reconstructed hadrons using combined detector information: energy flow algorithm

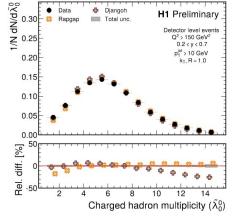
Total experimental uncertainty at reconstruction level at the **% level**!

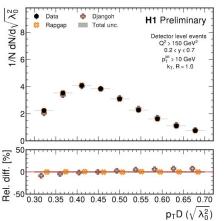








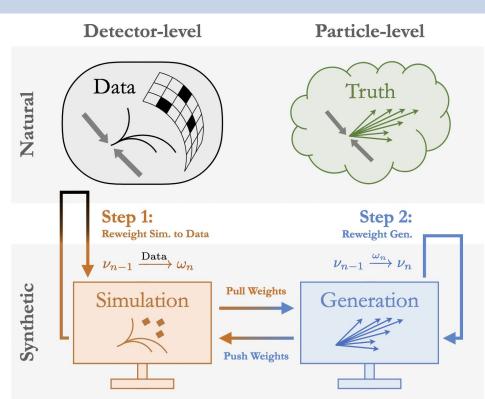




Part 2

Unfolding strategy

Omnifold*



2 step iterative approach

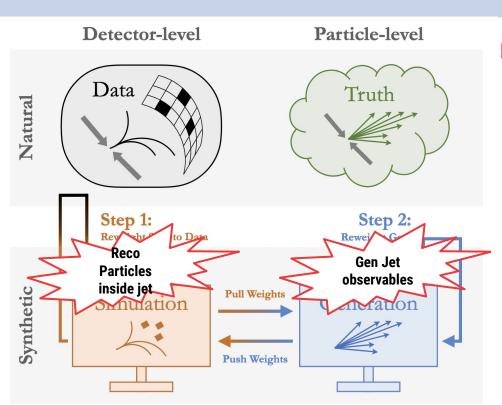
- Simulated events after detector interaction are reweighted to match the data
- Create a "new simulation" by transforming weights to a proper function of the generated events

Machine learning is used to approximate **2** likelihood functions:

- reco MC to Data reweighting
- Previous and new Gen reweighting

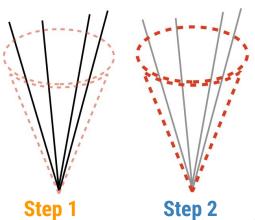
* Andreassen et al. PRL 124, 182001 (2020)

Omnifold



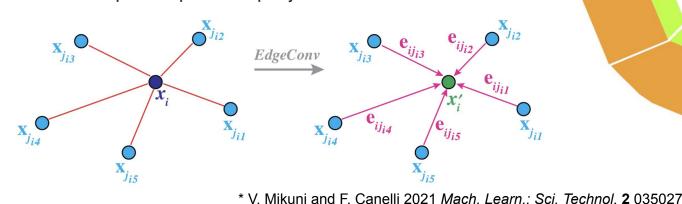
Different input levels for each step

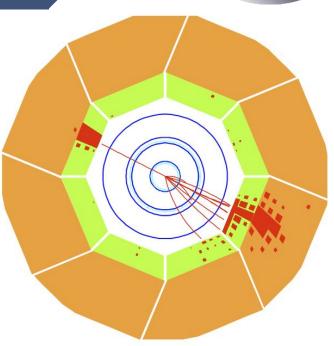
- Step 1 particles are used as inputs
- Step 2 uses the set of observables planned to unfold



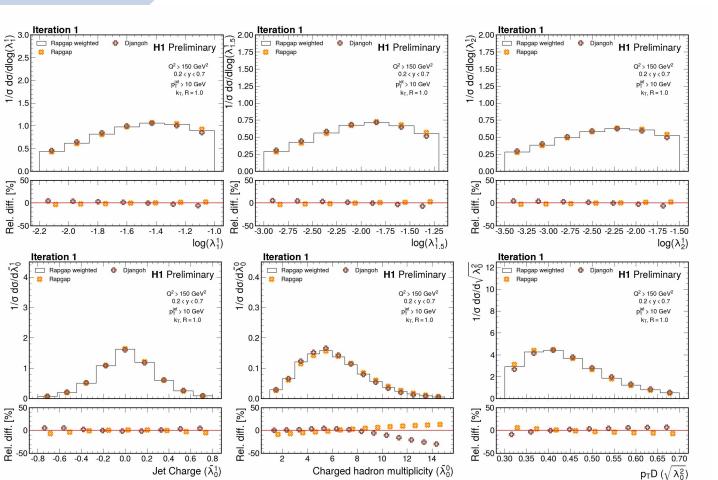
Extracting particle information

- Particle information is extracted using a Point cloud transformer* model
- Model takes kinematic properties of particles as inputs
- Connect **k=10** nearest neighbors in η - φ to learn the relationship between particles.
- Built in symmetries: permutation invariance
- Consider up to 30 particles per jet





All distributions are unfolded simultaneously without binning and without jet substructure information used at reco level!



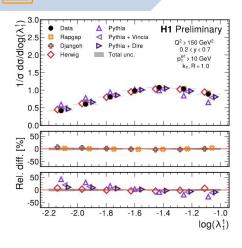
Verify the model
consistency: start from the
Rapgap simulation and
unfold the response based
on the Djangoh simulation

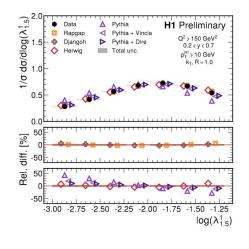
Total of **6 iterations** used to derive the main results

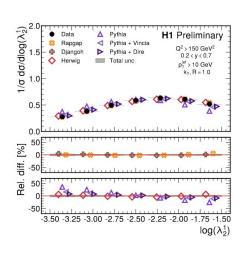
Part 3

Unfolded results

Inclusive



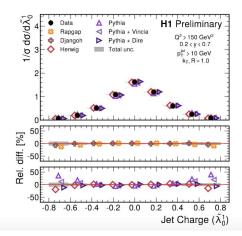


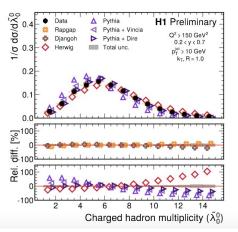


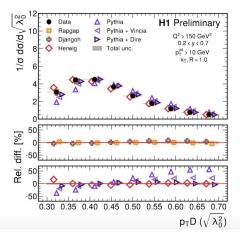
Dedicated DIS generators do a good job **everywhere**, especially **Rapgap**

Herwig does a good job for all distributions besides charge particle multiplicity

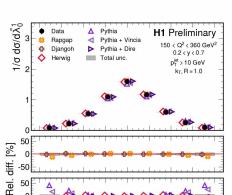
Alternative parton showers for **Pythia** do better than nominal, specially **Dire**







Multi-differential



△ Pythia

◄ Pythia + Vincia

Pythia + Dire

Total unc.

-1.8

-1.6

-1.4

-0.6

Data

8 Rapgap

Djangoh

0

2.5 2.0 1.5 1.0

diff. [%]

Rel.

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8

Jet Charge $(\tilde{\lambda}_0^1)$

H1 Preliminary

150 < Q2 < 360 GeV2

0.2 < y < 0.7

p_T > 10 GeV

k_T, R = 1.0

1/σ dσ/dlog(λ₁

diff. [%]

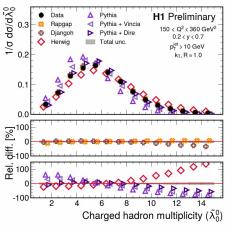
Rel.

 $log(\lambda_1^1)$

0.5

Djangoh

\Q



◀ Pythia + Vincia

-3.00 -2.75 -2.50 -2.25 -2.00 -1.75 -1.50 -1.25

Pythia + Dire

Total unc.

H1 Preliminary

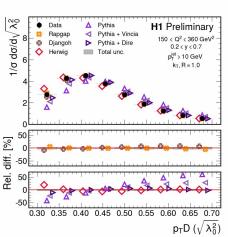
150 < Q2 < 360 GeV2

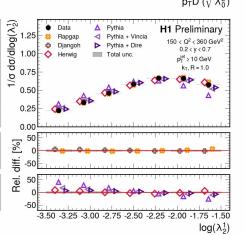
0.2 < y < 0.7

p_T > 10 GeV

k_T, R = 1.0

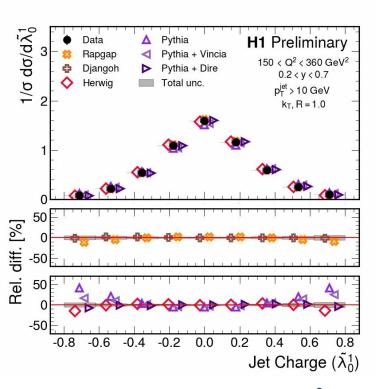
 $\log(\lambda_{15}^1)$

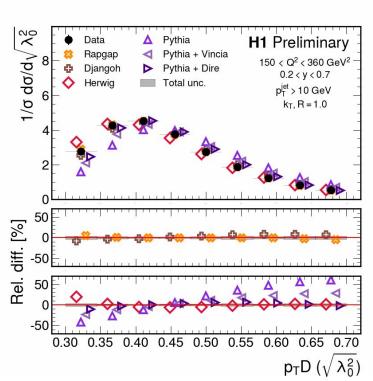




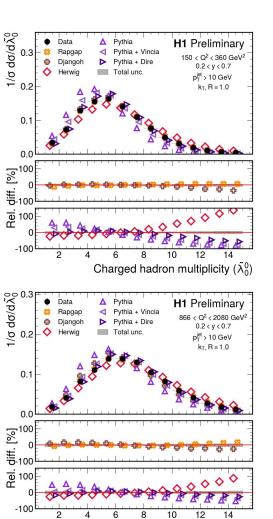
Unfolded results are also presented for 4 Q² intervals

Multi-differential

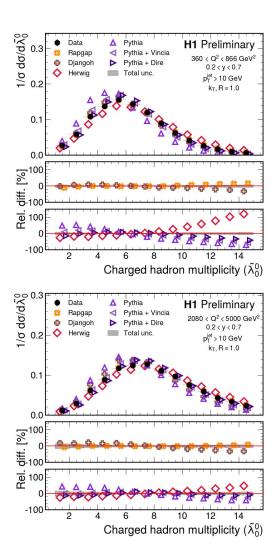




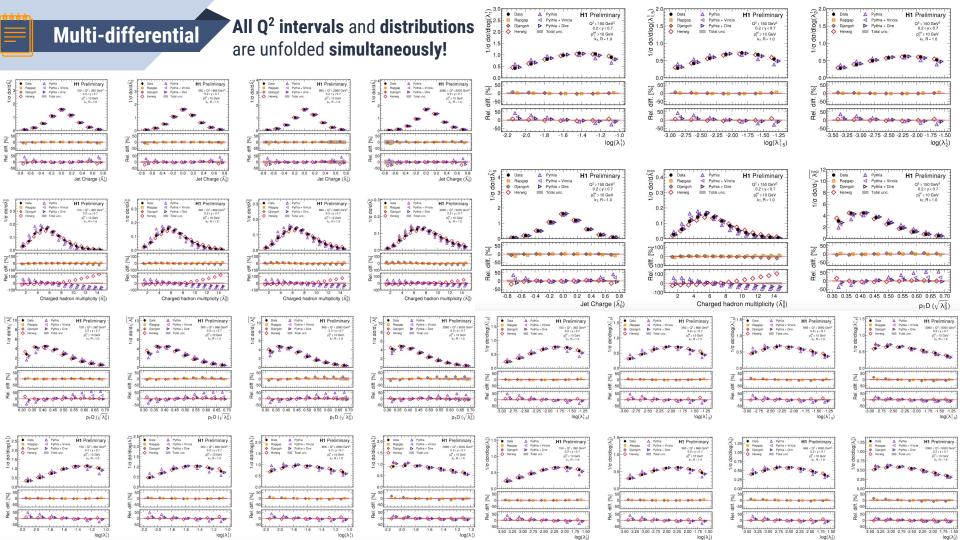
More quark like distributions as Q² increases



Charged hadron multiplicity $(\tilde{\lambda}_0^0)$

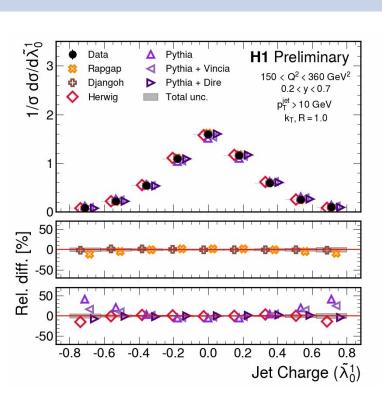


Agreement between general purpose generators **improves** at higher Q²



Conclusions and prospects

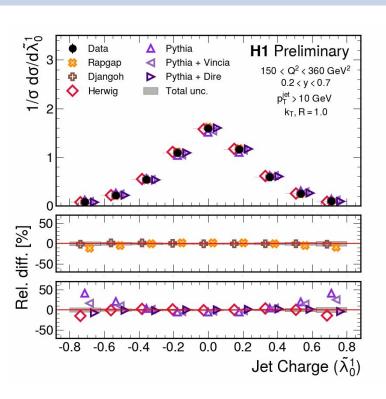
Unfolding the EIC



- Future step to be investigated is to use only particles for the unfolding, allowing the simultaneous unfolding of any jet observable
 - To achieve this goal is rely on:
 - Precise object reconstruction and calibration
 - Manageable number of objects: O(100)
- Should also study the feasibility of a full event unfolding
- Unfolded results could be shared by the whole collaboration:
 - Accelerate new measurements
 - Analysis design based on unfolded information

$$\lambda_{\beta}^{\kappa} = \sum_{i \in \text{iet}} z_i^{\kappa} \left(\frac{R_i}{R_0} \right)^{\beta}$$

Conclusions and prospects



- Jet observables are an unique laboratory to study QCD properties
- Energy scale evolution for each jet observable measured in multiple Q² intervals from 150 to 5000 GeV²
- Detector effects are corrected using the **Omnifold method** with particles as inputs using **graph neural networks**
 - Unbinned and simultaneous unfolding
 - Good agreement for dedicated DIS generators, **Herwig** described all distributions besides track multiplicity while **Dire** parton shower has the best agreement for the **Pythia** implementations
- First step towards unfolding any jet observable in one go
- Preliminary results available at: <u>H1prelim-22-034</u>

THANKS!

Any questions?

Backup

Systematic uncertainties

Systematic uncertainties currently considered

- HFS energy scale: +- 1%
- HFS azimuthal angle: +- 20 mrad
- Lepton energy: +- 0.5% (mainly affects Q²)
- Lepton azimuthal angle: +- 1 mrad (mainly affects Q²)
- Model uncertainty: differences in unfolded results between Djangoh and Rapgap
- **Non-closure uncertainty:** Differences between the expected and obtained values of the closure test
- **Statistical uncertainty:** Standard deviation of 100 bootstrap samples with replacement

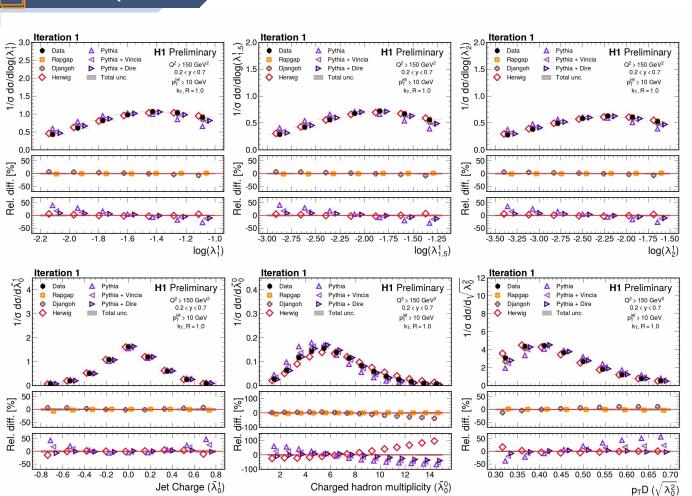
MC Generators

Lund string hadronization model and CTEQ6L PDF set

- Djangoh: Dipole model from Ariadne
- Rapgap: PS from leading log approximation
- Pythia 8.3: default NNPDF3.1 PDF
- **Vincia**: p_{T} ordered antenna and NNPDF3.1 PDF
- **Dire**: dipole model, similar to Ariadne and MMHT14nlo68cl PDF

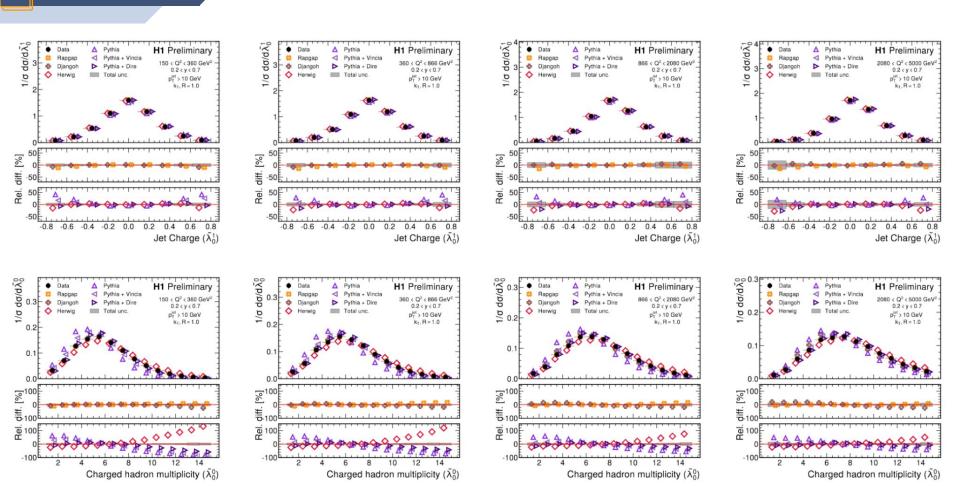
Herwig 7.2: Cluster hadronization and CT14 PDF set

Iteration dependence

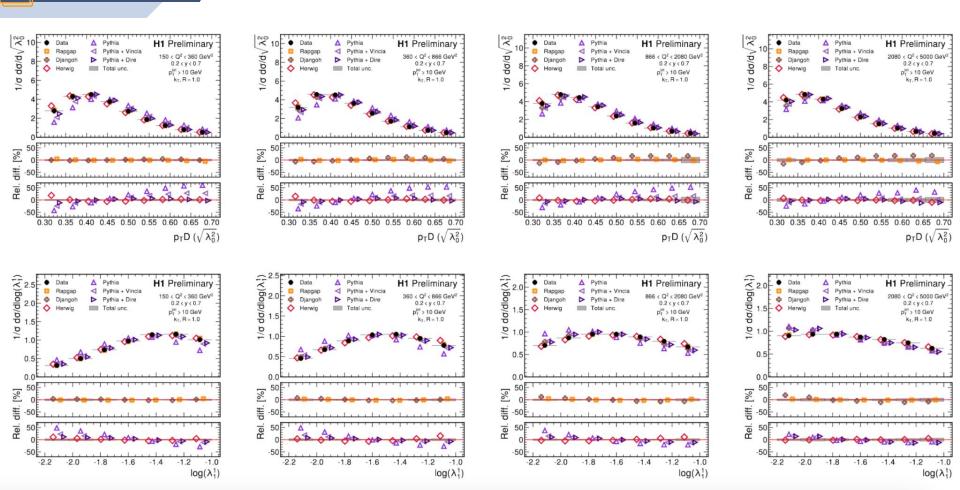


Results are stable even at high omnifold iteration numbers. Total number of iterations chosen based on the total systematic uncertainty

Multi Differential



Multi Differential



Multi Differential

