TIME (h)

HERA-4-EIC

Stony Brook (virtual) June 8-10, 2021

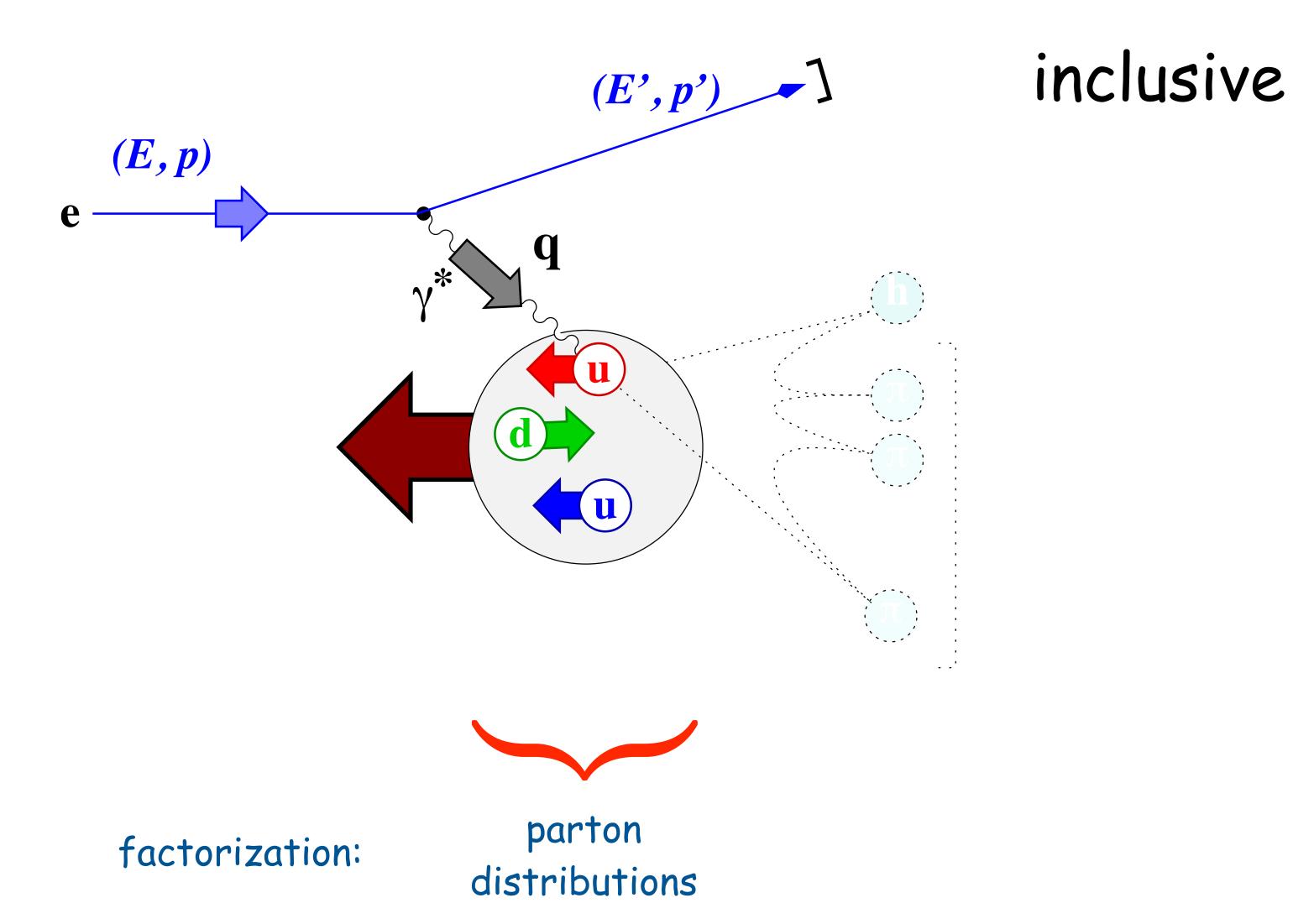
HERMES Overview

a personal perspective mainly on semi-inclusive DIS

outline

- introduction
- some recent HERMES highlights
- the devil is in the details
- achievements and opportunities

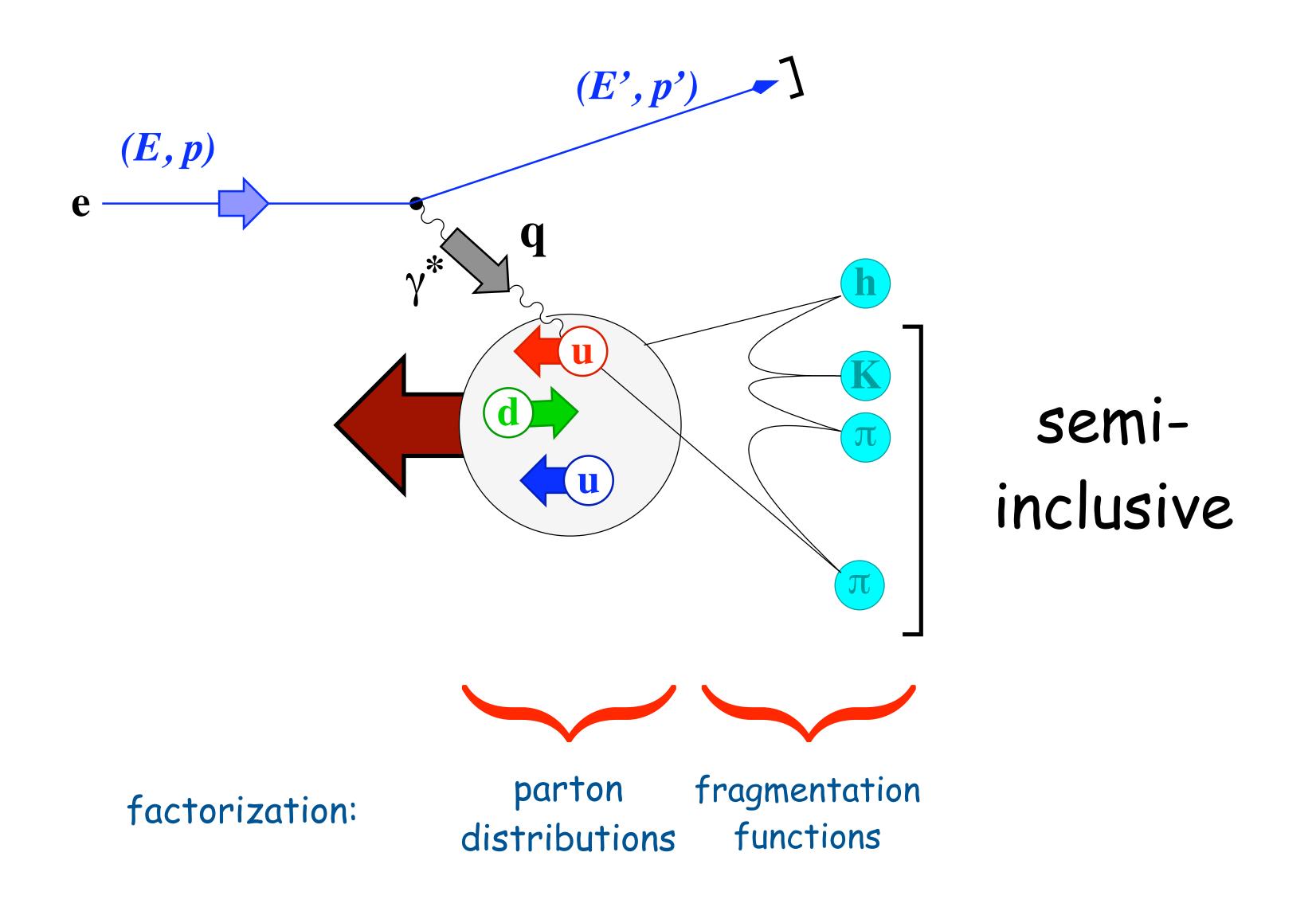
deep-inelastic scattering



Gunar Schnell

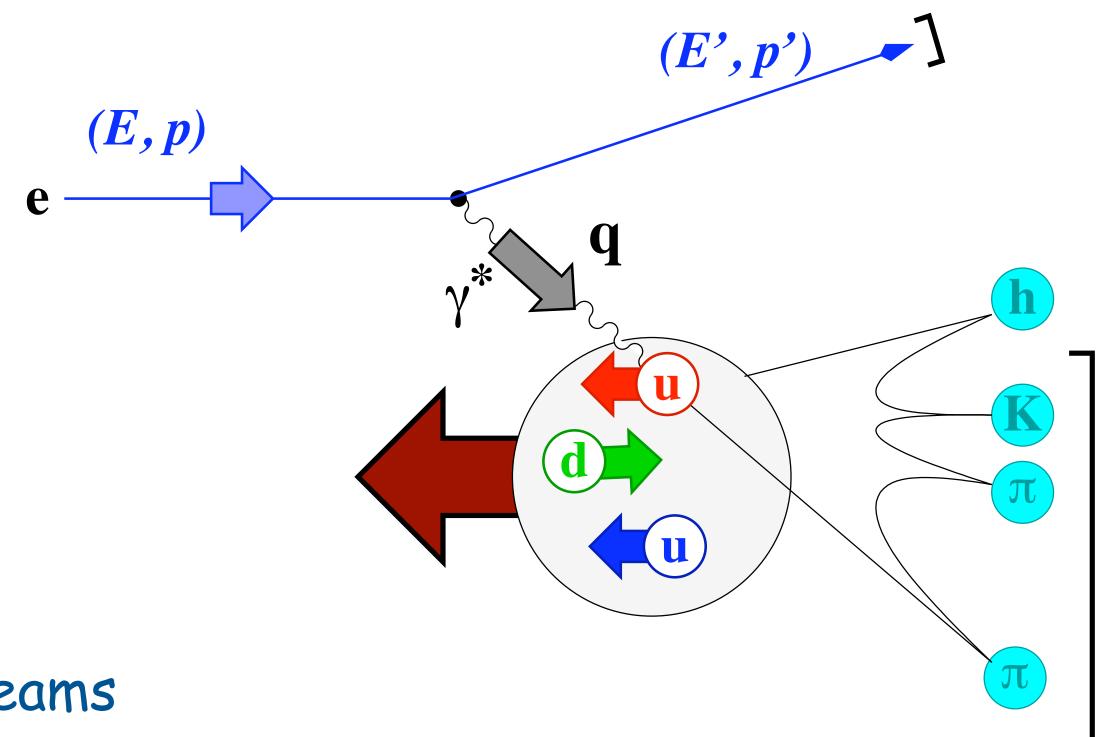
HERA-4-EIC — June 8-10, 2022

deep-inelastic scattering



Gunar Schnell 4 HERA-4-EIC — June 8-10, 2022

deep-inelastic scattering

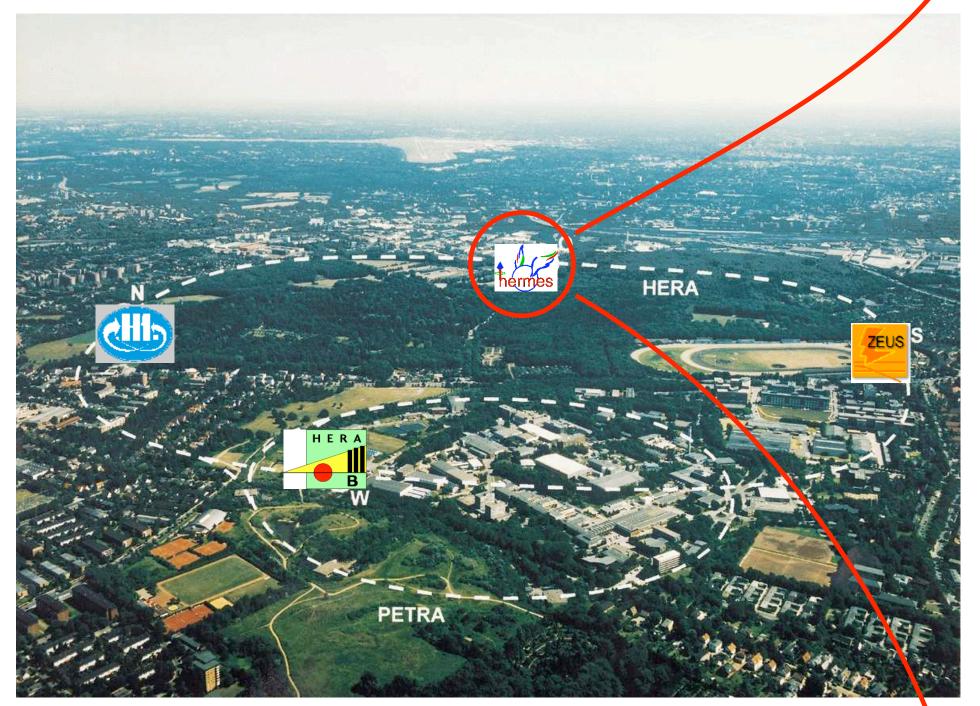


semiinclusive

- polarized lepton beams
- polarized targets
- large-acceptance spectrometer
- good particle identification (PID)

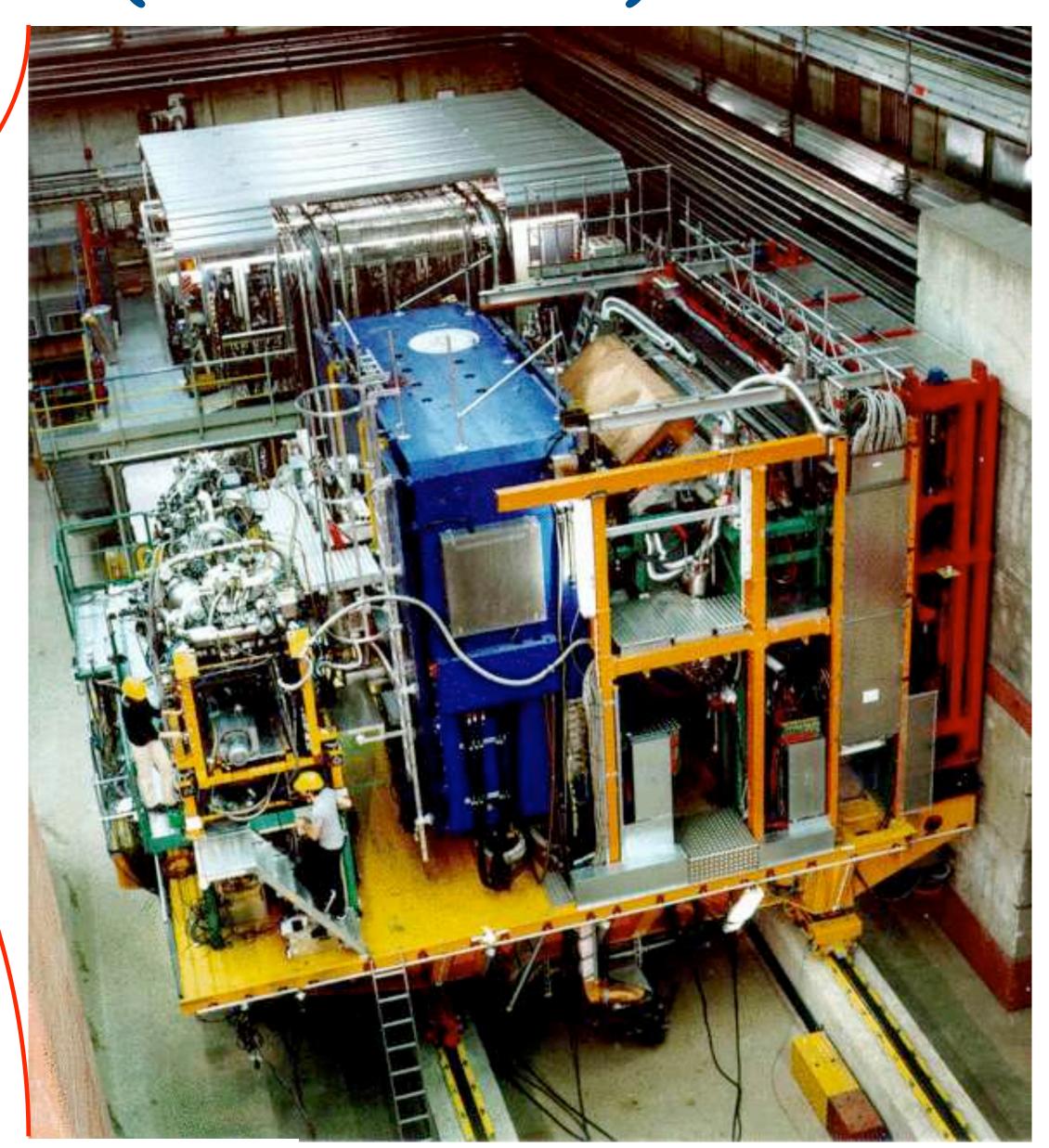
HERMES (1995-2007) @ HERA

27.6 GeV polarized e⁺/e⁻ beam scattered off ...

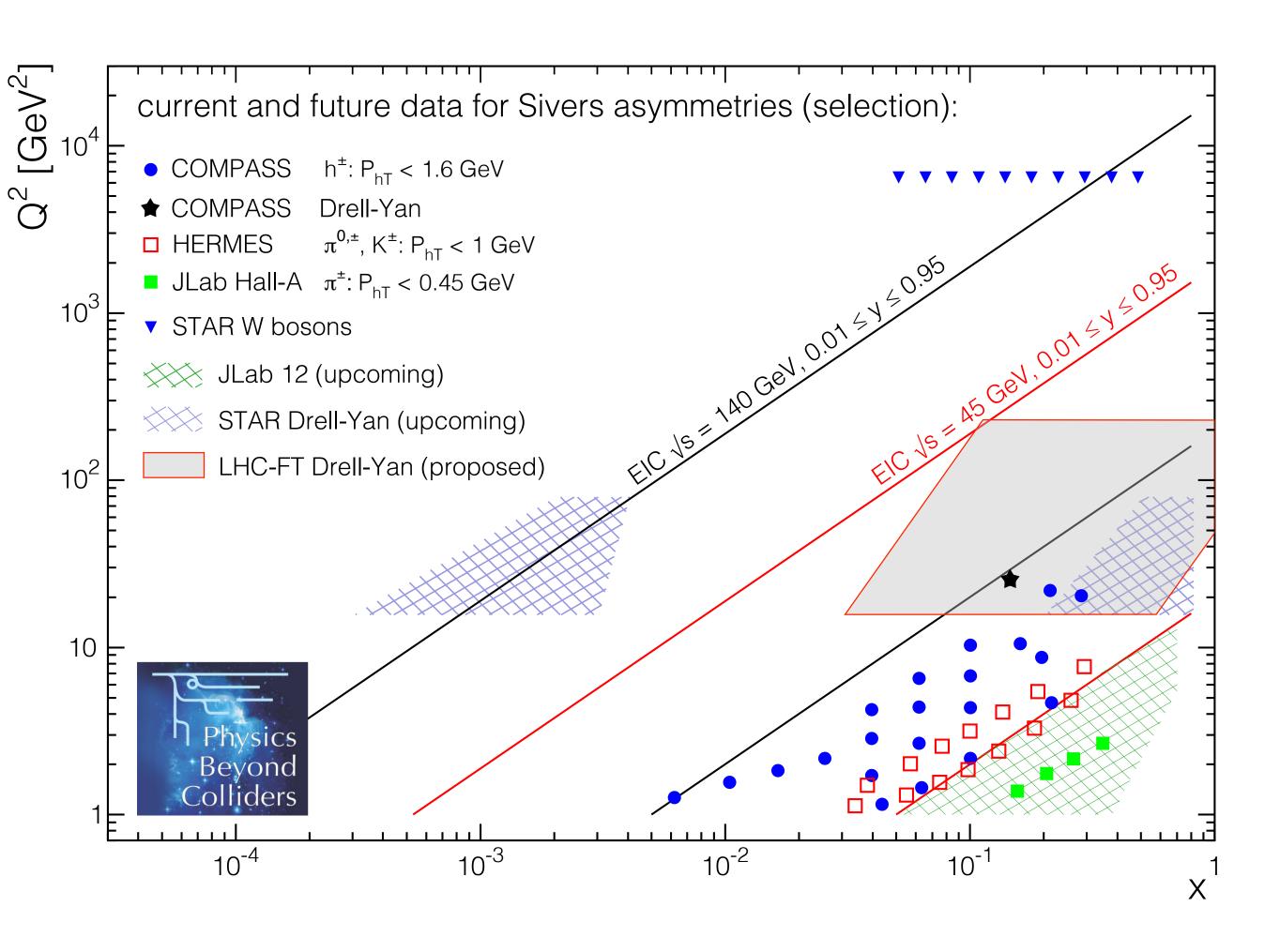


- unpolarized (H, D, He,..., Xe) as well as
- transversely (H) or
- longitudinally (H, D, He) polarized

pure gas targets



2d kinematic phase space



2d kinematic phase space

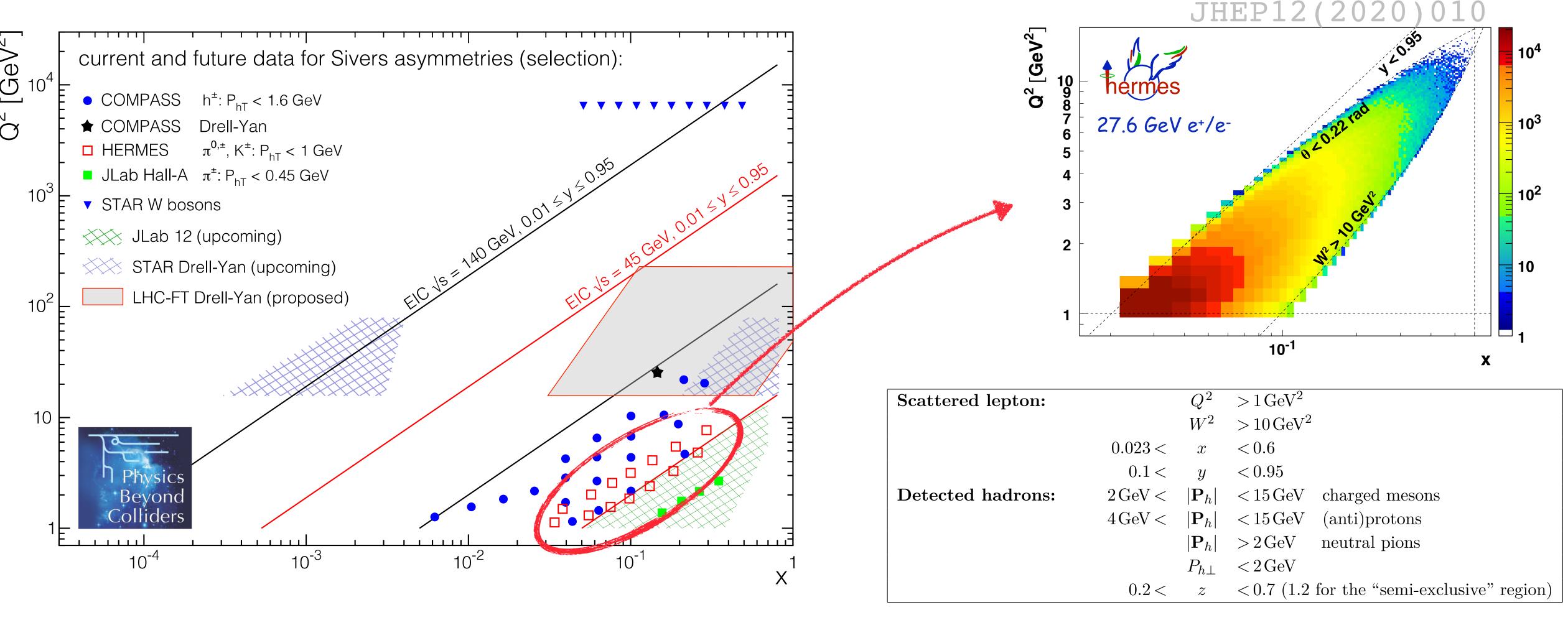
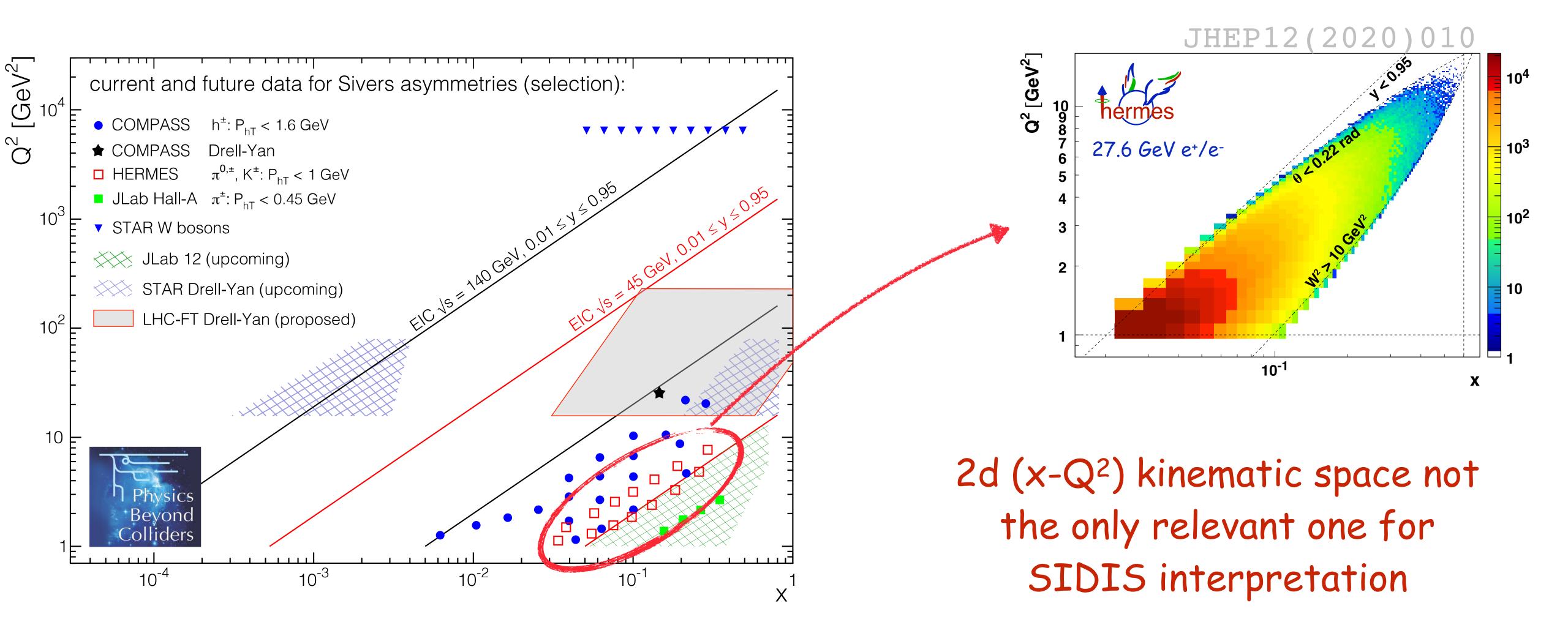


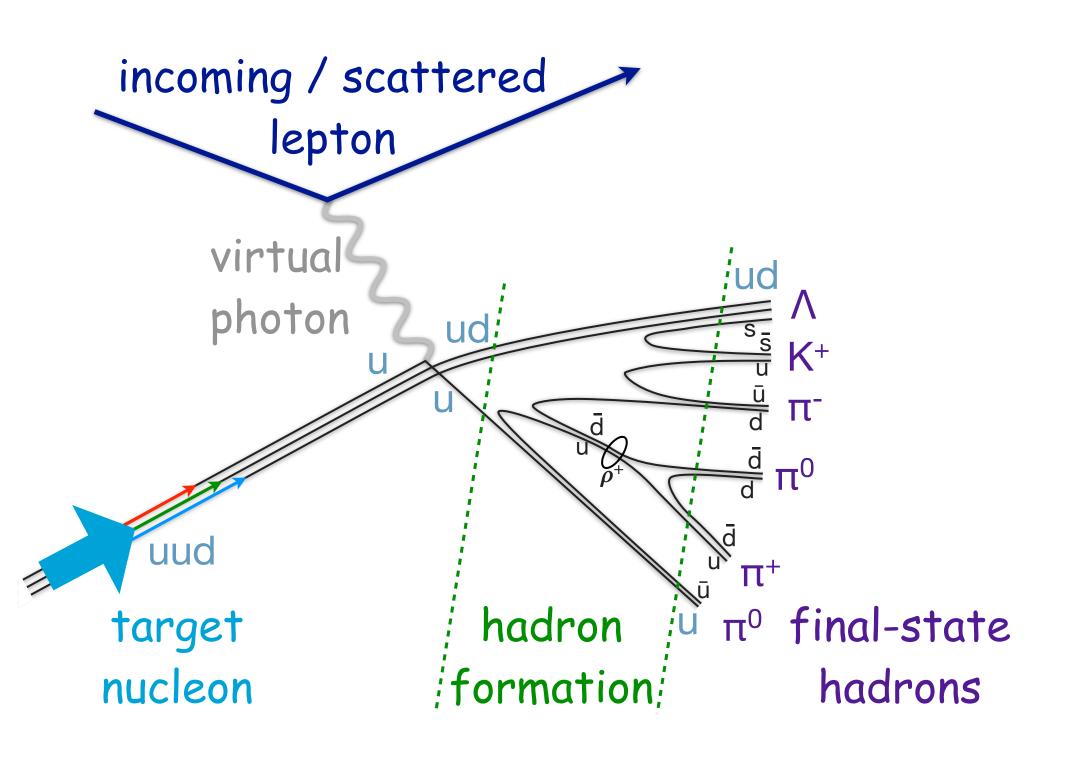
Table 3. Restrictions on selected kinematics variables. The upper limit on z of 1.2 applies only to the analysis of the z dependence.

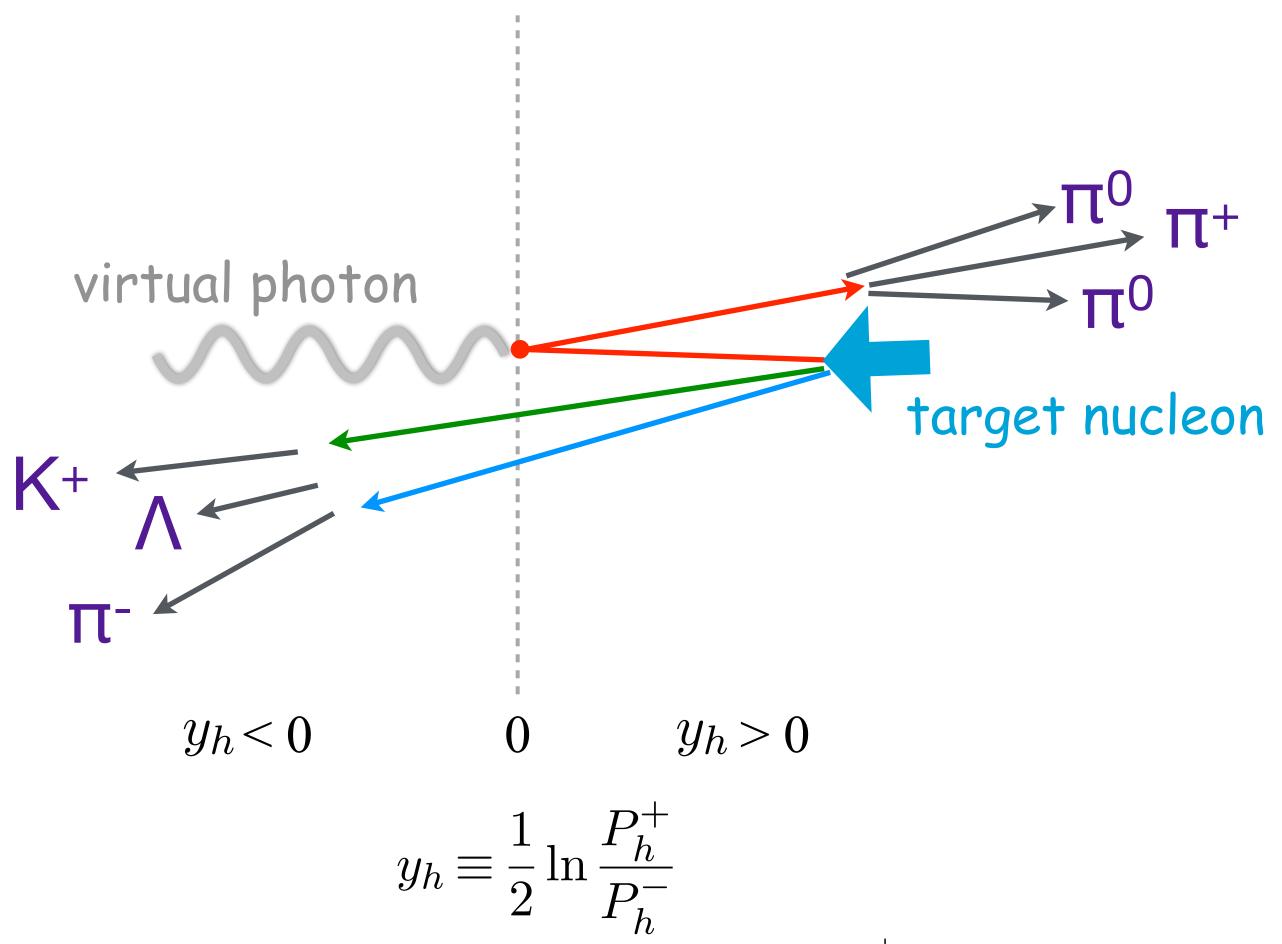
2d kinematic phase space



current vs. target fragmentation

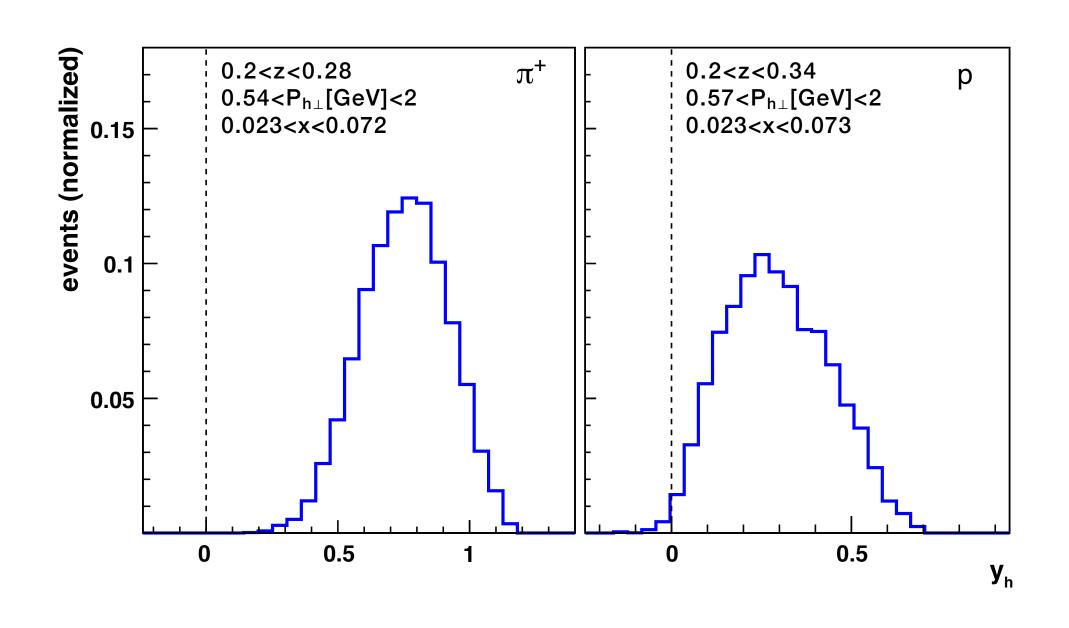
virtual-photon—nucleon c.m.s



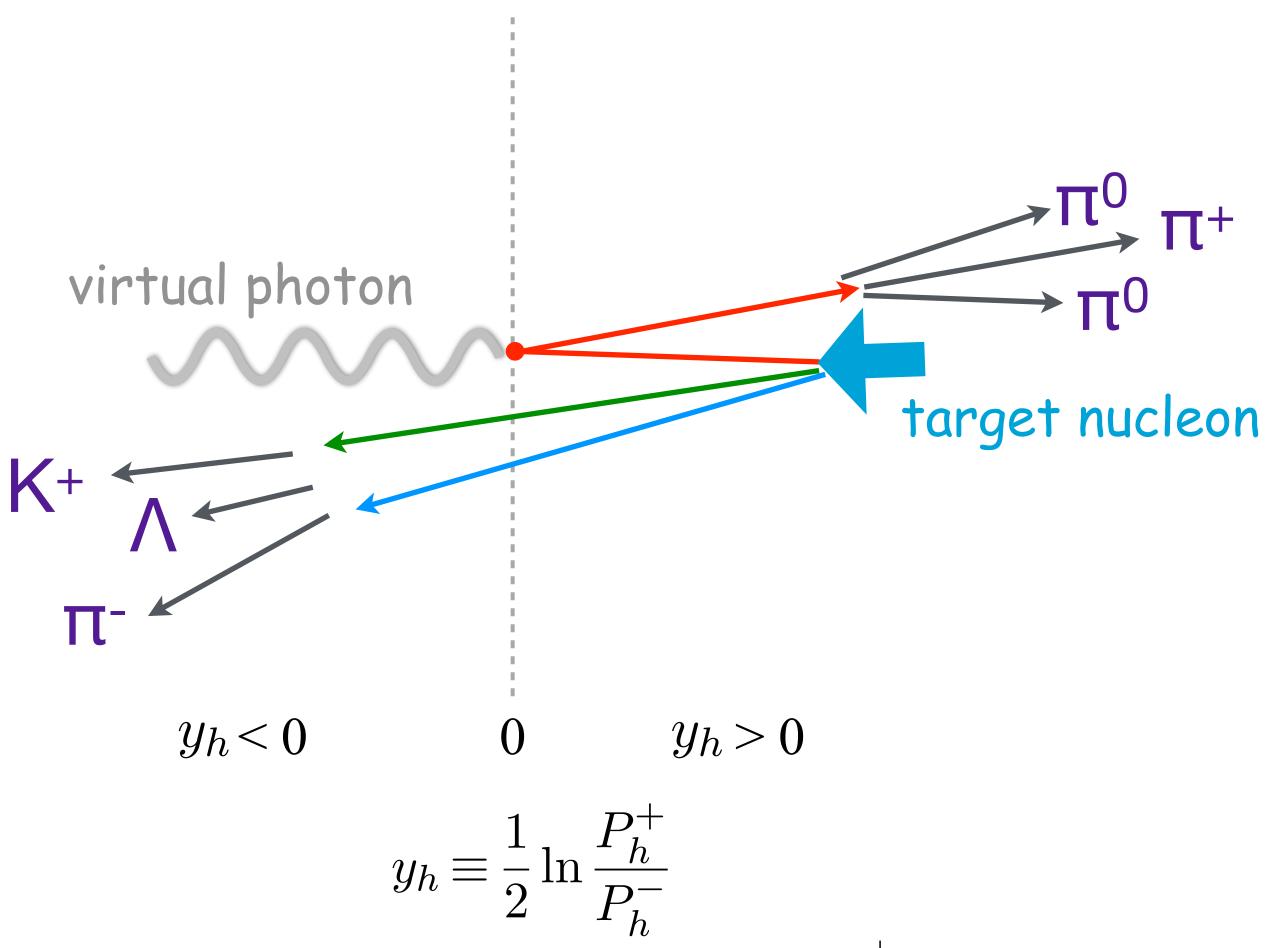


 P_h^\pm ... light-cone momenta

current vs. target fragmentation

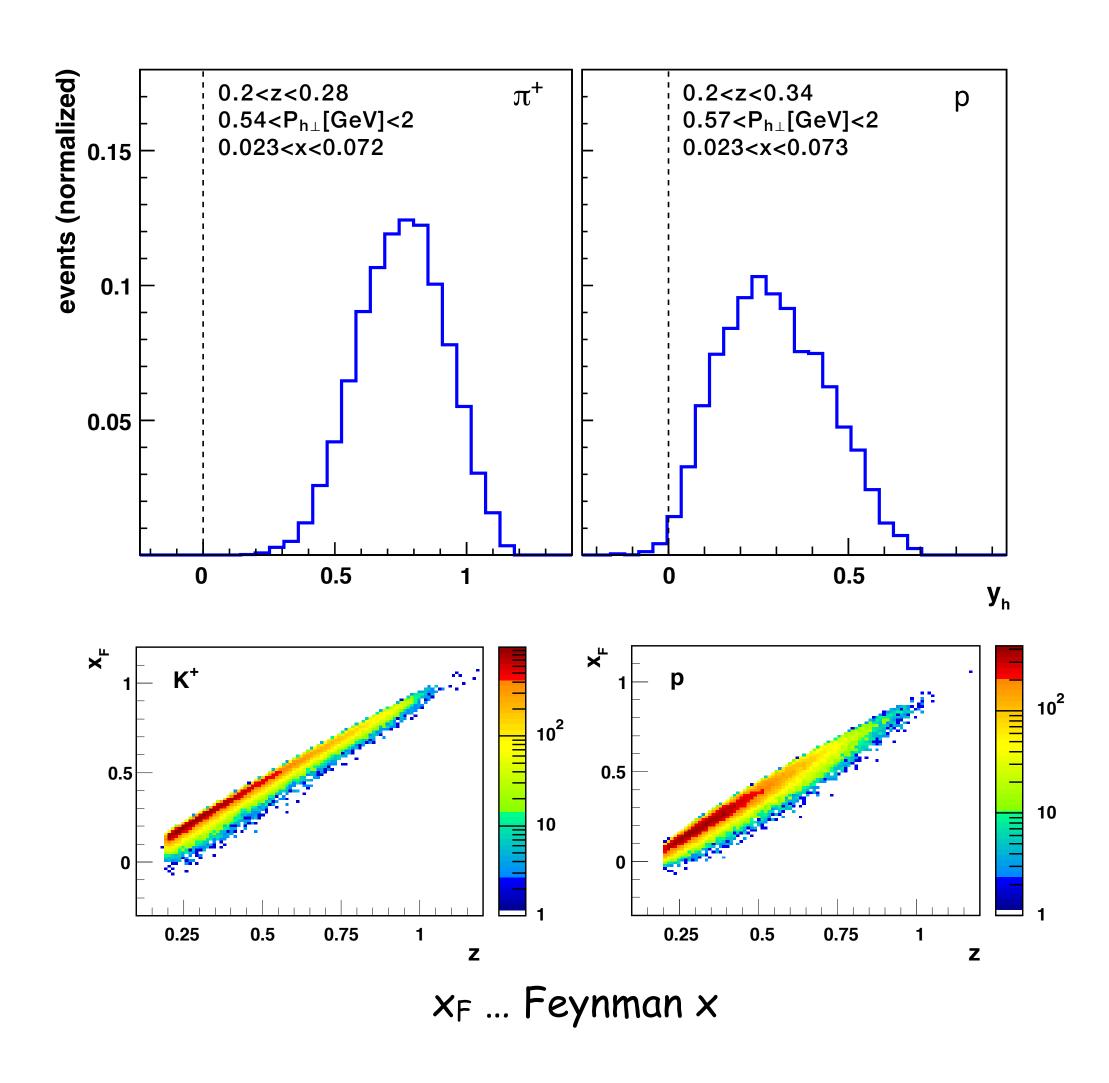


virtual-photon—nucleon c.m.s



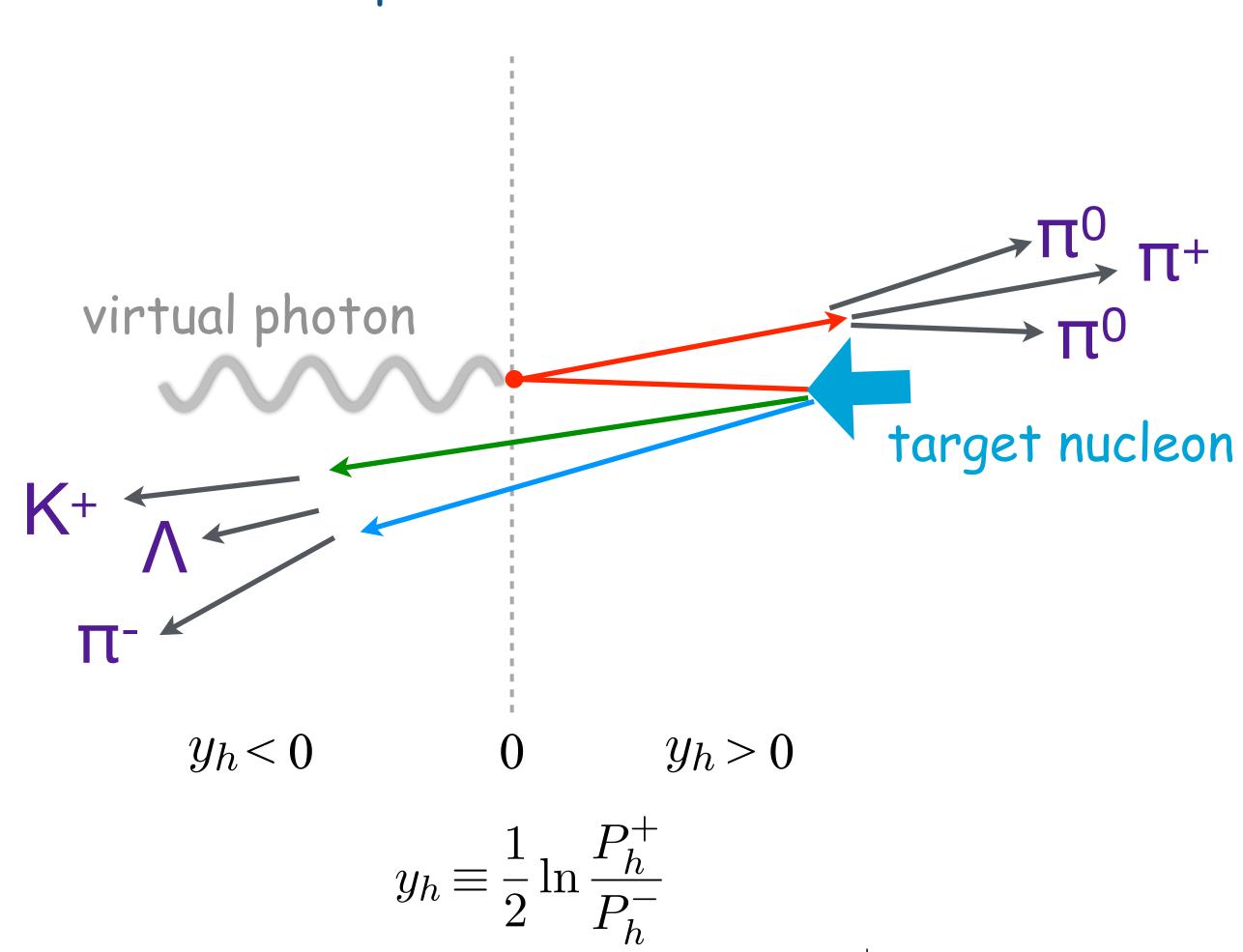
 P_h^\pm ... light-cone momenta

current vs. target fragmentation



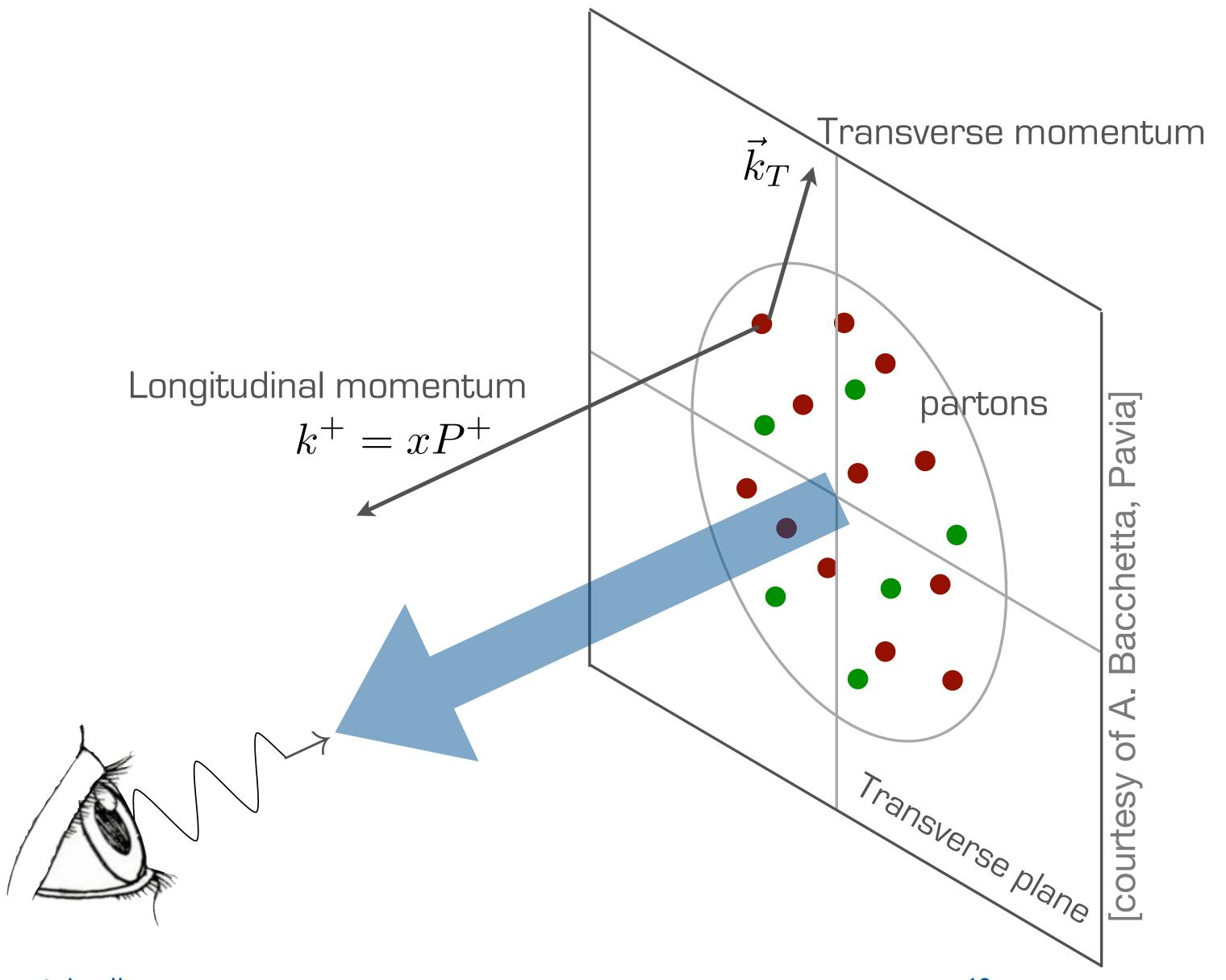
selected hadrons at HERMES mainly forward-going in photon-nucleon c.m.s.

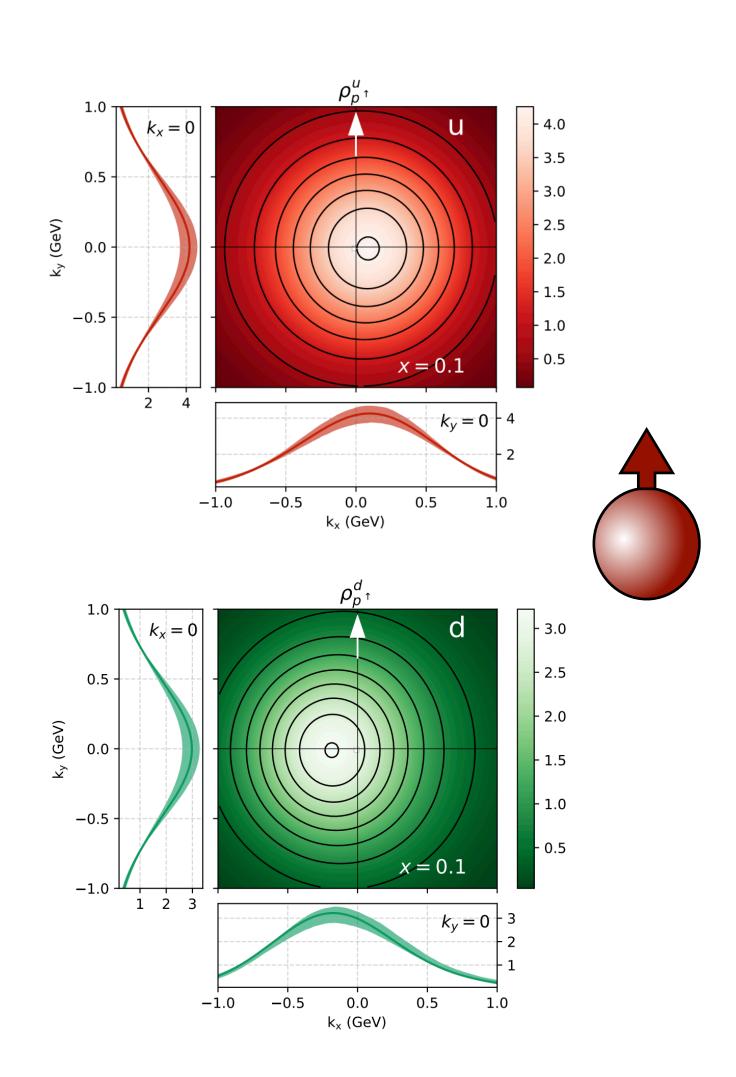
virtual-photon—nucleon c.m.s



 P_h^\pm ... light-cone momenta

transverse-momentum distributions (TMDs)





P [A. Bacchetta et al. (2021)]

Gunar Schnell

spin-momentum structure of the nucleon

$$\frac{1}{2}\operatorname{Tr}\left[\left(\gamma^{+} + \lambda\gamma^{+}\gamma_{5}\right)\Phi\right] = \frac{1}{2}\left[f_{1} + S^{i}\epsilon^{ij}k^{j}\frac{1}{m}f_{1T}^{\perp} + \lambda\Lambda g_{1} + \lambda S^{i}k^{i}\frac{1}{m}g_{1T}\right]$$

$$\frac{1}{2} \text{Tr} \left[(\gamma^{+} - s^{j} i \sigma^{+j} \gamma_{5}) \Phi \right] = \frac{1}{2} \left| f_{1} + S^{i} \epsilon^{ij} k^{j} \frac{1}{m} f_{1T}^{\perp} + s^{i} \epsilon^{ij} k^{j} \frac{1}{m} h_{1}^{\perp} + s^{i} S^{i} h_{1} \right|$$

quark pol.

		U	L	${ m T}$
pol.	U	f_1		h_1^\perp
leon	$oxed{L}$		g_{1L}	h_{1L}^{\perp}
nucleon	Τ	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

 $+ s^{i} (2k^{i}k^{j} - \mathbf{k}^{2}\delta^{ij})S^{j} \frac{1}{2m^{2}} \frac{1}{h_{1T}^{\perp}} + \Lambda s^{i}k^{i} \frac{1}{m} \frac{1}{h_{1L}^{\perp}}$

- each TMD describes a particular spinmomentum correlation
- functions in black survive integration over transverse momentum
- functions in green box are chirally odd
- functions in red are naive T-odd

spin-momentum structure of the nucleon

$$\frac{1}{2}\operatorname{Tr}\left[\left(\gamma^{+} + \lambda\gamma^{+}\gamma_{5}\right)\Phi\right] = \frac{1}{2}\left[f_{1} + S^{i}\epsilon^{ij}k^{j}\frac{1}{m}f_{1T}^{\perp} + \lambda\Lambda g_{1} + \lambda S^{i}k^{i}\frac{1}{m}g_{1T}\right]$$

$$\frac{1}{2} \text{Tr} \left[(\gamma^{+} - s^{j} i \sigma^{+j} \gamma_{5}) \Phi \right] = \frac{1}{2} \left[f_{1} + S^{i} \epsilon^{ij} k^{j} \frac{1}{m} f_{1T}^{\perp} + s^{i} \epsilon^{ij} k^{j} \frac{1}{m} h_{1}^{\perp} + s^{i} S^{i} h_{1} \right]$$

helicity

quark pol.

		U	$oxed{L}$	${ m T}$
I	U	f_1		h_1^{\perp}
	L		g_{1L}	h_{1L}^{\perp}
	Τ	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

 $+ s^{i} (2k^{i}k^{j} - \mathbf{k}^{2}\delta^{ij})S^{j} \frac{1}{2m^{2}} h_{1T}^{\perp} + \Lambda s^{i}k^{i} \frac{1}{m} h_{1L}^{\perp}$

Boer-Mulders

- each TMD describes a particular spinmomentum correlation
- functions in black survive integration over transverse momentum
- functions in green box are chirally odd
- functions in red are naive T-odd

pretzelosity

transversity

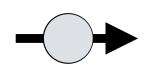
worm-gear

nucleon pol

Sivers

TMDs - probabilistic interpretation

proton goes out of the screen / photon goes into the screen



nucleon with transverse or longitudinal spin

parton with transverse or longitudinal spin

parton transverse momentum

$$f_1 = \bigcirc$$

$$g_1 = \bigcirc$$
 \bullet
 \bullet

[courtesy of A. Bacchetta, Pavia]

$$f_{1T}^{\perp} = - \bigcirc \longrightarrow - \bigcirc \bigcirc$$

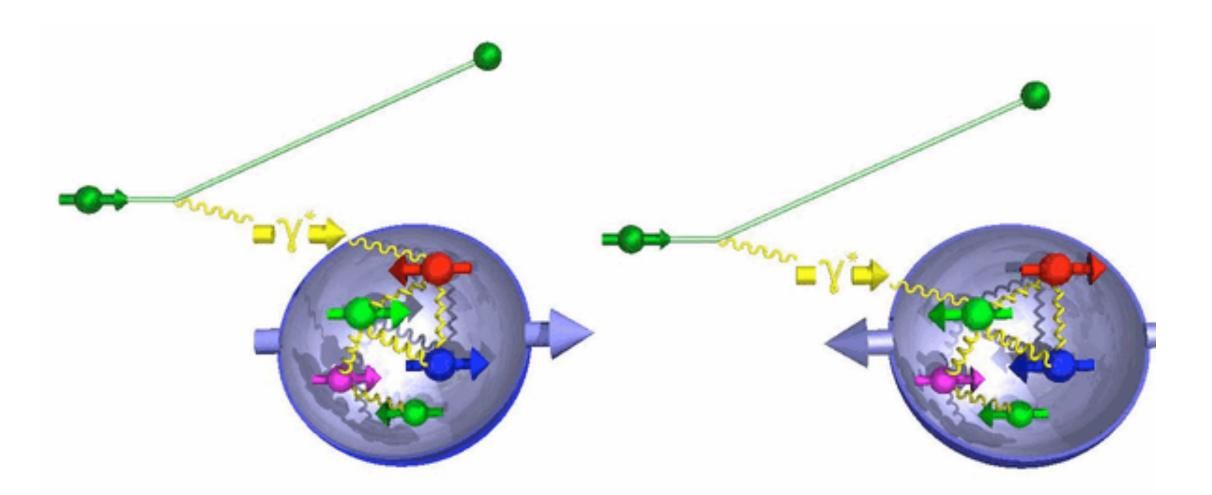
$$h_1^{\perp} =$$

$$h_{1L}^{\perp} =$$

$$h_{1T}^{\perp} = -$$

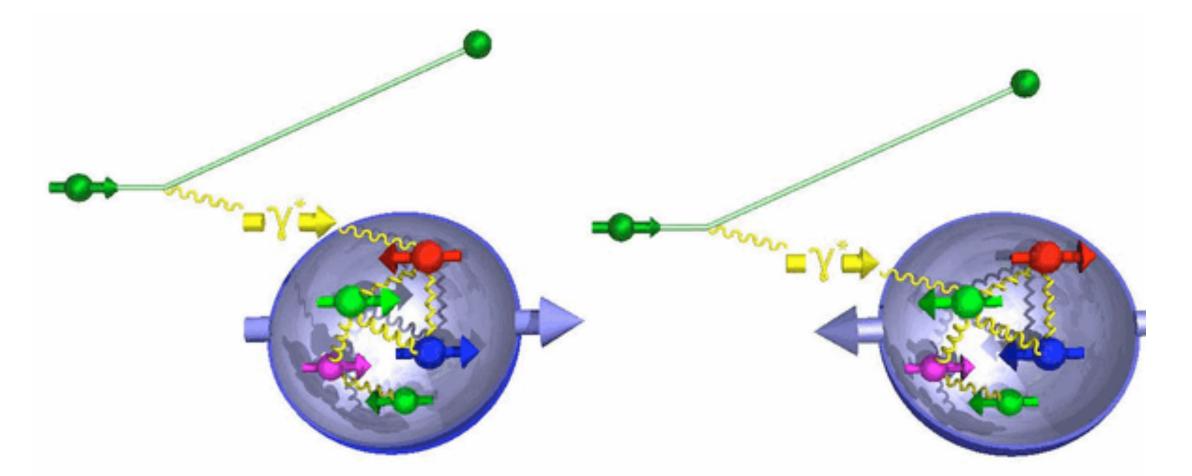
quark polarimetry

- unpolarized quarks: easy "just" hit them (and count)
- longitudinally polarized quarks: use polarized beam

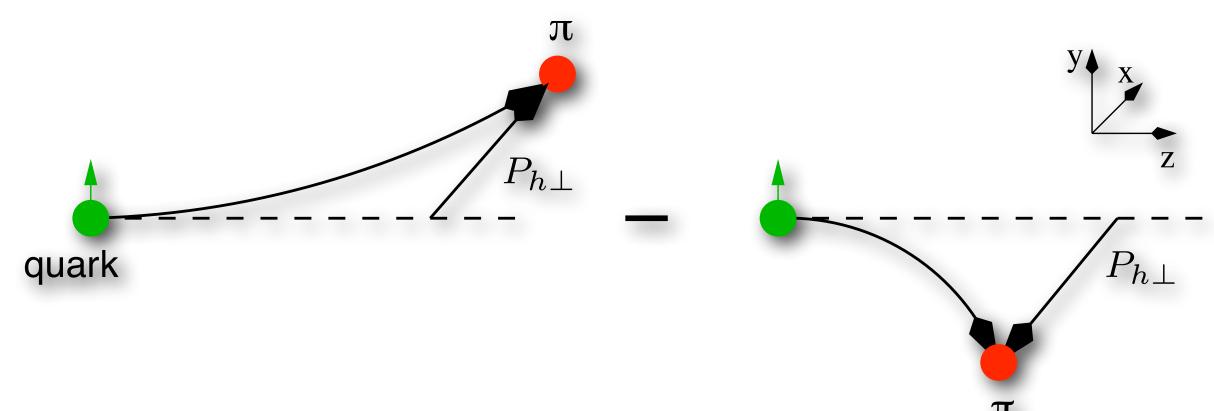


quark polarimetry

- unpolarized quarks: easy "just" hit them (and count)
- longitudinally polarized quarks: use polarized beam



• transversely polarized quarks: need final-state polarimetry, e.g.



quark pol.

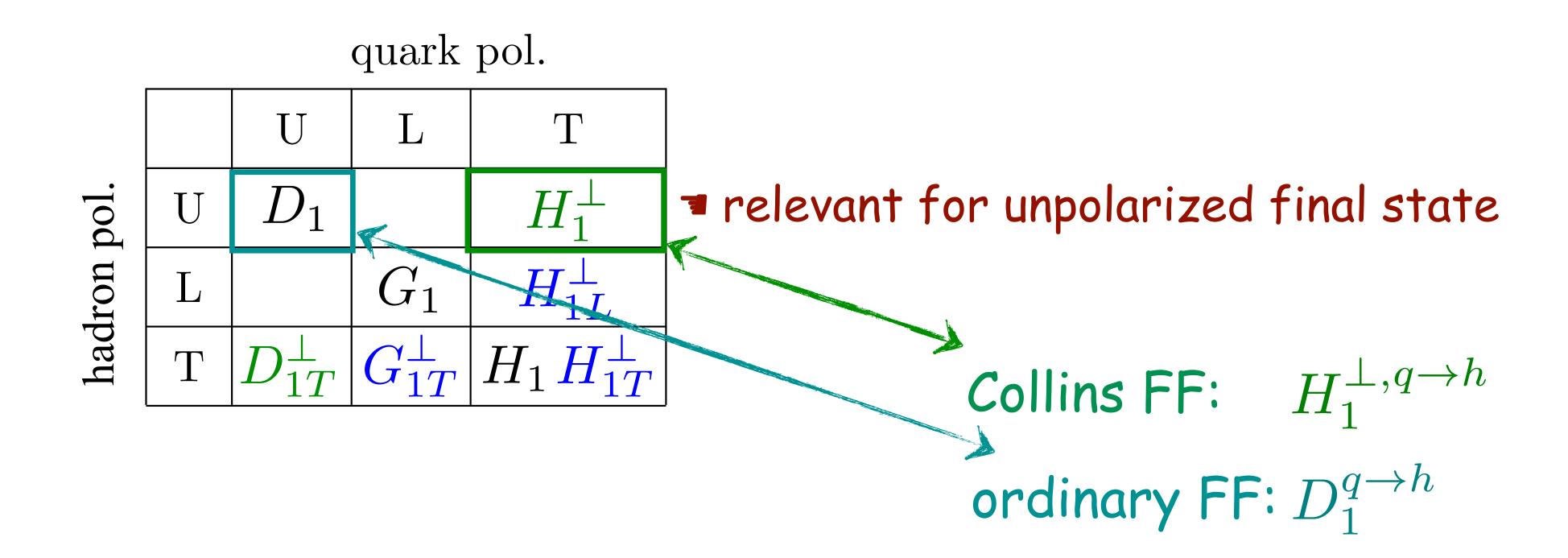
		U	L	T
pol.	U	D_1		H_1^\perp
nadron	L		G_1	H_{1L}^{\perp}
had	T	D_{1T}^{\perp}	G_{1T}^{\perp}	$H_1 H_{1T}^{\perp}$

quark pol.

hadron pol.

	U	L	${ m T}$
U	D_1		H_1^{\perp}
m L		G_1	H_{1L}^{\perp}
T	D_{1T}^{\perp}	G_{1T}^{\perp}	$H_1 H_{1T}^{\perp}$

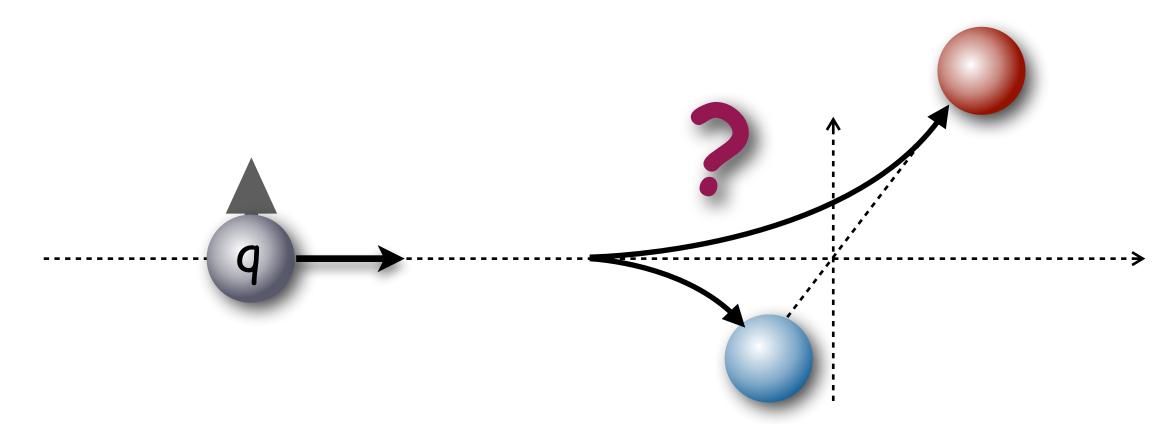
relevant for unpolarized final state



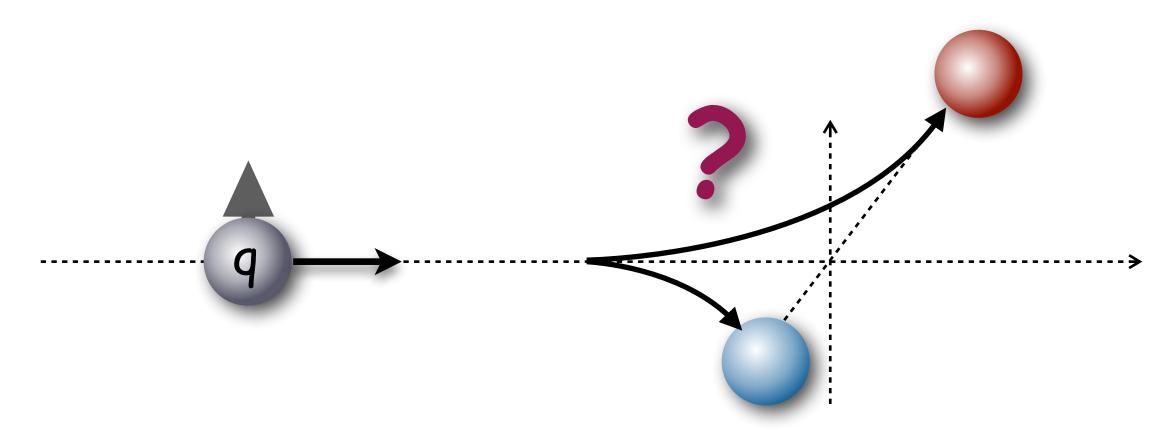
quark pol.

relevant for unpolarized final state

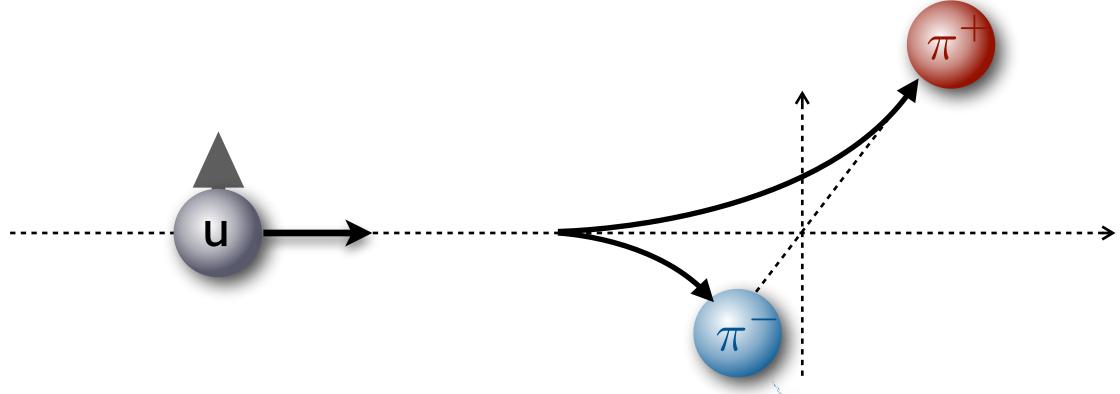
polarized final-state hadrons (e.g., hyperons)



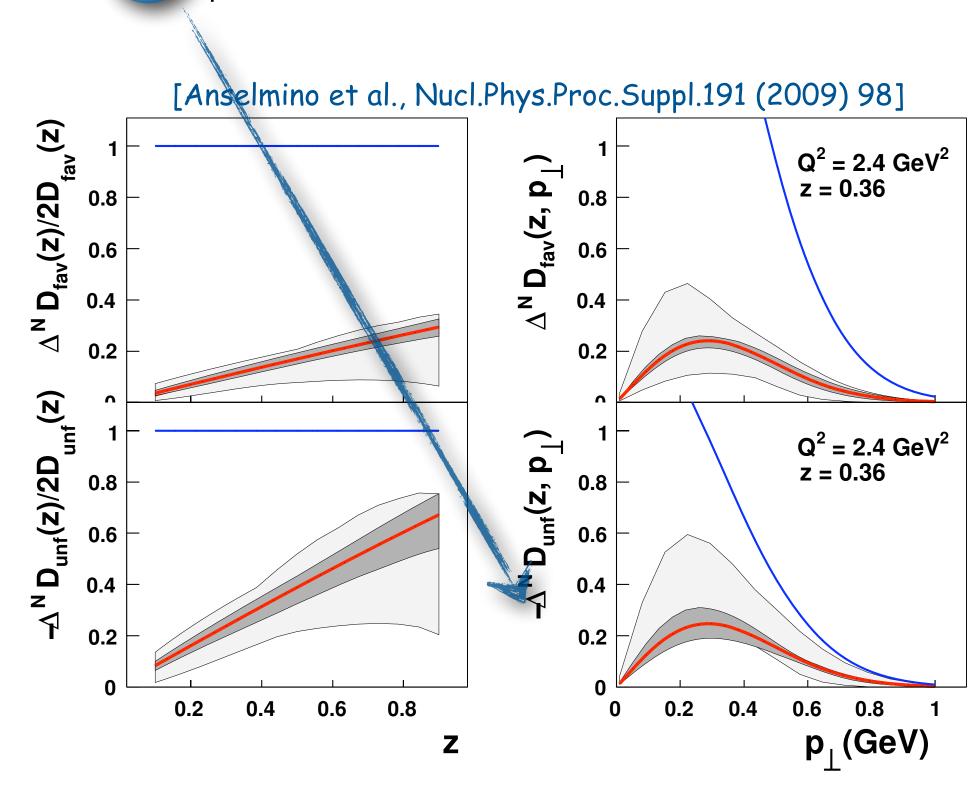
- spin-dependence in fragmentation
- left-right asymmetry in hadron direction transverse to both quark spin and momentum

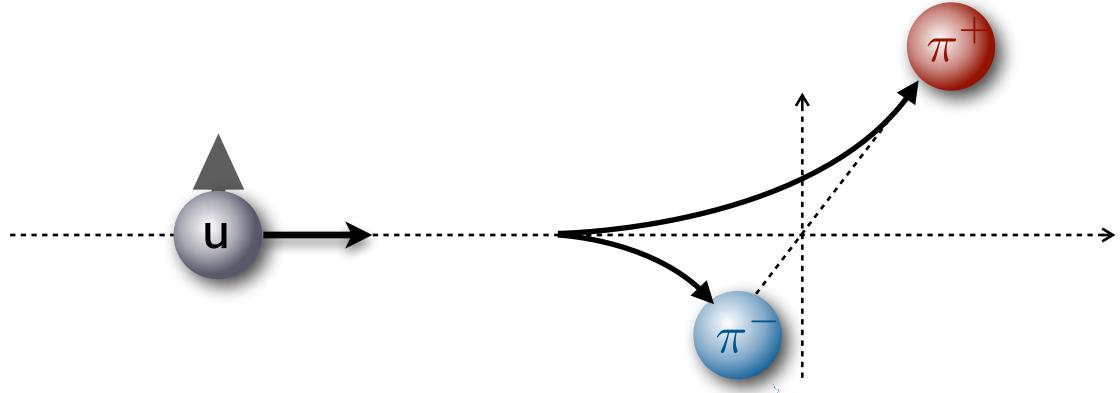


- spin-dependence in fragmentation
- left-right asymmetry in hadron direction transverse to both quark spin and momentum
- extracted from SIDIS and e⁺e⁻
 annihilation data

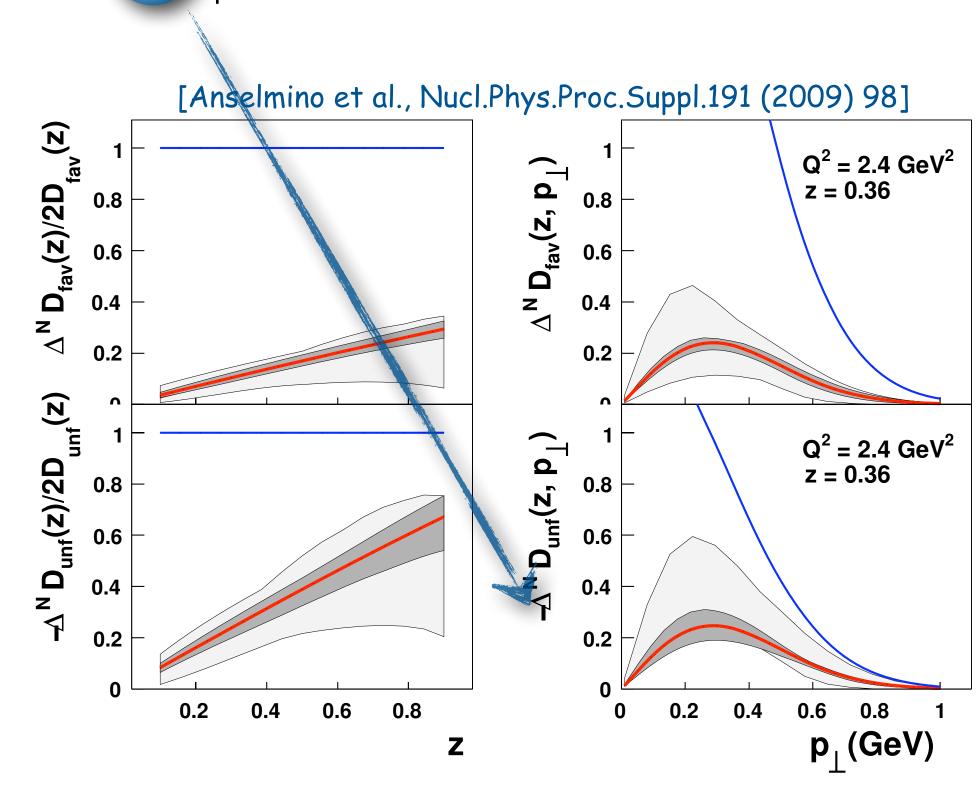


- spin-dependence in fragmentation
- left-right asymmetry in hadron direction transverse to both quark spin and momentum
- extracted from SIDIS and e⁺e⁻
 annihilation data

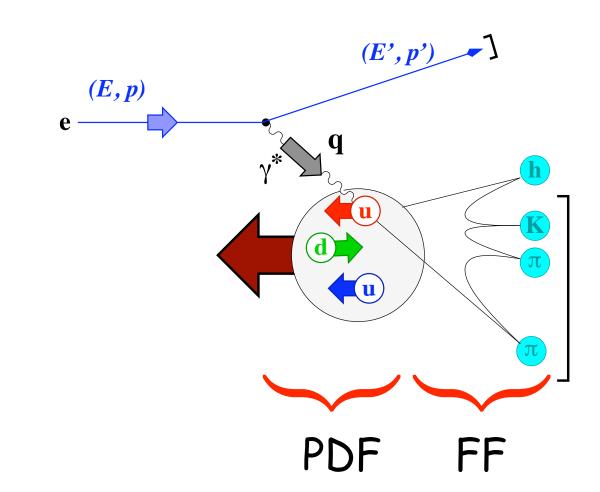




- spin-dependence in fragmentation
- left-right asymmetry in hadron direction transverse to both quark spin and momentum
- extracted from SIDIS and e⁺e⁻
 annihilation data
- spin average gives "ordinary" D₁



probing TMDs in semi-inclusive DIS



quark	pol.
4 0100111	· Por

		U	${ m L}$	T	
POI.	U	f_1		h_1^\perp	
	L		g_{1L}	h_{1L}^{\perp}	
TICO	T	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\pm	

in SIDIS*) couple PDFs to:

Collins FF: $H_1^{\perp,q \to h}$

ordinary FF: $D_1^{q \to h}$

→ give rise to characteristic azimuthal dependences

*) semi-inclusive DIS with unpolarized final state

excluding transverse polarization:

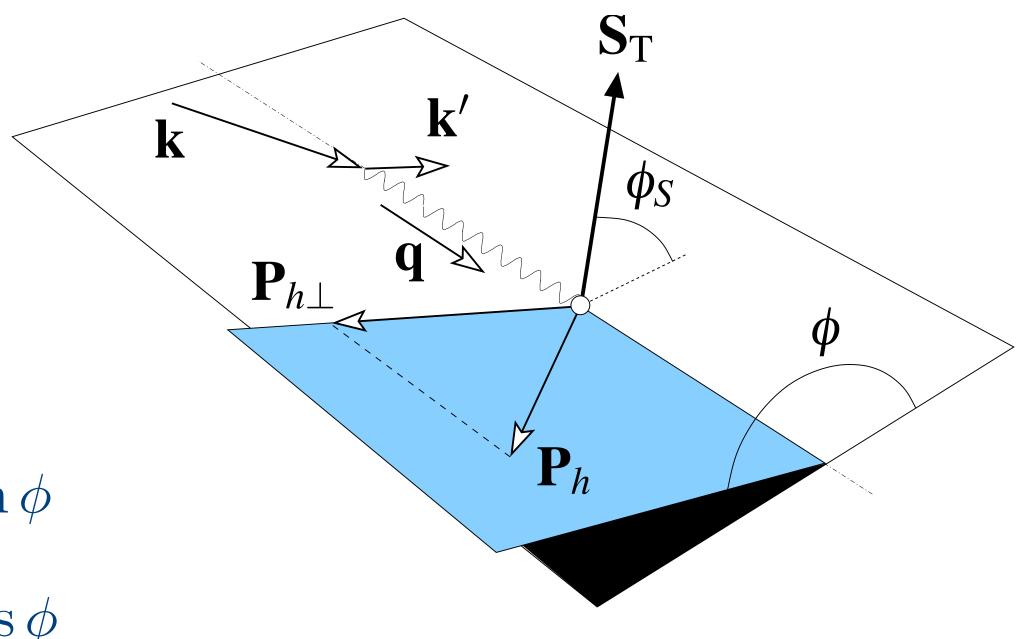
$$\frac{\mathrm{d}\sigma^{h}}{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}P_{h\perp}^{2}\,\mathrm{d}\phi} = \frac{2\pi\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2(1-\epsilon)}\left(1+\frac{\gamma^{2}}{2x}\right)$$

$$\left\{F_{UU,T}^{h} + \epsilon F_{UU,L}^{h} + \lambda\Lambda\sqrt{1-\epsilon^{2}}F_{LL}^{h}\right.$$

$$\left. + \sqrt{2\epsilon}\left[\lambda\sqrt{1-\epsilon}\,F_{LU}^{h,\sin\phi} + \Lambda\sqrt{1+\epsilon}\,F_{UL}^{h,\sin\phi}\right]\sin\phi\right.$$

$$\left. + \sqrt{2\epsilon}\left[\lambda\Lambda\sqrt{1-\epsilon}\,F_{LL}^{h,\cos\phi} + \sqrt{1+\epsilon}\,F_{UL}^{h,\cos\phi}\right]\cos\phi\right.$$

$$\left. + \Lambda\epsilon\,F_{UL}^{h,\sin2\phi}\sin2\phi + \epsilon\,F_{UU}^{h,\cos2\phi}\cos2\phi\right.\right\}$$



$$F_{XY}^{h, \mathrm{mod}} = F_{XY}^{h, \mathrm{mod}}(x, Q^2, z, P_{h\perp})$$
 Beam (\Lambda) / Target (\Lambda)

helicities

excluding transverse polarization:

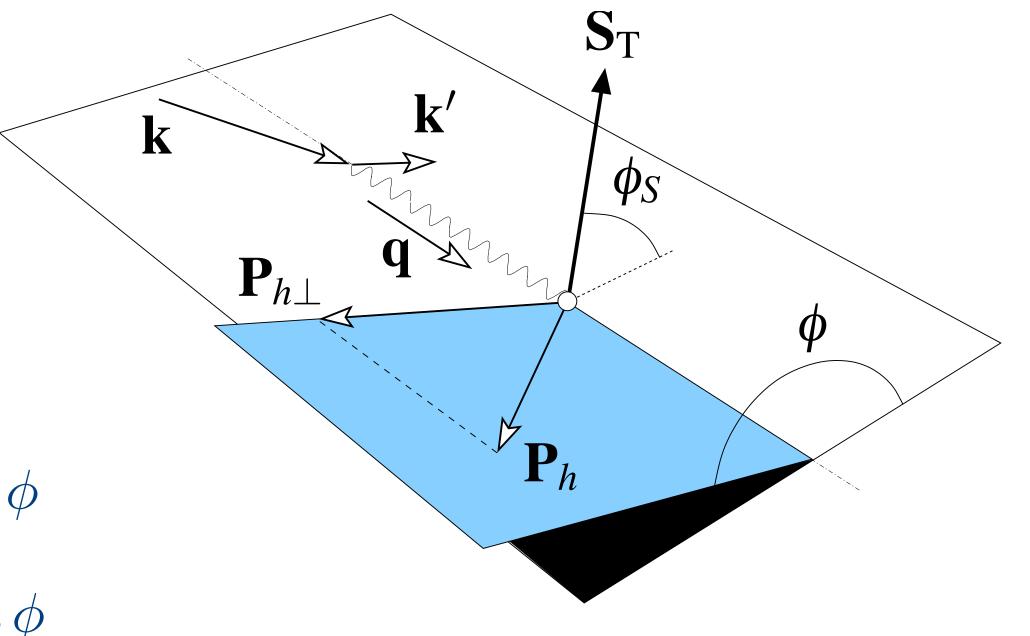
$$\frac{\mathrm{d}\sigma^{h}}{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}P_{h\perp}^{2}\,\mathrm{d}\phi} = \frac{2\pi\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2(1-\epsilon)}\left(1+\frac{\gamma^{2}}{2x}\right)$$

$$\left\{F_{UU,T}^{h} + \epsilon F_{UU,L}^{h}\right\} + \lambda\Lambda\sqrt{1-\epsilon^{2}}F_{LL}^{h}$$

$$+\sqrt{2\epsilon}\left[\lambda\sqrt{1-\epsilon}\,F_{LU}^{h,\sin\phi} + \Lambda\sqrt{1+\epsilon}\,F_{UL}^{h,\sin\phi}\right]\sin\phi$$

$$+\sqrt{2\epsilon}\left[\lambda\Lambda\sqrt{1-\epsilon}\,F_{LL}^{h,\cos\phi} + \sqrt{1+\epsilon}\,F_{UU}^{h,\cos\phi}\right]\cos\phi$$

$$+\Lambda\epsilon\,F_{UL}^{h,\sin2\phi}\sin2\phi + \epsilon\,F_{UU}^{h,\cos2\phi}\cos2\phi$$



$$F_{XY}^{h, \mathrm{mod}} = F_{XY}^{h, \mathrm{mod}}(x, Q^2, z, P_{h\perp})$$
 Beam (\lambda) / Target (\Lambda)

helicities

excluding transverse polarization:

$$\frac{\mathrm{d}\sigma^{h}}{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}P_{h\perp}^{2}\,\mathrm{d}\phi} = \frac{2\pi\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2(1-\epsilon)}\left(1+\frac{\gamma^{2}}{2x}\right)$$

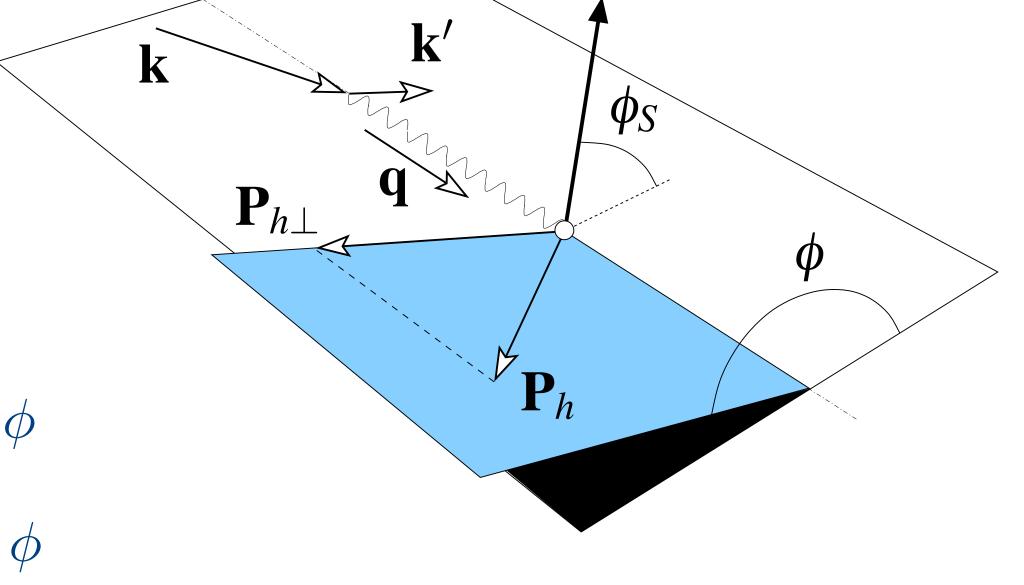
$$\left\{F_{UU,T}^{h} + \epsilon F_{UU,L}^{h} + \lambda\Lambda\sqrt{1-\epsilon^{2}}F_{LL}^{h}\right.$$

$$\left. + \sqrt{2\epsilon}\left[\lambda\sqrt{1-\epsilon}\,F_{LU}^{h,\sin\phi} + \Lambda\sqrt{1+\epsilon}\,F_{UL}^{h,\sin\phi}\right]\sin\phi\right.$$

$$\left. + \sqrt{2\epsilon}\left[\lambda\Lambda\sqrt{1-\epsilon}\,F_{LL}^{h,\cos\phi} + \sqrt{1+\epsilon}\,F_{UL}^{h,\cos\phi}\right]\cos\phi\right.$$

$$\left. + \Lambda\epsilon\,F_{UL}^{h,\sin2\phi}\sin2\phi + \epsilon\,F_{UU}^{h,\cos2\phi}\cos2\phi\right.\right\}$$

double-spin asymmetry:



$$A_{LL}^{h} \equiv \frac{\sigma_{++}^{h} - \sigma_{+-}^{h} + \sigma_{--}^{h} - \sigma_{-+}^{h}}{\sigma_{++}^{h} + \sigma_{+-}^{h} + \sigma_{--}^{h} + \sigma_{-+}^{h}}$$

excluding transverse polarization:

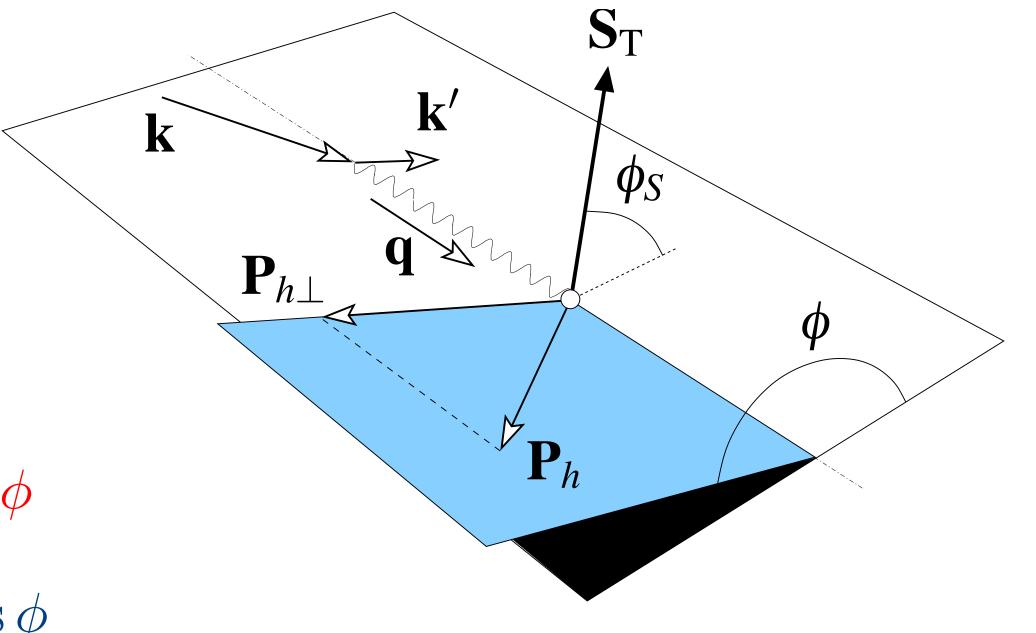
$$\frac{\mathrm{d}\sigma^{h}}{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}P_{h\perp}^{2}\,\mathrm{d}\phi} = \frac{2\pi\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2(1-\epsilon)}\left(1+\frac{\gamma^{2}}{2x}\right)$$

$$\left\{F_{UU,T}^{h} + \epsilon F_{UU,L}^{h} + \lambda\Lambda\sqrt{1-\epsilon^{2}}F_{LL}^{h}\right.$$

$$\left. + \sqrt{2\epsilon}\left[\lambda\sqrt{1-\epsilon}\,F_{LU}^{h,\sin\phi} + \Lambda\sqrt{1+\epsilon}\,F_{UL}^{h,\sin\phi}\right]\sin\phi\right.$$

$$\left. + \sqrt{2\epsilon}\left[\lambda\Lambda\sqrt{1-\epsilon}\,F_{LL}^{h,\cos\phi} + \sqrt{1+\epsilon}\,F_{UL}^{h,\cos\phi}\right]\cos\phi\right.$$

$$\left. + \Lambda\epsilon\,F_{UL}^{h,\sin2\phi}\sin2\phi + \epsilon\,F_{UU}^{h,\cos2\phi}\cos2\phi\right.\right\}$$



- single-spin asymmetry:
 - explicit angular dependence to be analyzed

$$A_{LU}^{h} \equiv \frac{\sigma_{+-}^{h} + \sigma_{++}^{h} - \sigma_{-+}^{h} - \sigma_{--}^{h}}{\sigma_{+-}^{h} + \sigma_{++}^{h} + \sigma_{-+}^{h} + \sigma_{--}^{h}}$$

with transverse target polarization:

$$\frac{\mathrm{d}\sigma^{h}}{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}P_{h\perp}^{2}\,\mathrm{d}\phi\,\mathrm{d}\phi_{s}} = \frac{2\pi\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2(1-\epsilon)}\left(1+\frac{\gamma^{2}}{2x}\right)$$

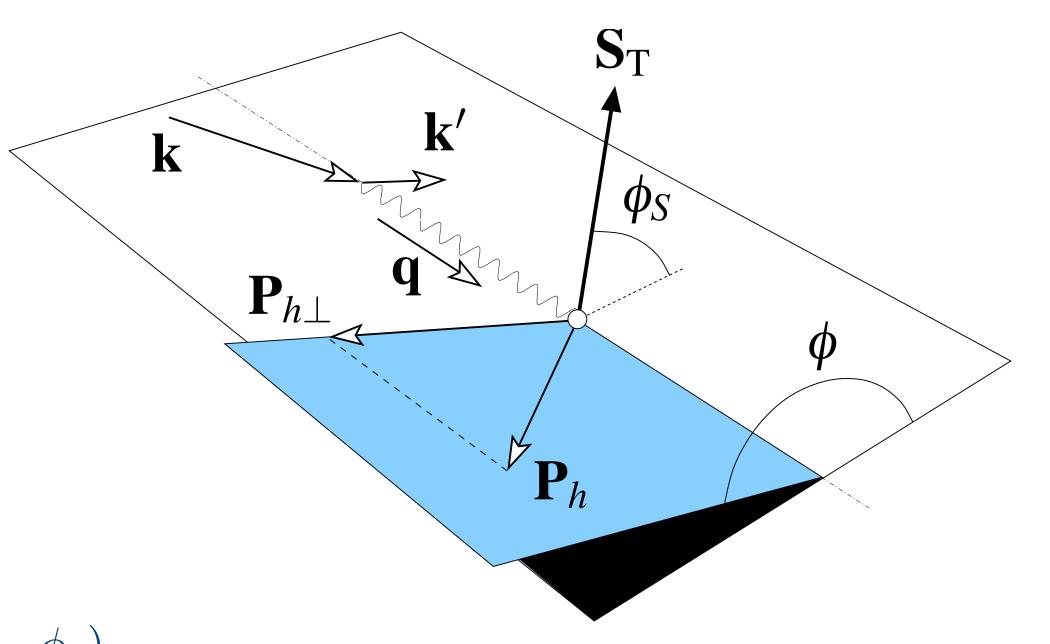
$$\left\{F_{UU,T}^{h} + \epsilon F_{UU,L}^{h} + \text{terms not involving transv. polarization} \right.$$

$$+ S_{T}\left[\left(F_{UT,T}^{h,\sin\left(\phi-\phi_{s}\right)} + \epsilon F_{UT,L}^{h,\sin\left(\phi-\phi_{s}\right)}\right)\sin\left(\phi-\phi_{s}\right)\right.$$

$$\left. + \epsilon F_{UT}^{h,\sin\left(\phi+\phi_{s}\right)}\sin\left(\phi+\phi_{s}\right) + \epsilon F_{UT}^{h,\sin\left(3\phi-\phi_{s}\right)}\sin\left(3\phi-\phi_{s}\right)\right.$$

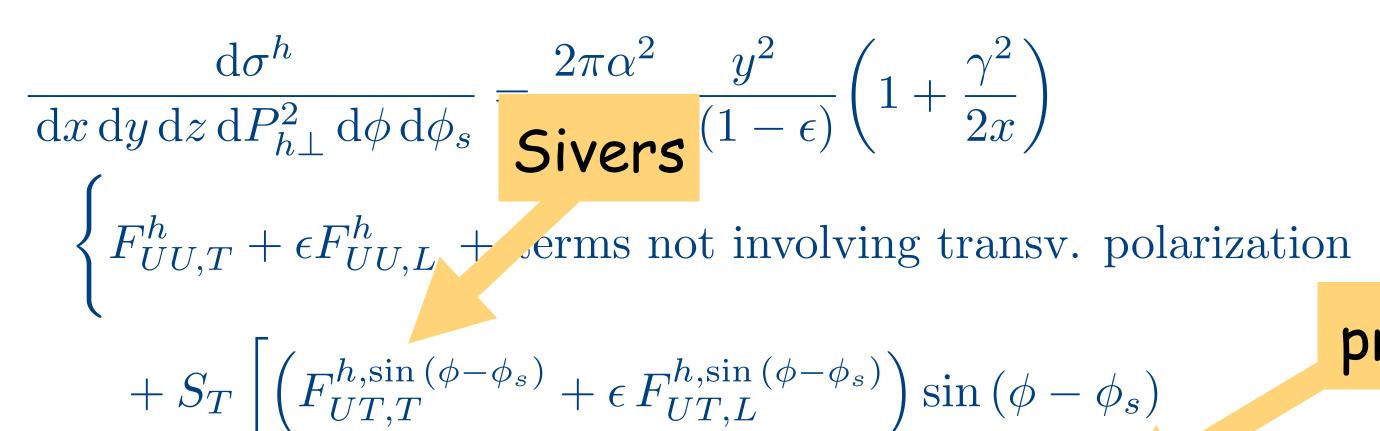
$$\left. + \sqrt{2\epsilon(1+\epsilon)}F_{UT}^{h,\sin\phi_{s}}\sin\phi_{s} + \sqrt{2\epsilon(1+\epsilon)}F_{UT}^{h,\sin\left(2\phi-\phi_{s}\right)}\sin\left(2\phi-\phi_{s}\right)\right]\right\}$$

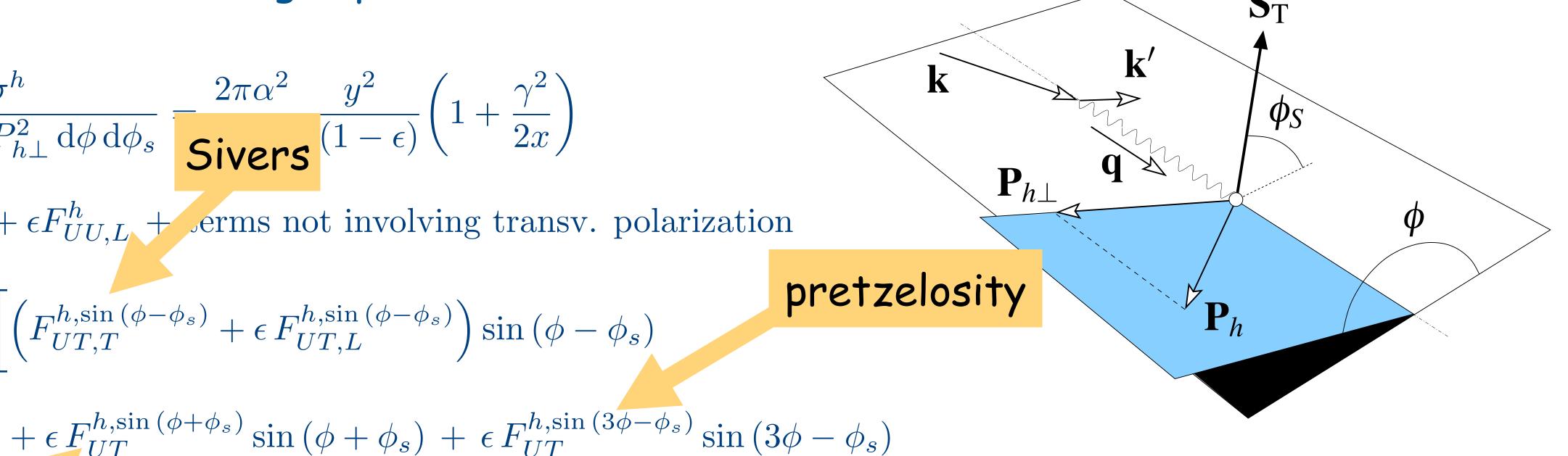
$$+ C_{T}\left[\sqrt{\frac{1-2}{2}}F_{L}^{h,\cos\left(\phi-\phi_{s}\right)}\left(\phi-\phi_{s}\right)\right]$$



$$+ S_T \lambda \left[\sqrt{1 - \epsilon^2} F_{LT}^{h,\cos(\phi - \phi_s)} \cos(\phi - \phi_s) + \sqrt{2\epsilon(1 - \epsilon)} F_{LT}^{h,\cos\phi_s} \cos\phi_s + \sqrt{2\epsilon(1 - \epsilon)} F_{LT}^{h,\cos(2\phi - \phi_s)} \cos(2\phi - \phi_s) \right] \right\}$$

with transverse target polarization:





 $+ \sqrt{2\,\epsilon(1+\epsilon)}\,F_{UT}^{h,\sin\phi_s}\,\sin\phi_s \,+\, \sqrt{2\,\epsilon(1+\epsilon)}\,F_{UT}^{h,\sin{(2\phi-\phi_s)}}\,\sin{(2\phi-\phi_s)} \bigg]$

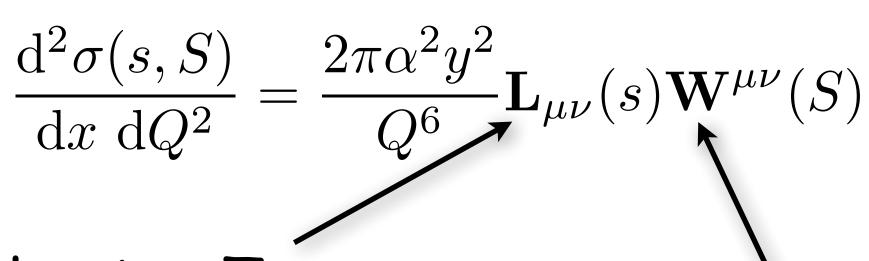
$$+S_T \lambda \left[\sqrt{1 - \epsilon^2} \, F_{LT}^{h,\cos(\phi - \phi_s)} \, \cos(\phi - \phi_s) \right]$$

worm-gear

$$+\sqrt{2\epsilon(1-\epsilon)}F_{LT}^{h,\cos\phi_s}\cos\phi_s + \sqrt{2\epsilon(1-\epsilon)}F_{LT}^{h,\cos(2\phi-\phi_s)}\cos(2\phi-\phi_s)\right]$$

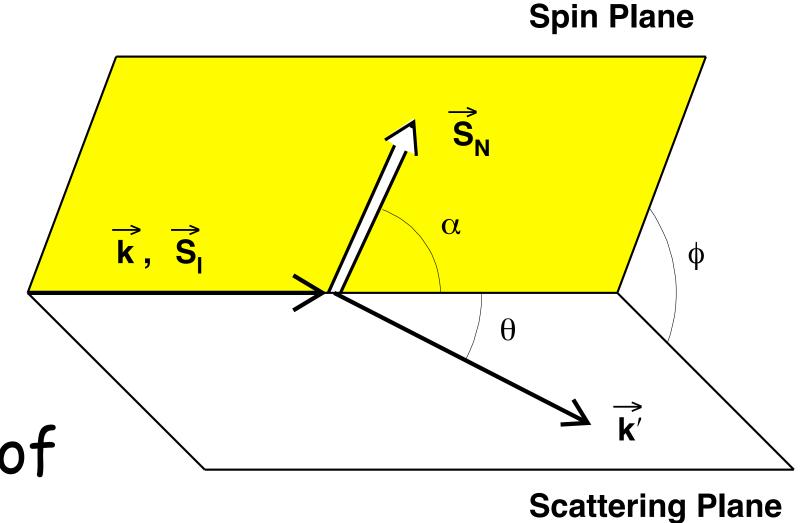
some highlights: inclusive DIS

inclusive DIS (one-photon exchange)



Lepton Tensor

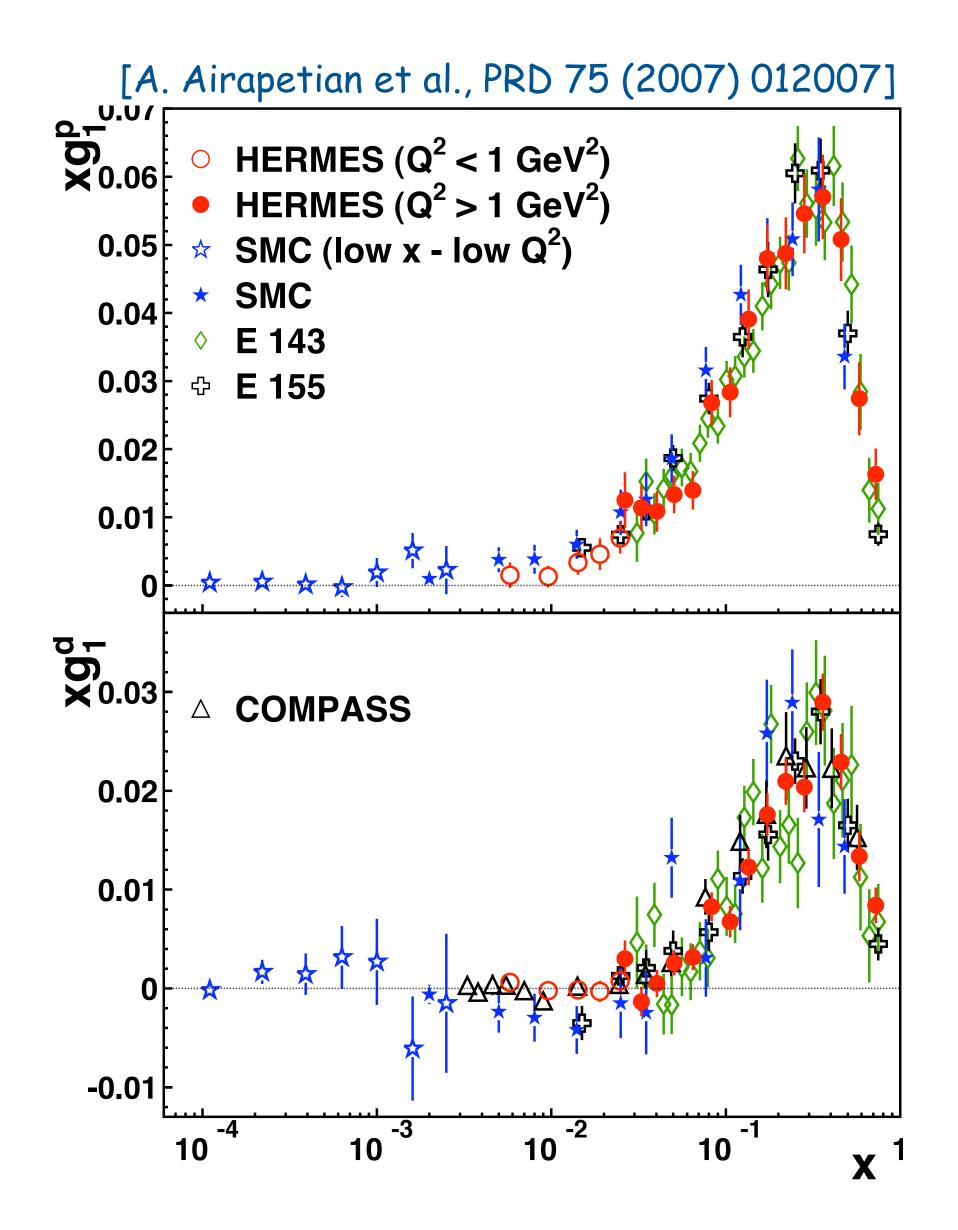
Hadron Tensor parametrized in terms of



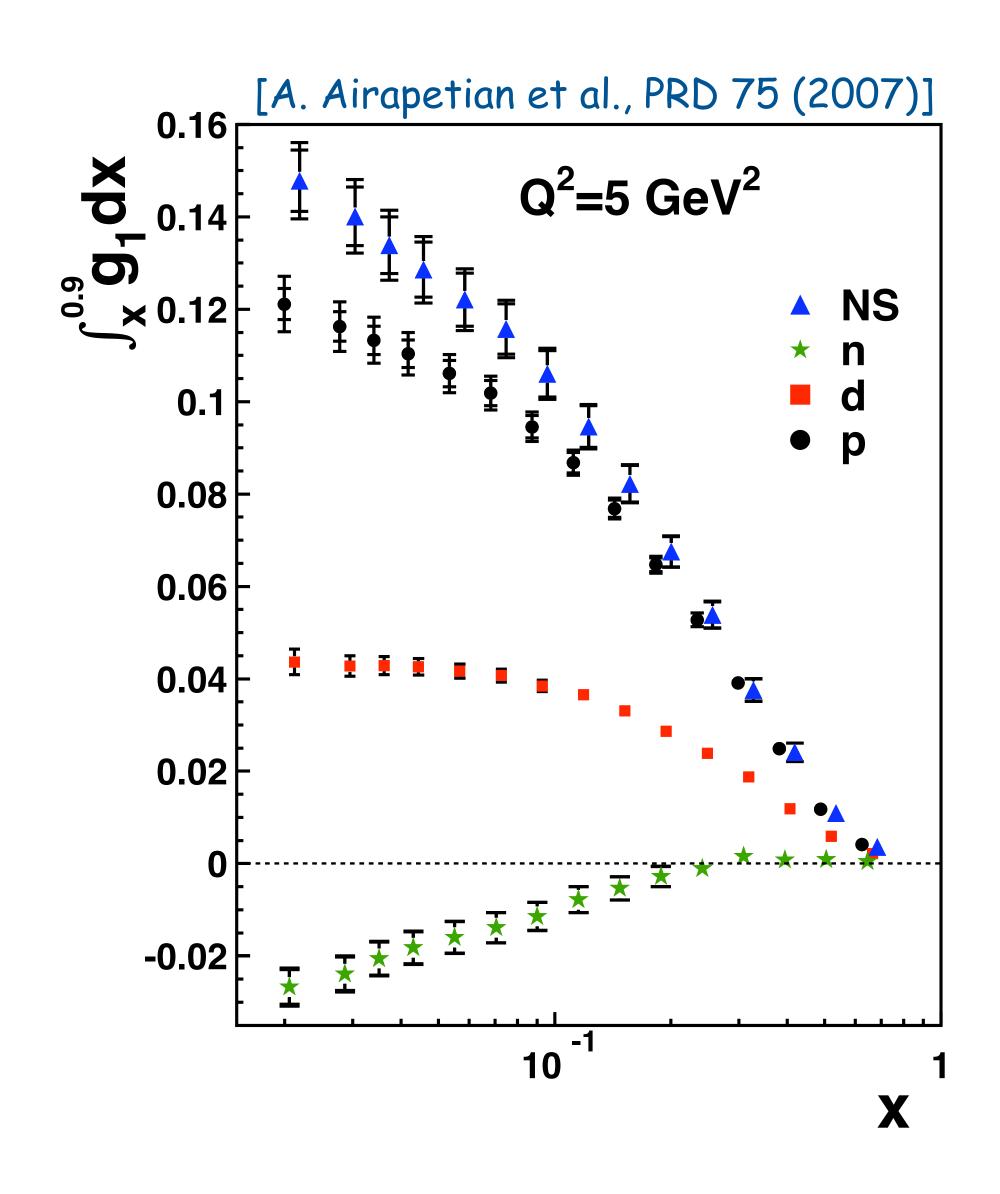
$$\frac{d^{3}\sigma}{dxdyd\phi} \propto \frac{y}{2}F_{1}(x,Q^{2}) + \frac{1-y-\gamma^{2}y^{2}}{2xy}F_{2}(x,Q^{2}) - S_{l}S_{N}\cos\alpha \left[\left(1-\frac{y}{2}-\frac{\gamma^{2}y^{2}}{4}\right)g_{1}(x,Q^{2}) - \frac{\gamma^{2}y}{2}g_{2}(x,Q^{2})\right] + S_{l}S_{N}\sin\alpha\cos\phi\gamma\sqrt{1-y-\frac{\gamma^{2}y^{2}}{4}}\left(\frac{y}{2}g_{1}(x,Q^{2}) + g_{2}(x,Q^{2})\right)$$

polarized structure function $g_1(x)$

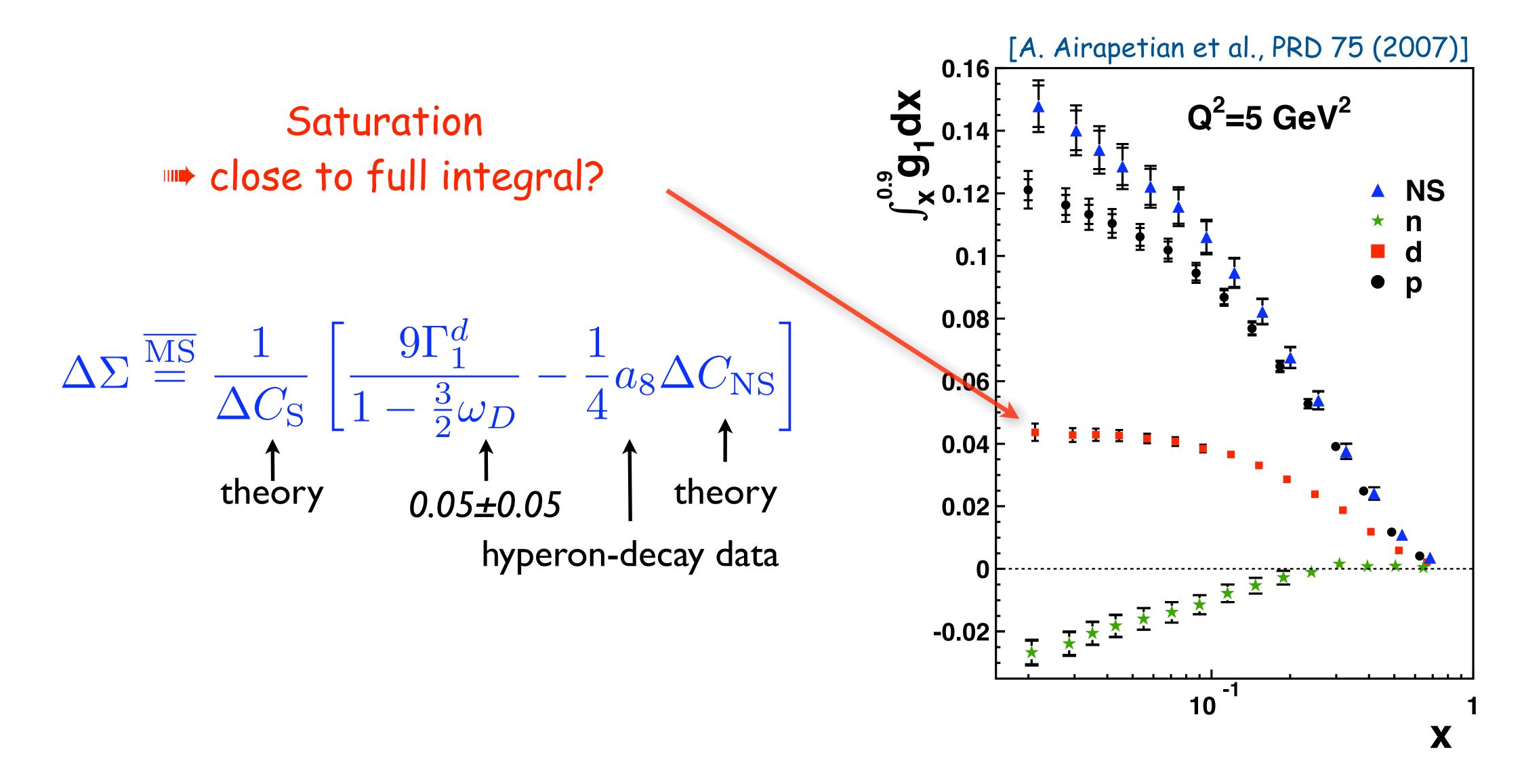
- unfolded for radiative and detector smearing
- unknown systematic correlations transformed into known statistical correlations
- uncertainties plotted only reflect diagonal elements of covariance -> "underestimates" statistical precision



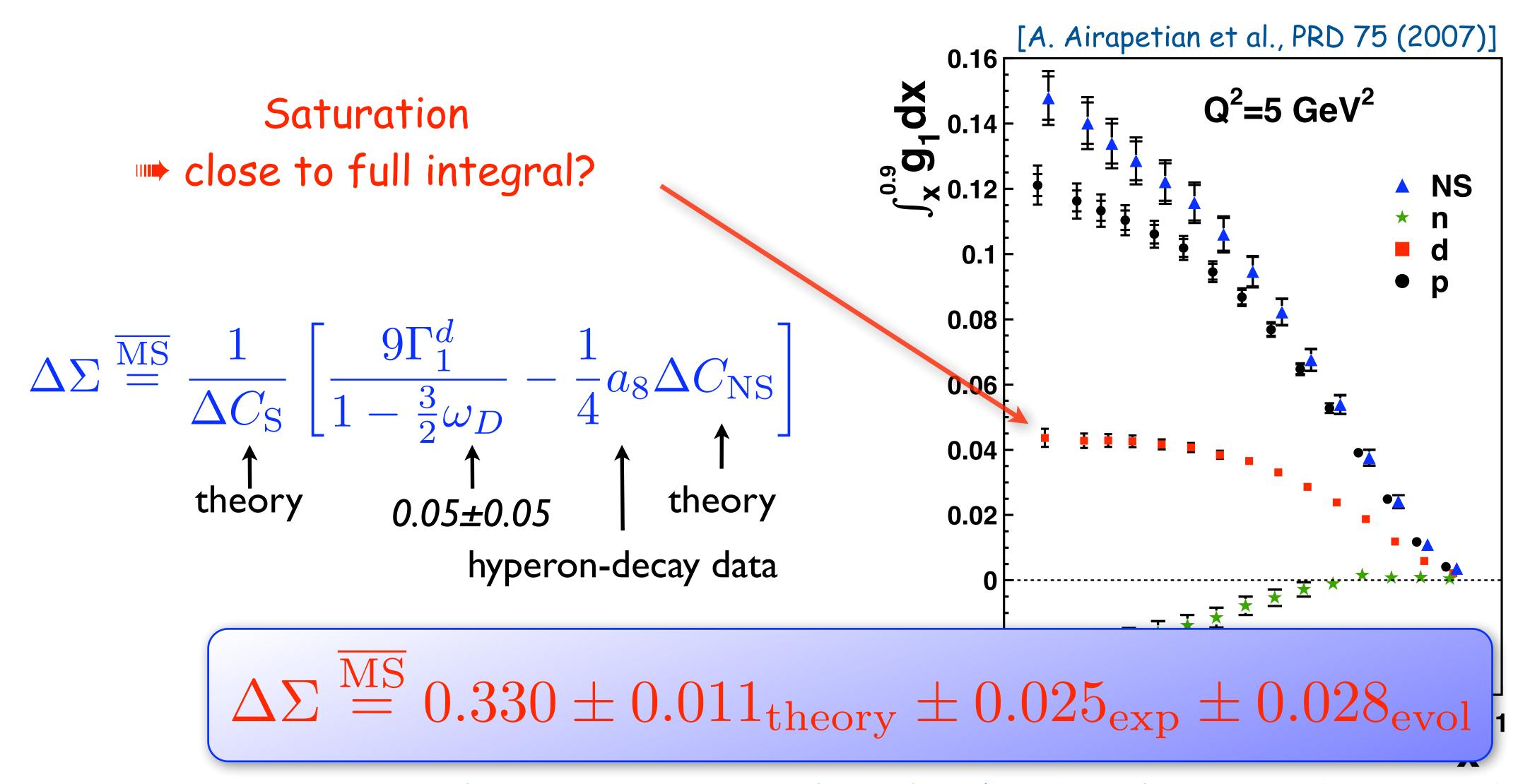
Γ_1 ... integral of $g_1(x)$



Γ_1 ... integral of $g_1(x)$

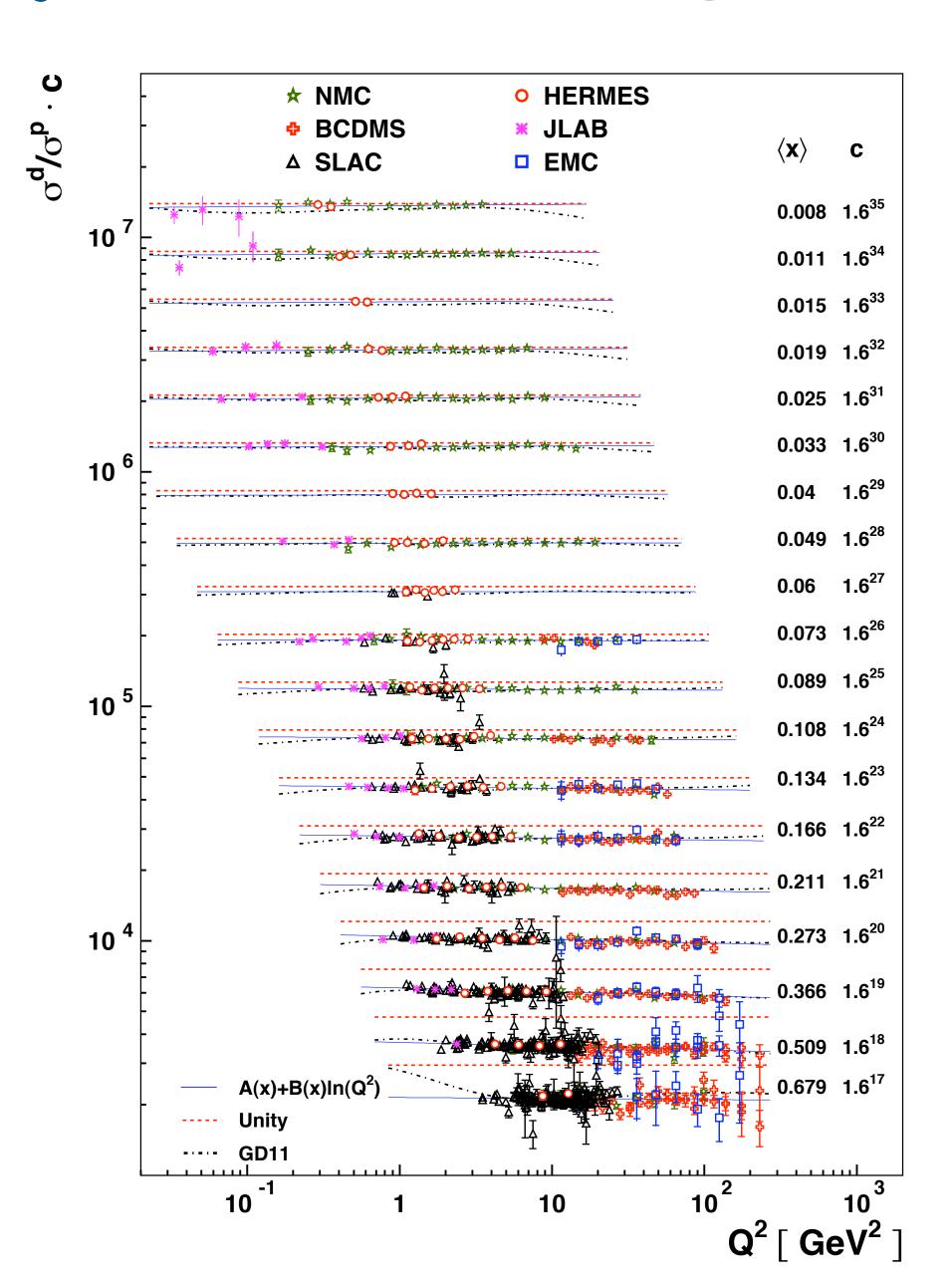


Γ_1 ... integral of $g_1(x)$

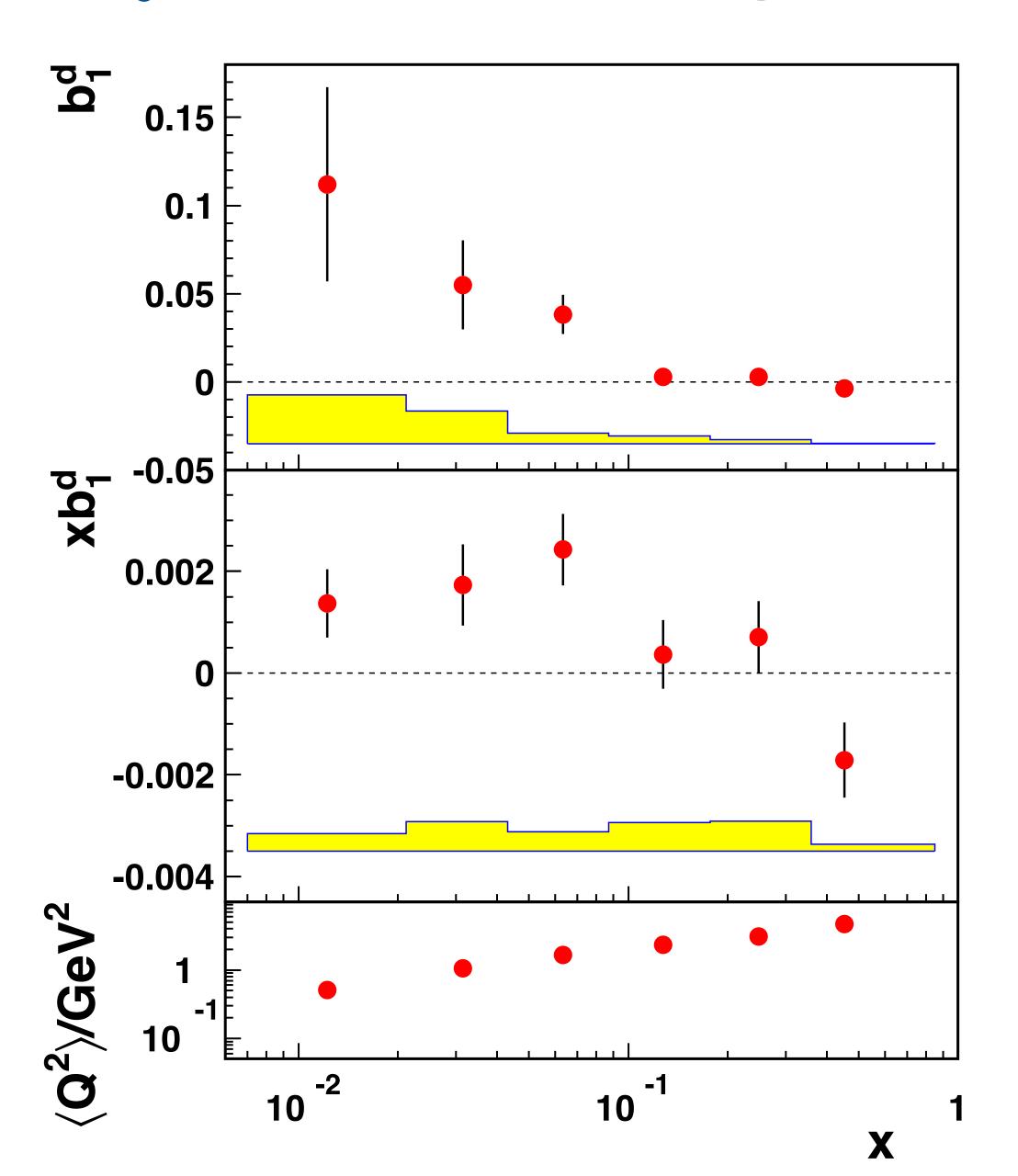


most precise single-experiment result: only 1/3 of nucleon spin from quarks

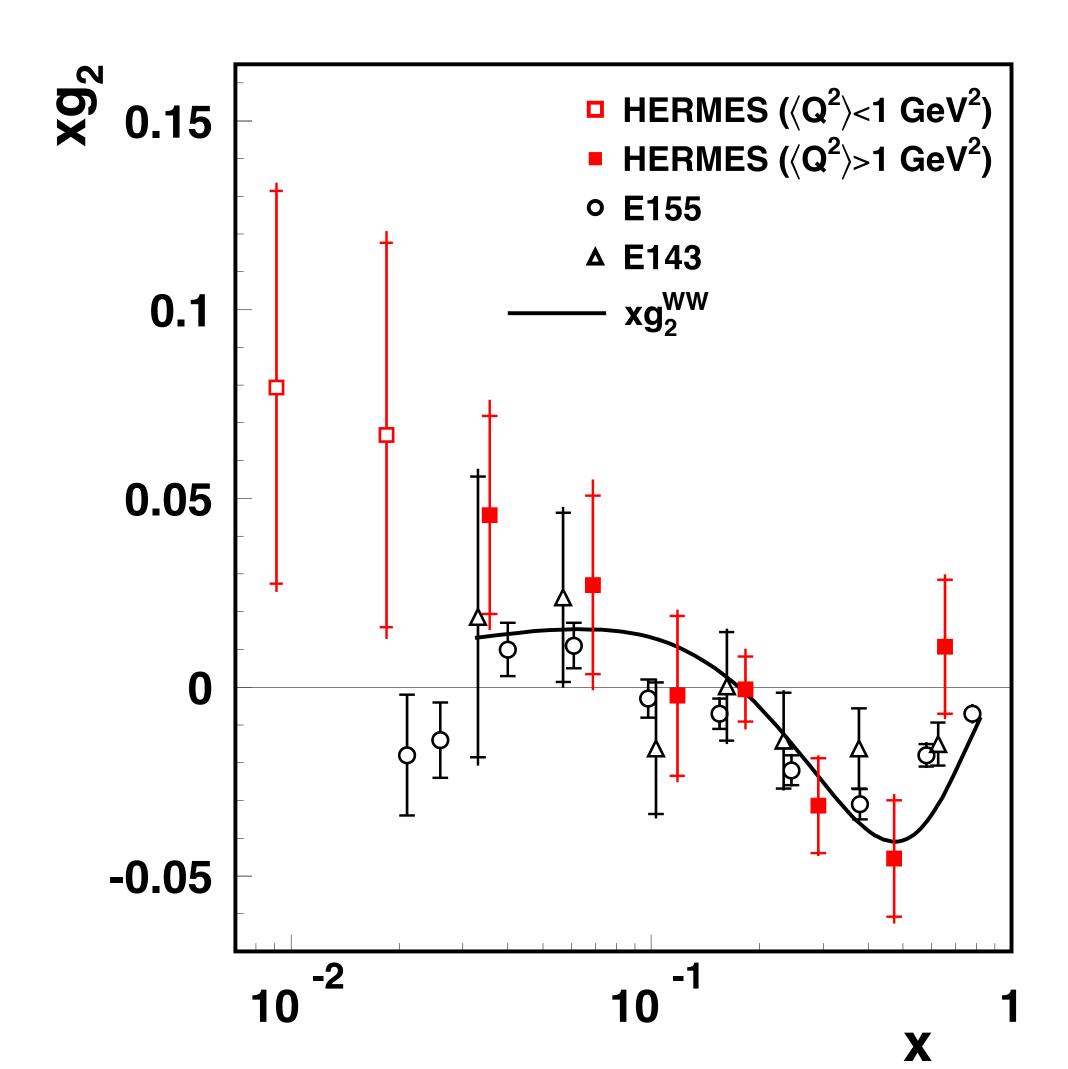
unpolarized DIS: F_2 & σ^d/σ^p



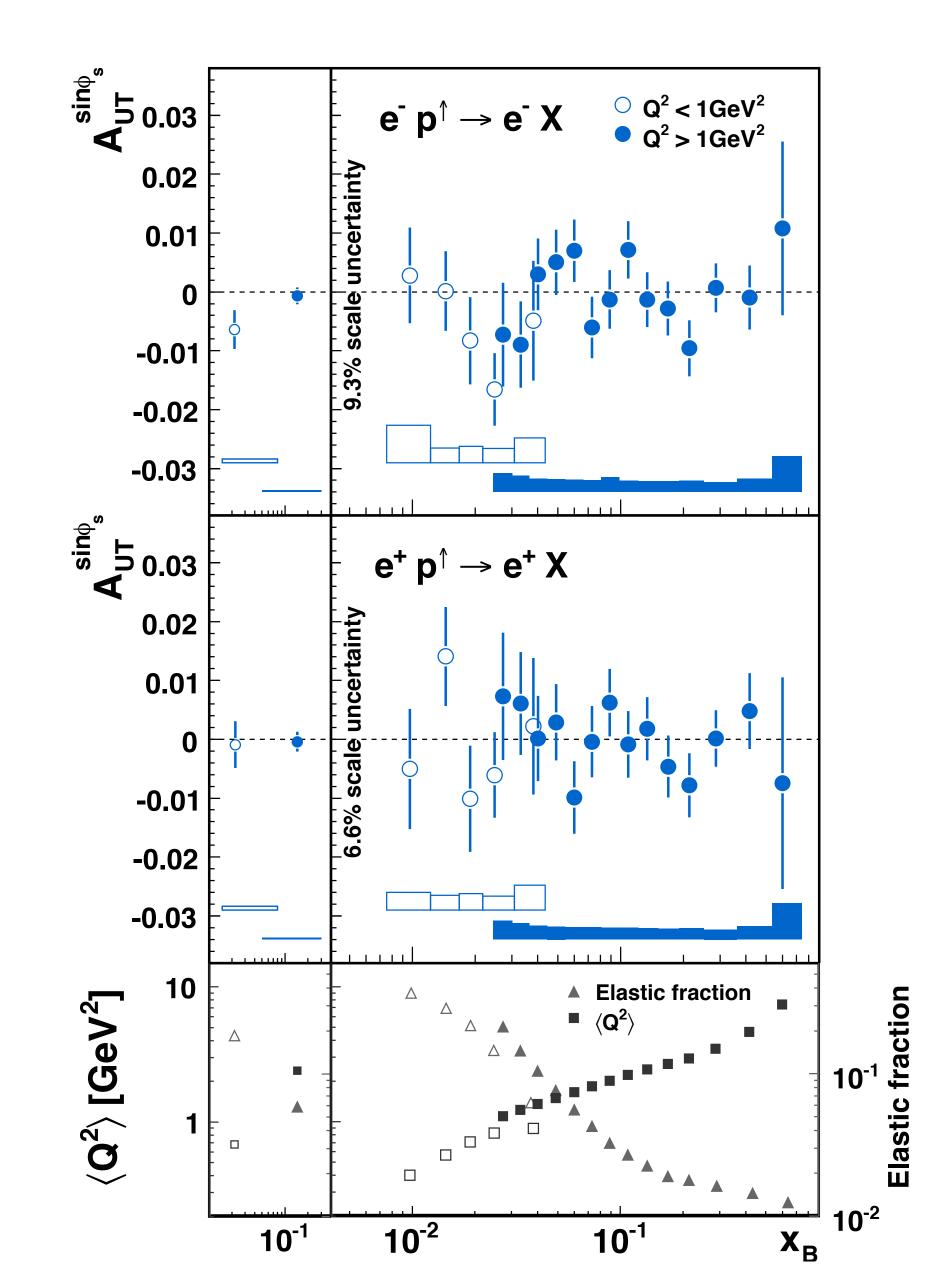
- unpolarized DIS: F_2 & σ^d/σ^p
- tensor structure function b₁



- unpolarized DIS: F_2 & σ^d/σ^p
- tensor structure function b₁
- transverse: g2



- unpolarized DIS: F_2 & σ^d/σ^p
- tensor structure function b₁
- Transverse: g2
- 2-photon exchange in incl. DIS



- unpolarized DIS: F_2 & σ^d/σ^p
- tensor structure function b₁
- Transverse: g2
- 2-photon exchange in incl. DIS
- **I** ...

some highlights: semi-inclusive DIS

	U	L	T
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
T	f_{1T}^{\perp}	g_{1T}	$igg \ h_1, h_{1T}^ot$

[PRL 103 (2009) 152002] 7.3% scale uncertainty $2 \left\langle \sin(\phi - \phi_S) \right\rangle_{\text{UT}}$ $\langle \sin(\phi - \phi_{S}) \rangle_{\mathsf{UT}}$ 0.1 $\langle \sin(\phi-\phi) \rangle$ -0.05 ______ 10 -1 0.6 0.4 0.5 P_h [GeV] Gunar Schnell

Sivers amplitudes for pions

$$2\langle \sin(\phi - \phi_S) \rangle_{\text{UT}} = -\frac{\sum_q e_q^2 f_{1T}^{\perp, q}(x, p_T^2) \otimes_{\mathcal{W}} D_1^q(z, k_T^2)}{\sum_q e_q^2 f_1^q(x, p_T^2) \otimes D_1^q(z, k_T^2)}$$

	U	L	T
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
T	f_{1T}^{\perp}	g_{1T}	$igg h_1, h_{1T}^ot$

[PRL 103 (2009) 152002] 7.3% scale uncertainty $\langle \sin(\phi - \phi) \text{ or } \rangle$ -0.05 ______ 0.6 0.4 0.5 10 P_h [GeV] Gunar Schnell

Sivers amplitudes for pions

$$2\langle \sin(\phi - \phi_S) \rangle_{\text{UT}} = -\frac{\sum_q e_q^2 f_{1T}^{\perp, q}(x, p_T^2) \otimes_{\mathcal{W}} D_1^q(z, k_T^2)}{\sum_q e_q^2 f_1^q(x, p_T^2) \otimes D_1^q(z, k_T^2)}$$

 π^+ production dominated by u-quark scattering:

$$\simeq -\frac{f_{1T}^{\perp,u}(x,p_T^2) \otimes_{\mathcal{W}} D_1^{u \to \pi^+}(z,k_T^2)}{f_1^u(x,p_T^2) \otimes D_1^{u \to \pi^+}(z,k_T^2)}$$

u-quark Sivers DF < 0

	U	m L	T
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
T	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^{\perp}

[PRL 103 (2009) 152002] 7.3% scale uncertainty $\langle \sin(\phi - \phi_S) \rangle_{UT}$ -0.05 10 -1 0.6 0.4 0.5 P_h [GeV]

Sivers amplitudes for pions

$$2\langle \sin(\phi - \phi_S) \rangle_{\text{UT}} = -\frac{\sum_q e_q^2 f_{1T}^{\perp, q}(x, p_T^2) \otimes_{\mathcal{W}} D_1^q(z, k_T^2)}{\sum_q e_q^2 f_1^q(x, p_T^2) \otimes D_1^q(z, k_T^2)}$$

 π^+ production dominated by u-quark scattering:

$$\simeq -\frac{f_{1T}^{\perp,u}(x,p_T^2) \otimes_{\mathcal{W}} D_1^{u \to \pi^+}(z,k_T^2)}{f_1^u(x,p_T^2) \otimes D_1^{u \to \pi^+}(z,k_T^2)}$$

u-quark Sivers DF < 0

d-quark Sivers DF > 0 (cancelation for π^{-})

	U	${ m L}$	$oxed{T}$
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
T	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

7.3% scale uncertainty [PRL 103 (2009) 152002] $\langle \sin(\phi - \phi) \text{ or } 0.05 \rangle$ -0.05 10 -1 0.6 0.5 0.4 P_h [GeV] X

Sivers amplitudes for pions

$$2\langle \sin(\phi - \phi_S) \rangle_{\text{UT}} = -\frac{\sum_q e_q^2 f_{1T}^{\perp, q}(x, p_T^2) \otimes_{\mathcal{W}} D_1^q(z, k_T^2)}{\sum_q e_q^2 f_1^q(x, p_T^2) \otimes D_1^q(z, k_T^2)}$$

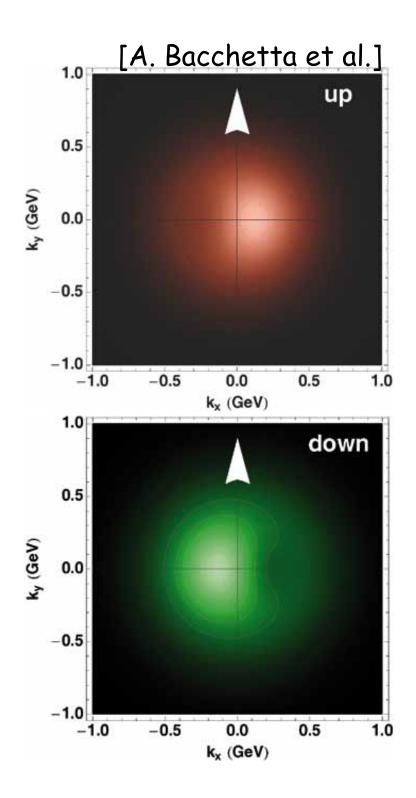
 π^+ production dominated by u-quark scattering:

$$\simeq -\frac{f_{1T}^{\perp,u}(x,p_T^2) \otimes_{\mathcal{W}} D_1^{u \to \pi^+}(z,k_T^2)}{f_1^u(x,p_T^2) \otimes D_1^{u \to \pi^+}(z,k_T^2)}$$

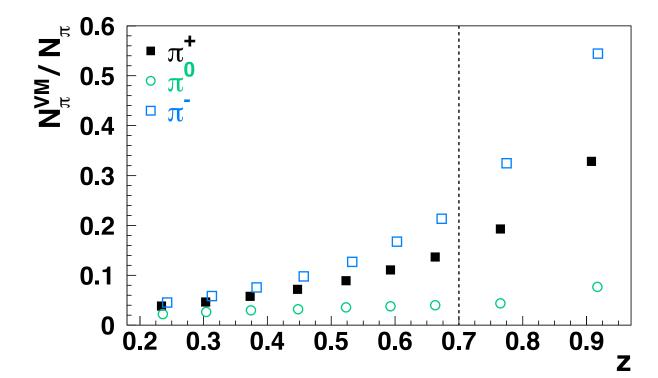
u-quark Sivers DF < 0

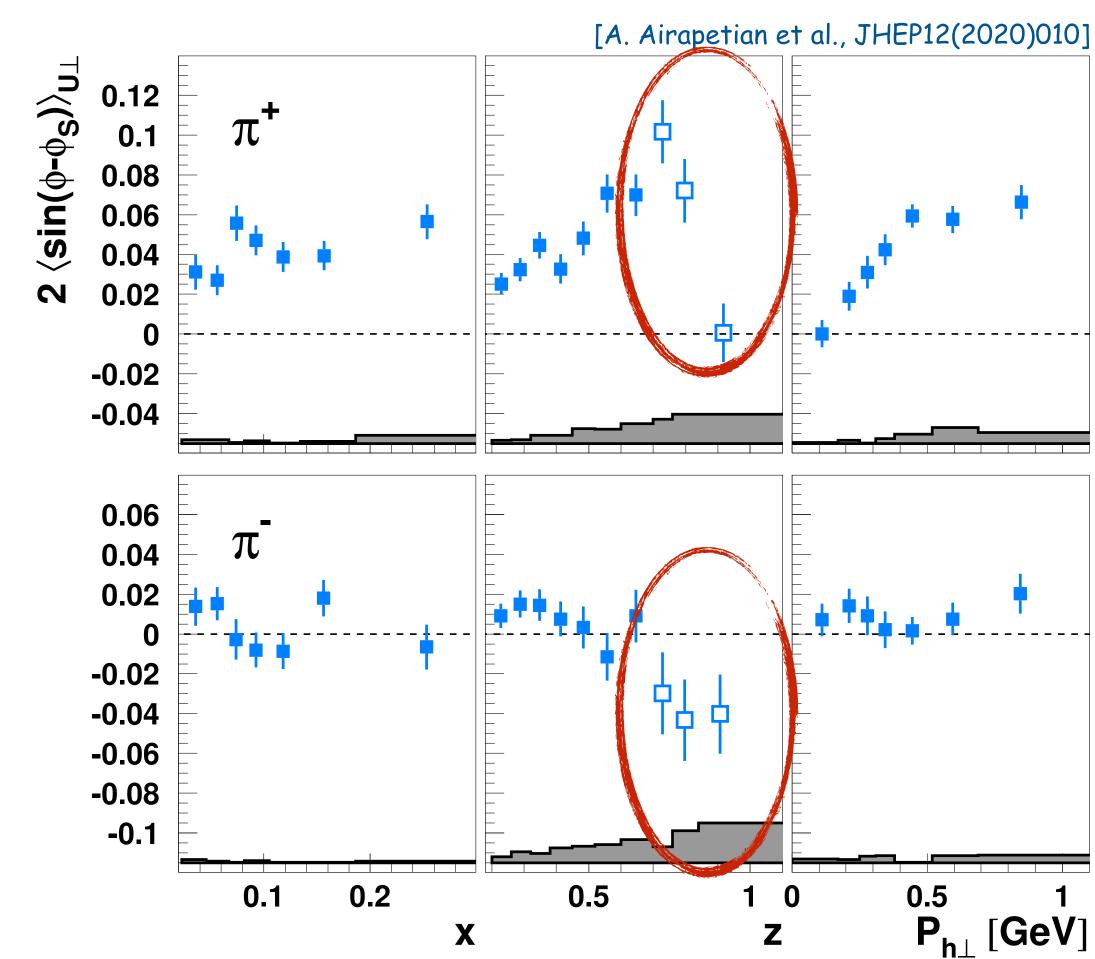
d-quark Sivers DF > 0 (cancelation for π^{-})

27



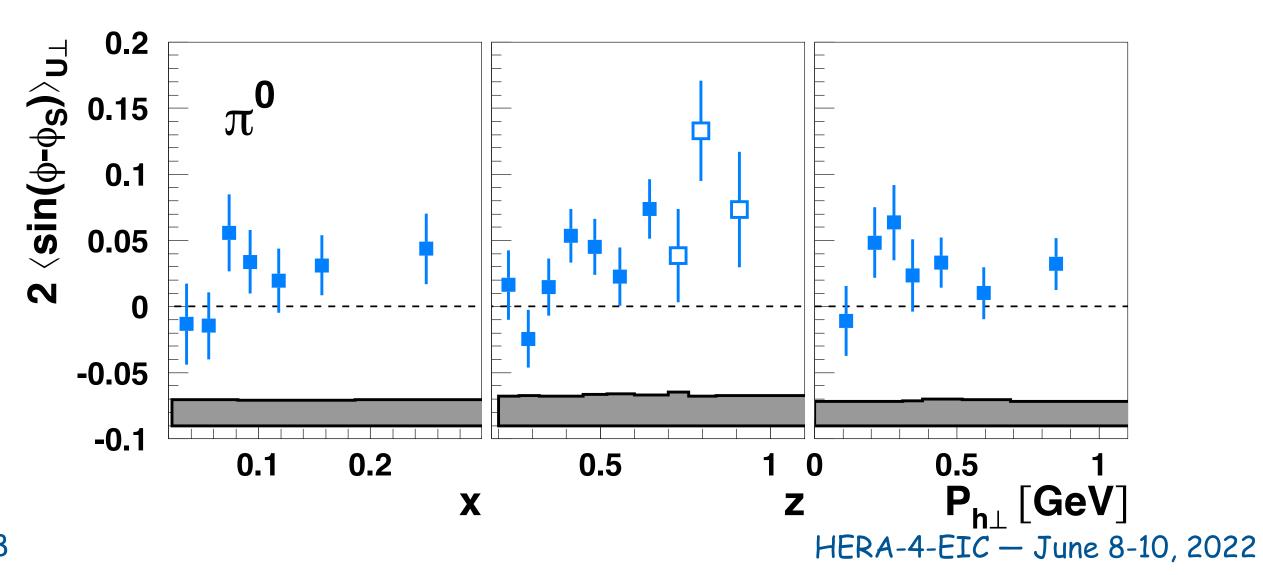
	U	L	$oxed{T}$
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
T	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp





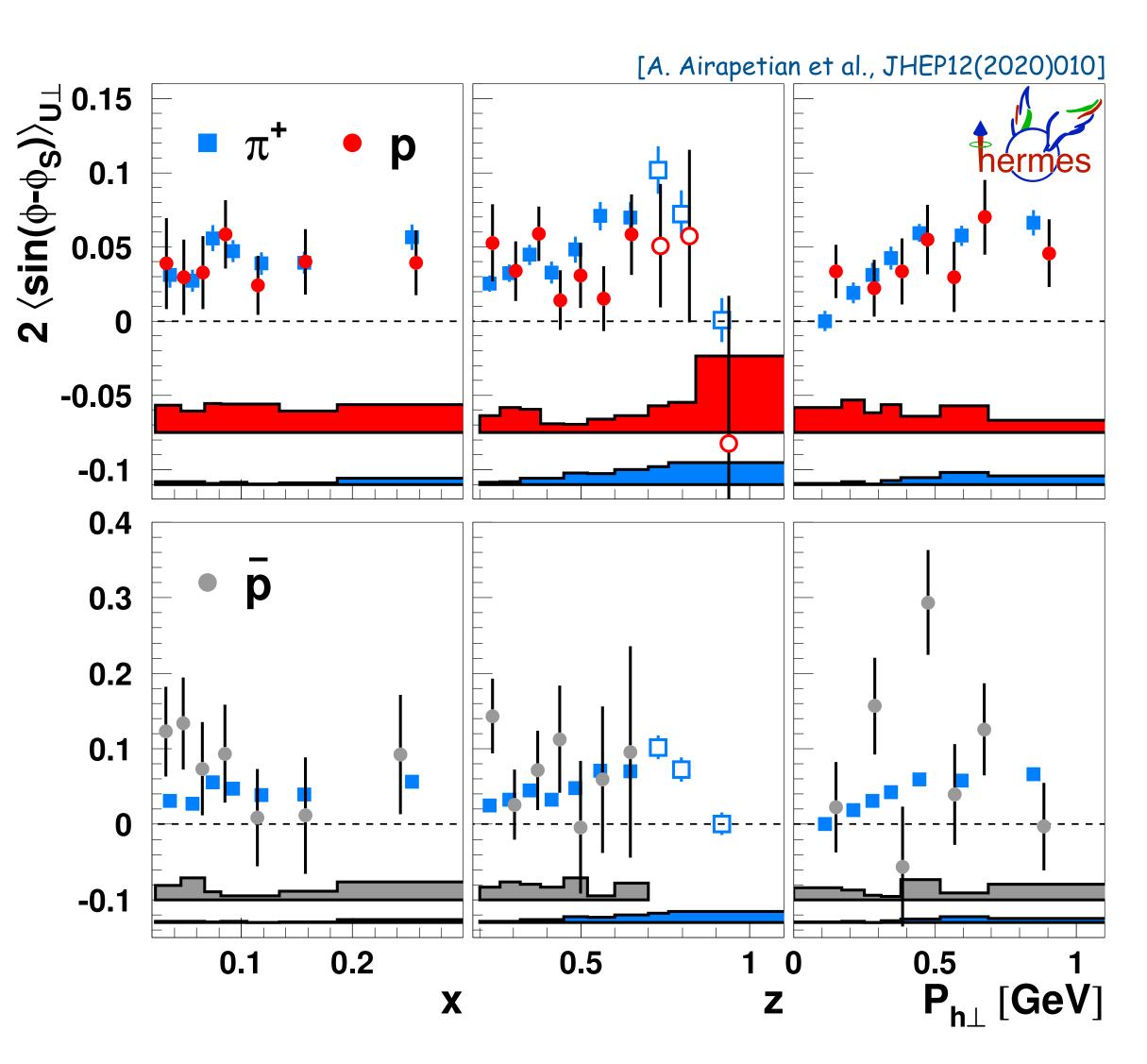
Sivers amplitudes for pions

 high-z data probes region of increased flavor sensitivity to struck quark (but also where contributions from exclusive vector-meson production becomes significant)



	U	${ m L}$	T
U	f_1		h_1^{\perp}
$oxed{L}$		g_{1L}	h_{1L}^{\perp}
T	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

Sivers amplitudes pions vs. (anti)protons



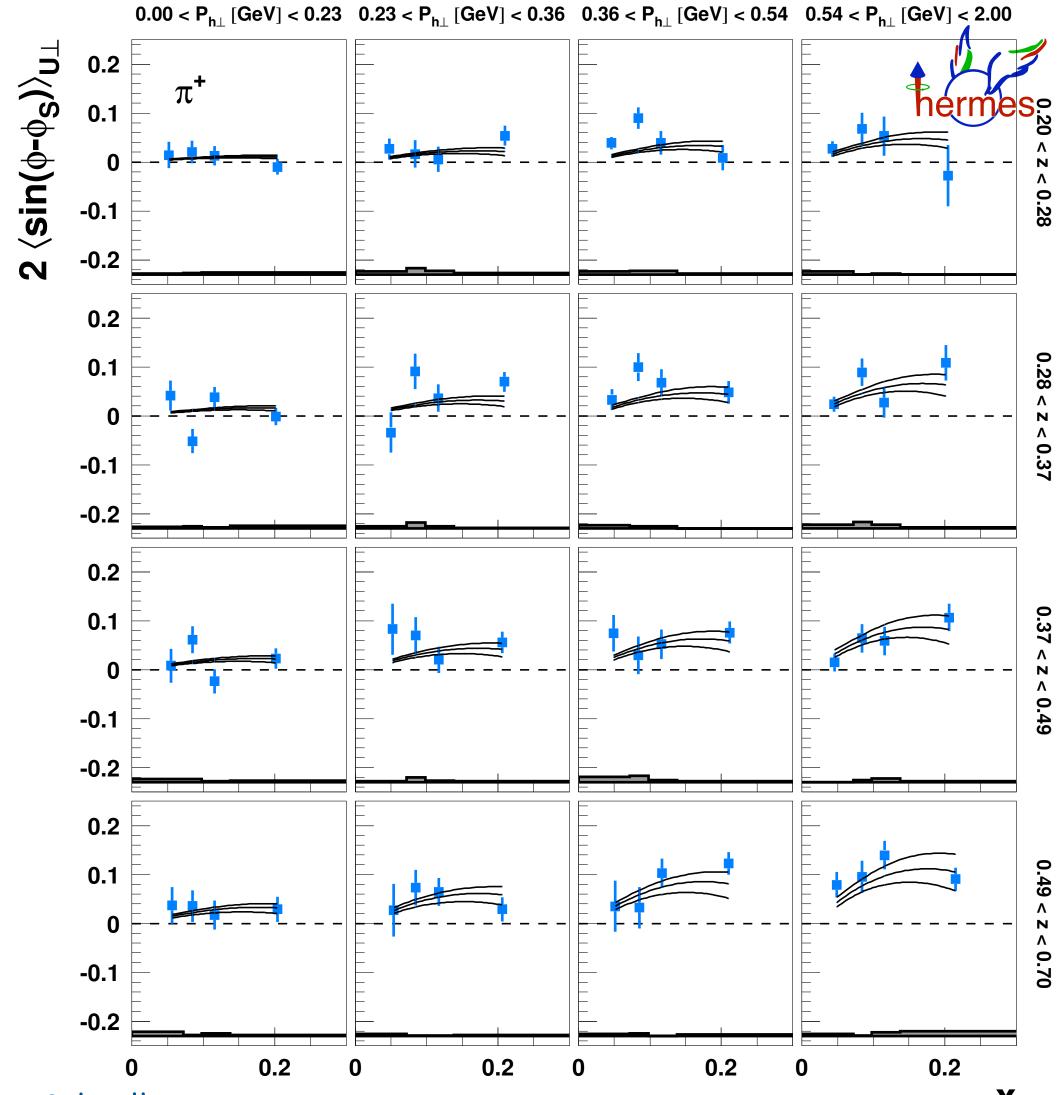
similar-magnitude asymmetries for (anti)protons and pions

⇒consequence of u-quark dominance in both cases?

$$2\langle \sin(\phi - \phi_S) \rangle_{\text{UT}} = -\frac{\sum_q e_q^2 f_{1T}^{\perp, q}(x, p_T^2) \otimes_{\mathcal{W}} D_1^q(z, k_T^2)}{\sum_q e_q^2 f_1^q(x, p_T^2) \otimes D_1^q(z, k_T^2)}$$

	U	L	T
U	f_1		h_1^\perp
$oxed{L}$		g_{1L}	h_{1L}^{\perp}
T	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^{\perp}

[A. Airapetian et al., JHEP12(2020)010]

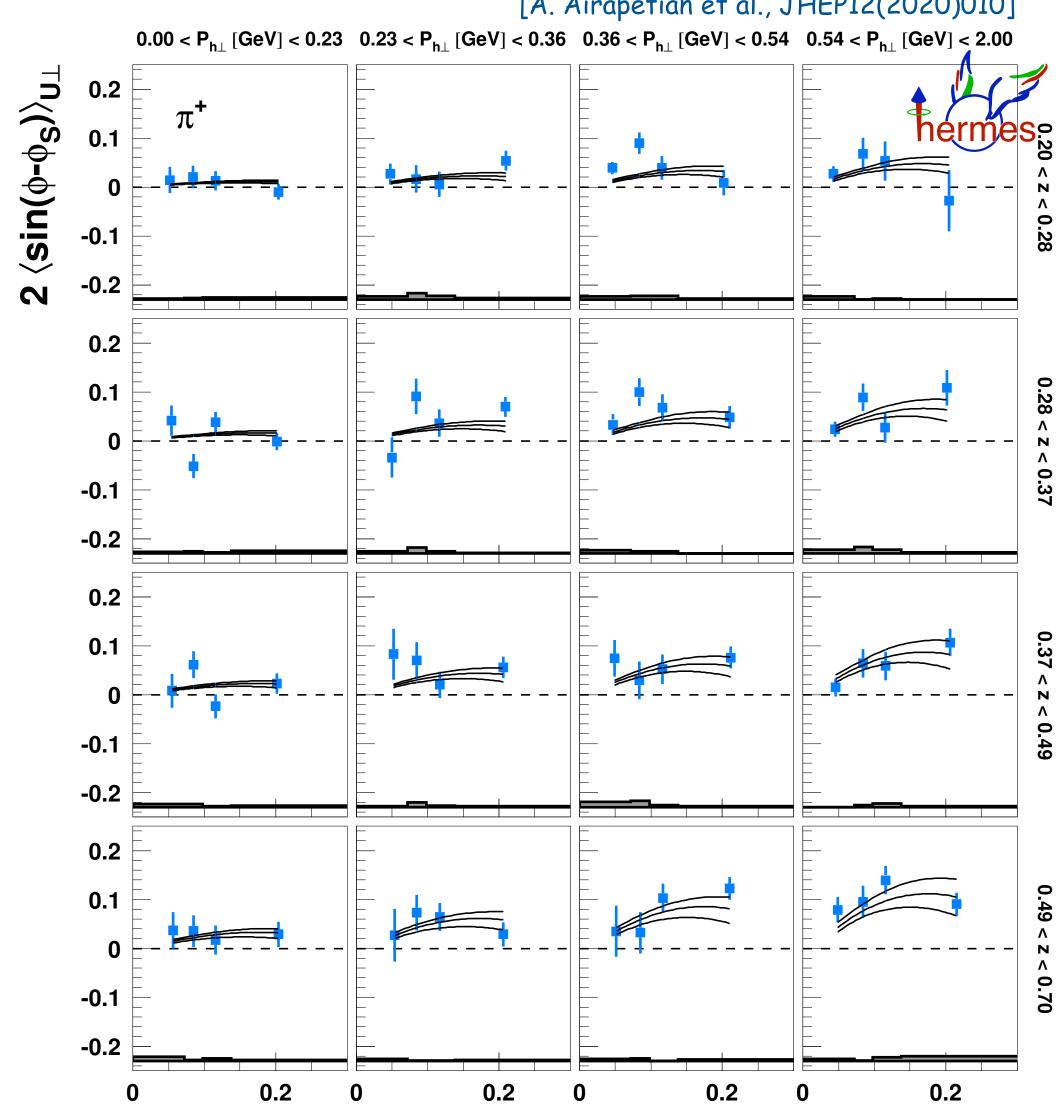


Sivers amplitudes multi-dimensional analysis

• 3d analysis: 4x4x4 bins in $(x,z, P_{h\perp})$

	U	${ m L}$	Γ
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Γ	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^{\perp}

Sivers amplitudes multi-dimensional analysis



- 3d analysis: 4x4x4 bins in $(x,z, P_{h\perp})$
- reduced systematics
- disentangle correlations
- isolate phase-space region with large signal strength

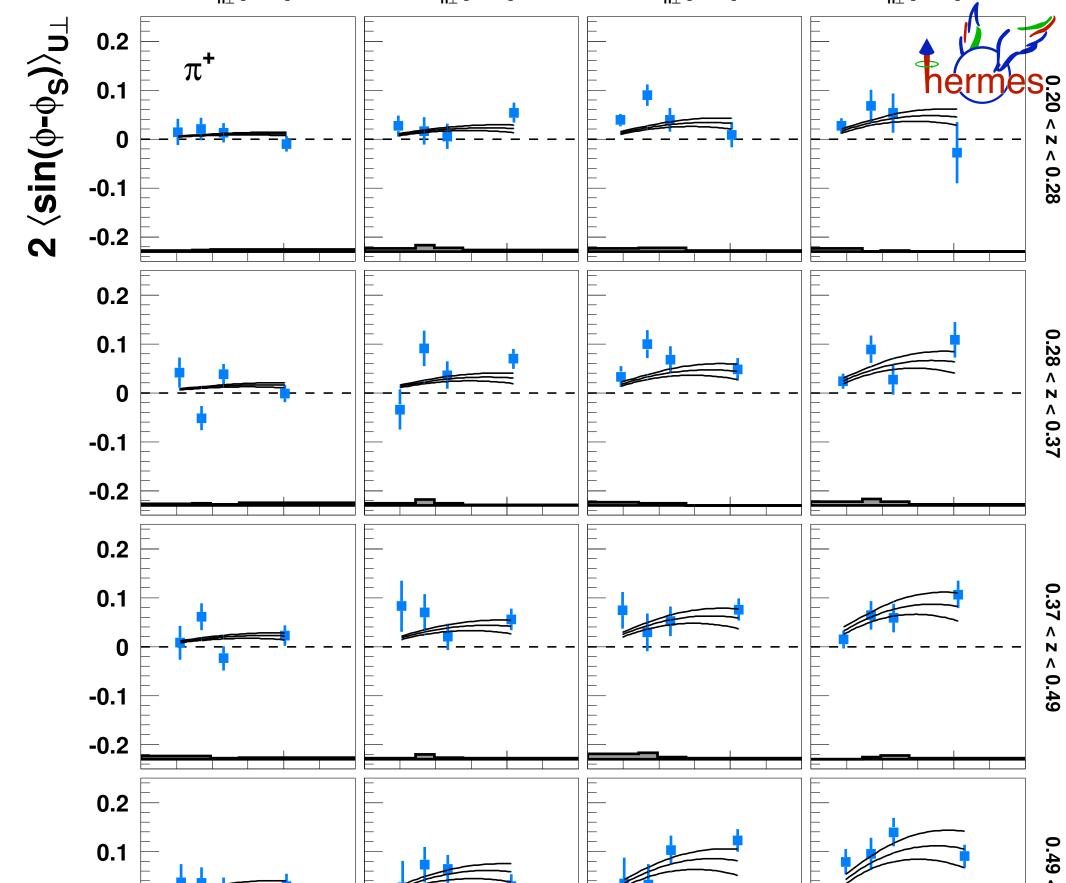
	U	$oxed{L}$	Γ
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
T	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

-0.1

-0.2

0.2

Sivers amplitudes multi-dimensional analysis



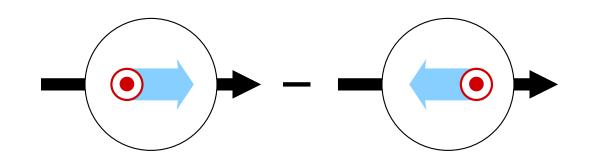
- 3d analysis: 4x4x4 bins in $(x,z, P_{h\perp})$
- reduced systematics
- disentangle correlations
- isolate phase-space region with large signal strength
- allows more detailed comparison with calculations

0.2

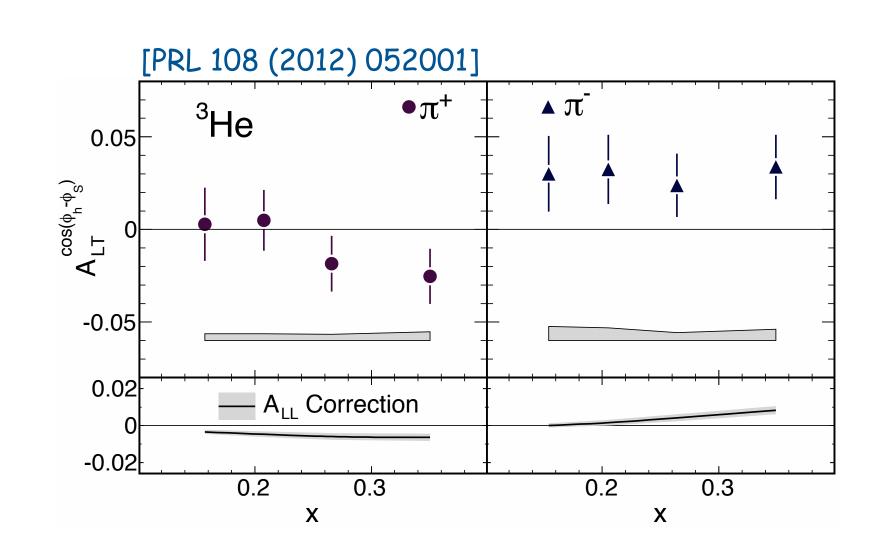
0.2

0.2

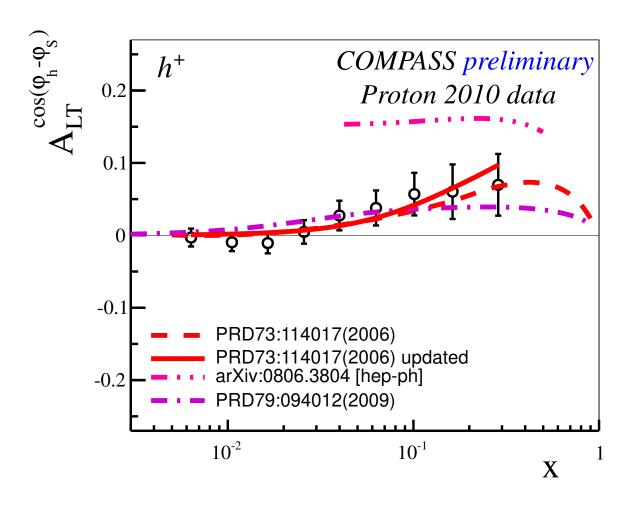
	U	ho	Γ
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
T	f_{1T}^{\perp}	g_{1T}	$oxed{h_1, h_{1T}^ot}$

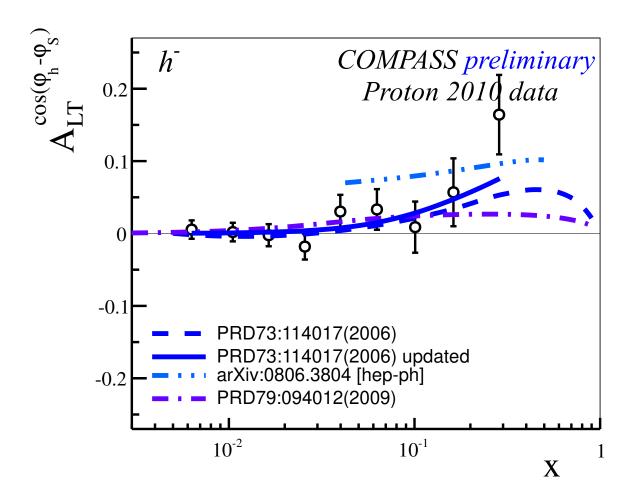


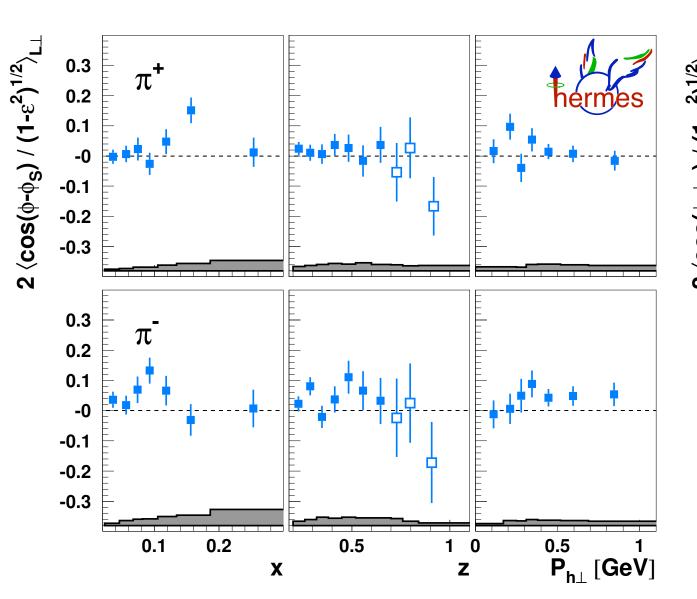
- quark-helicity asymmetry in transversely polarized nucleon
- evidences from
 - ³He target at JLab
 - H target at COMPASS & HERMES

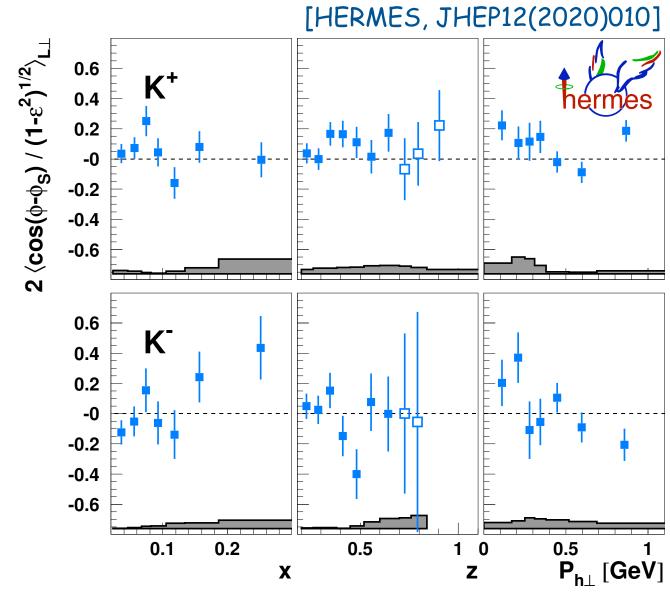


worm-gear II





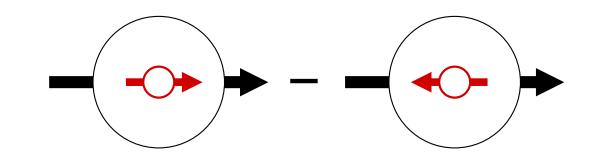




Gunar Schnell

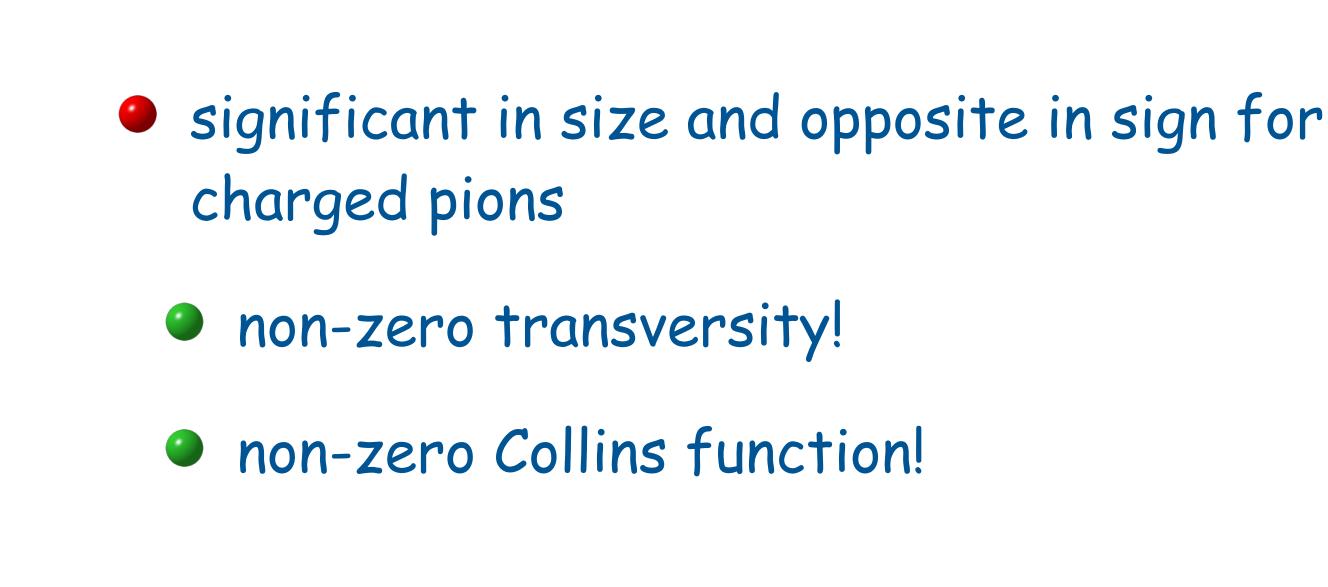
31

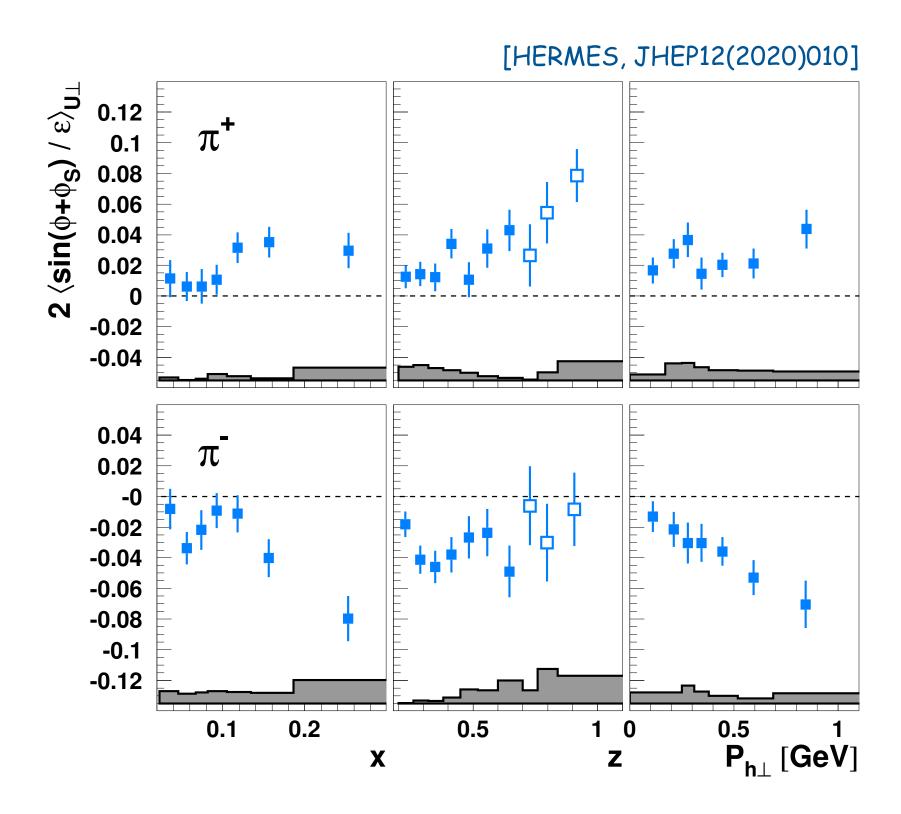
	U	${ m L}$	$oxed{T}$
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
$oxed{T}$	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp



Transversity framentation

(Collins fragmentation)

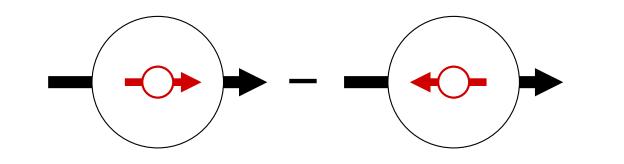




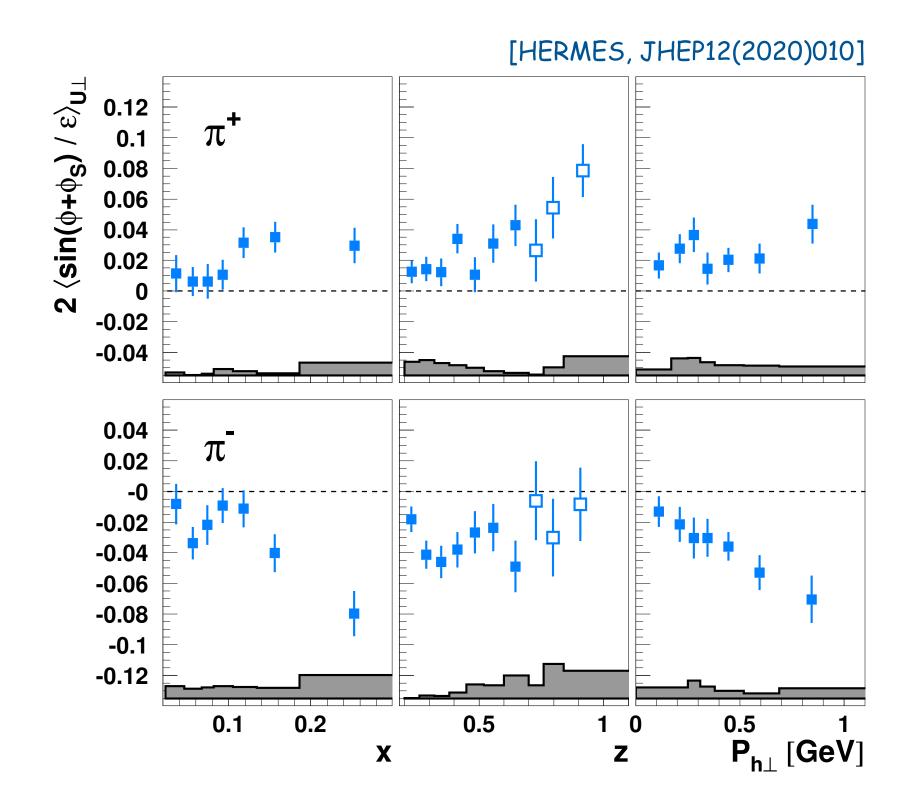
2005: first evidence from HERMES semi-inclusive DIS on proton

confirmed in later analyses by HERMES and others

	U	${ m L}$	Γ
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
$oxed{T}$	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp



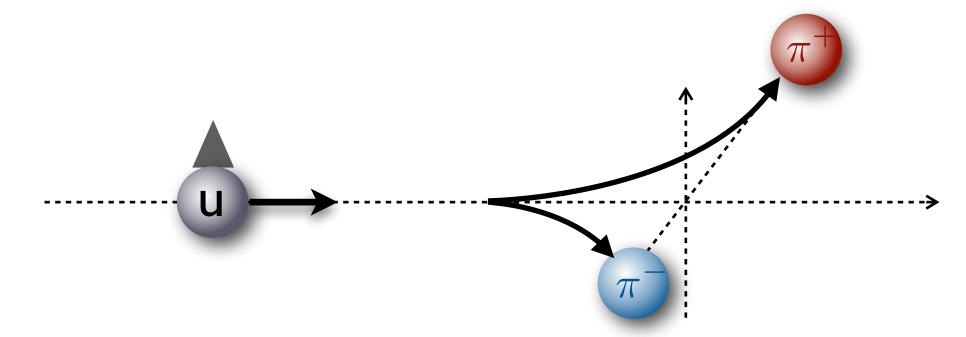
Transversity (Collins fragmentation)

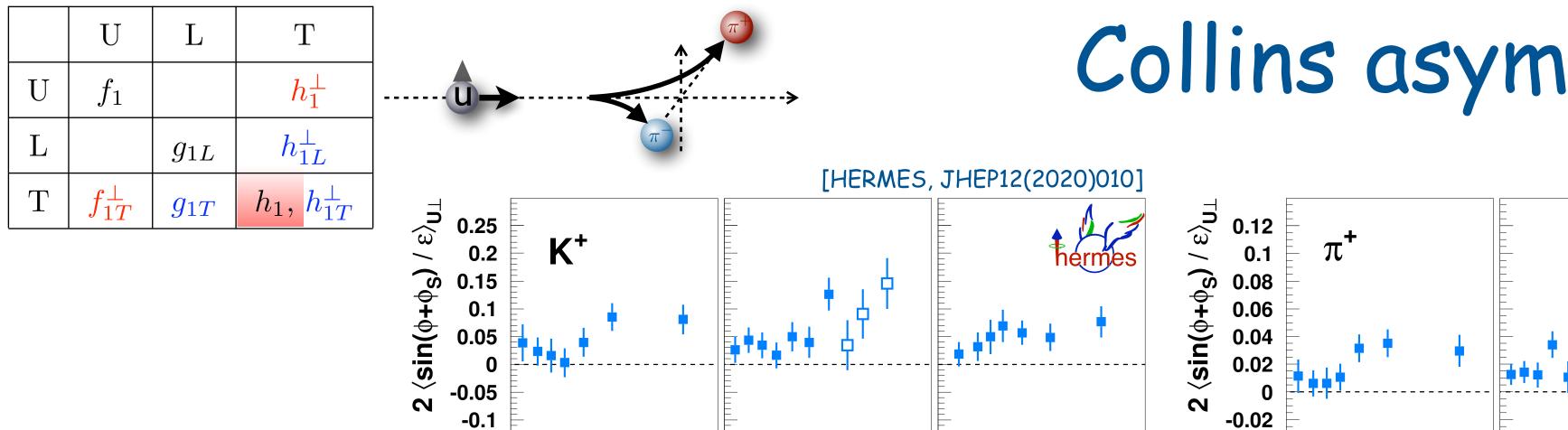


2005: first evidence from HERMES semi-inclusive DIS on proton

confirmed in later analyses by HERMES and others

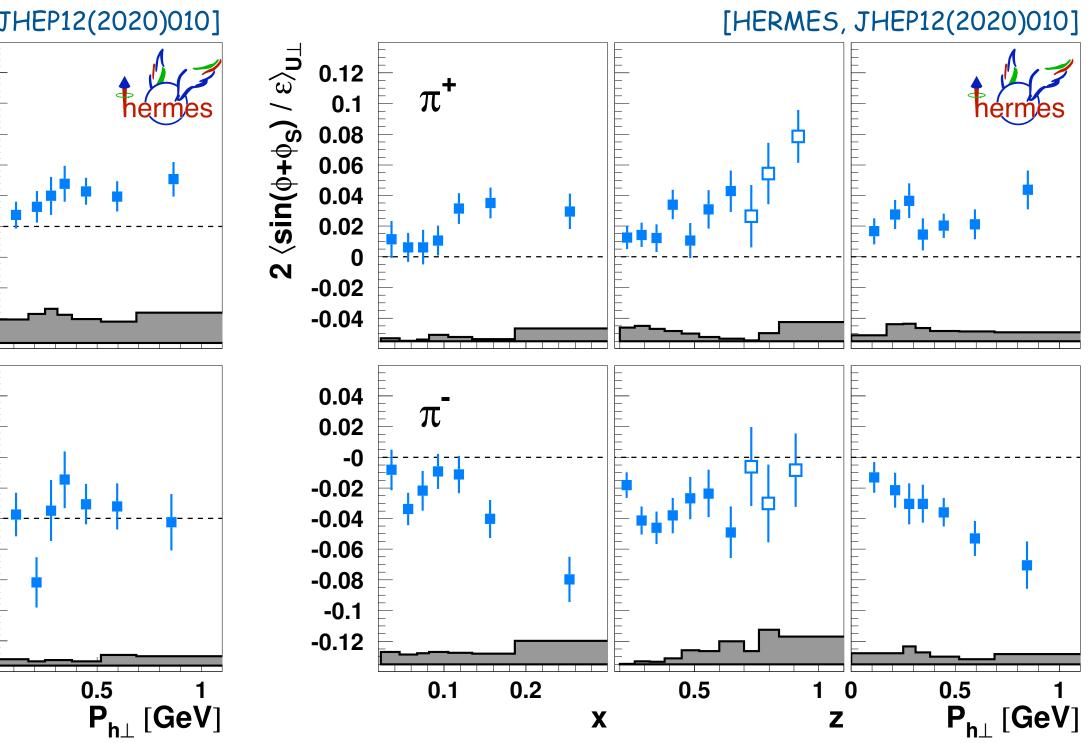
- significant in size and opposite in sign for charged pions
 - non-zero transversity!
 - non-zero Collins function!
- disfavored Collins FF large and opposite in sign to favored one





0.5

Collins asymmetry amplitudes



even larger effect for kaons

0.1

0.2

-0.15

0.2

0.15

0.1

0.05

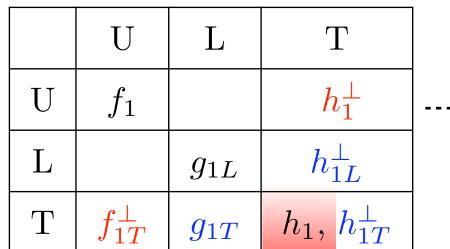
-0.05

-0.1

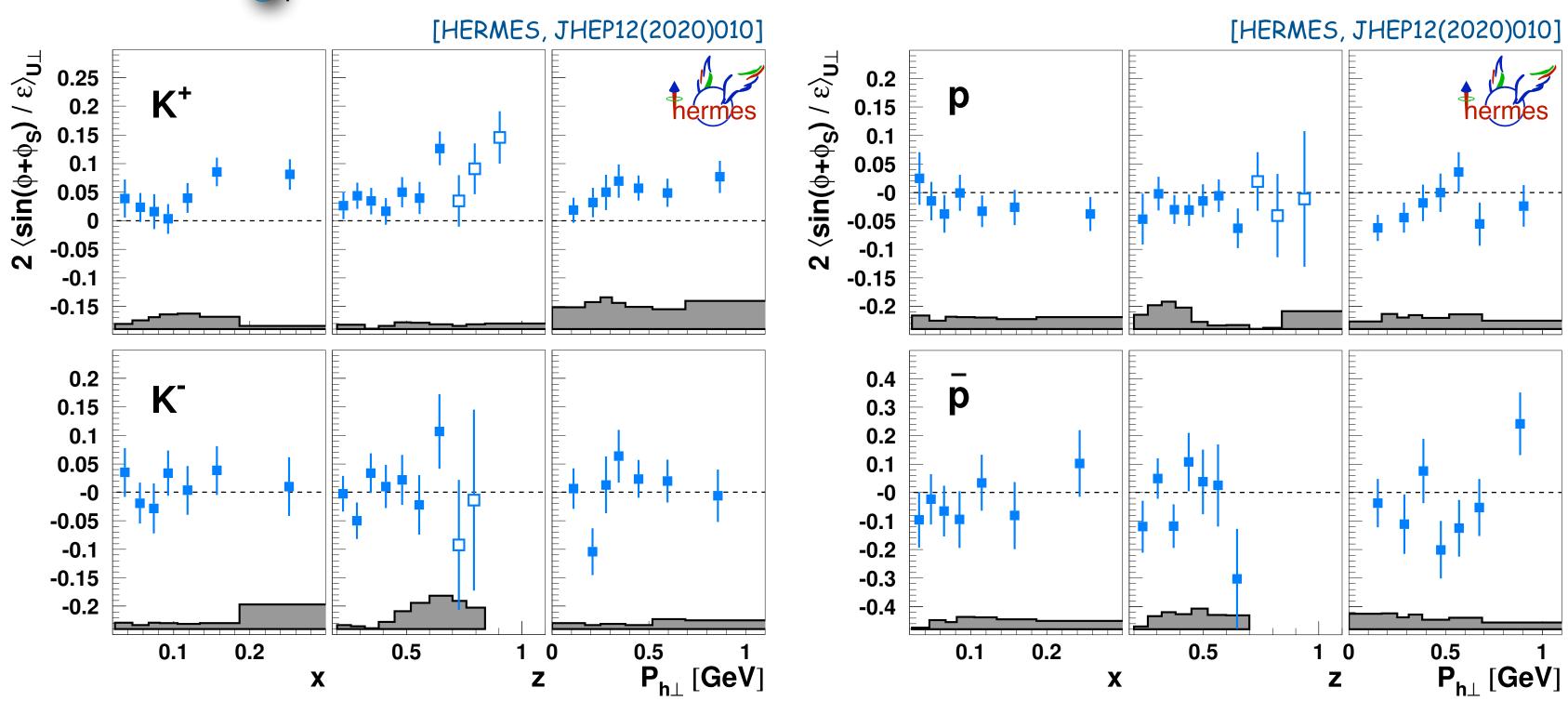
-0.15

-0.2

high-z region probes region of increased flavor sensitivity of struck quark



Collins asymmetry amplitudes



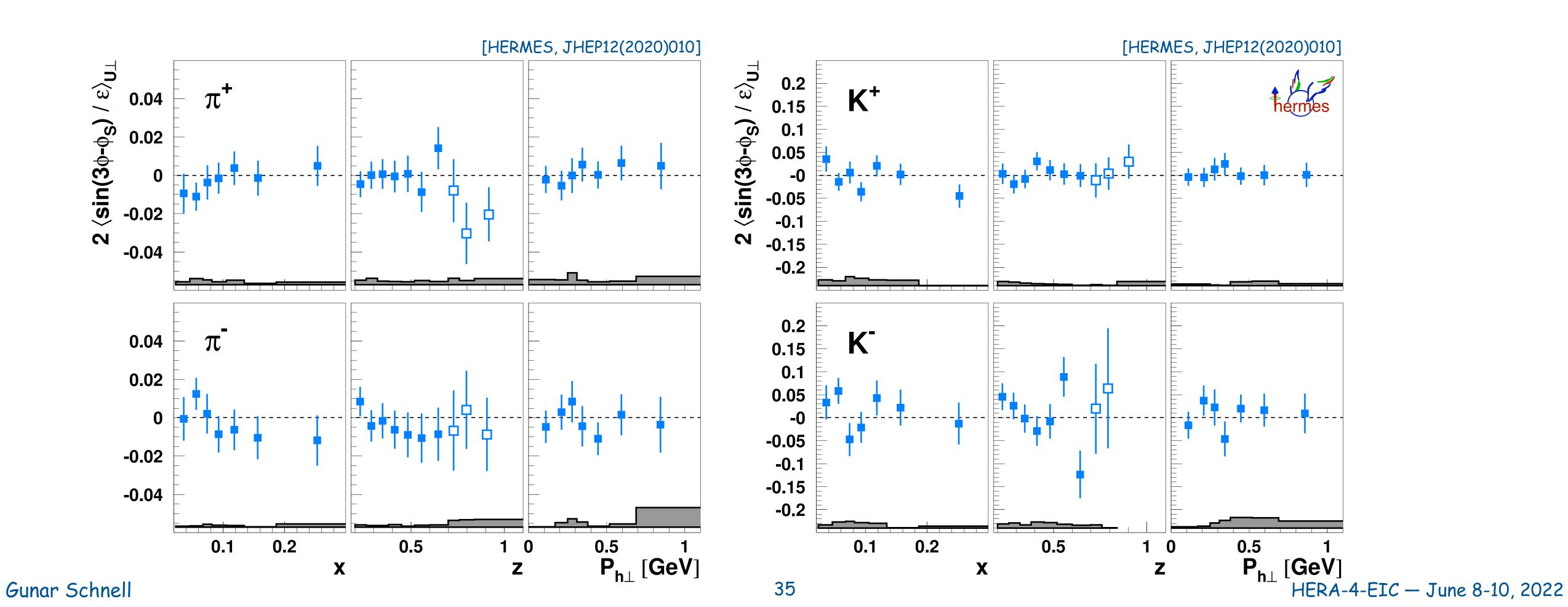
- even larger effect for kaons
- high-z region probes region of increased flavor sensitivity of struck quark
- first-ever results for (anti-)protons consistent with zero
 - → vanishing Collins effect for (spin-1/2) baryons?

	U	L	T
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^{\perp}

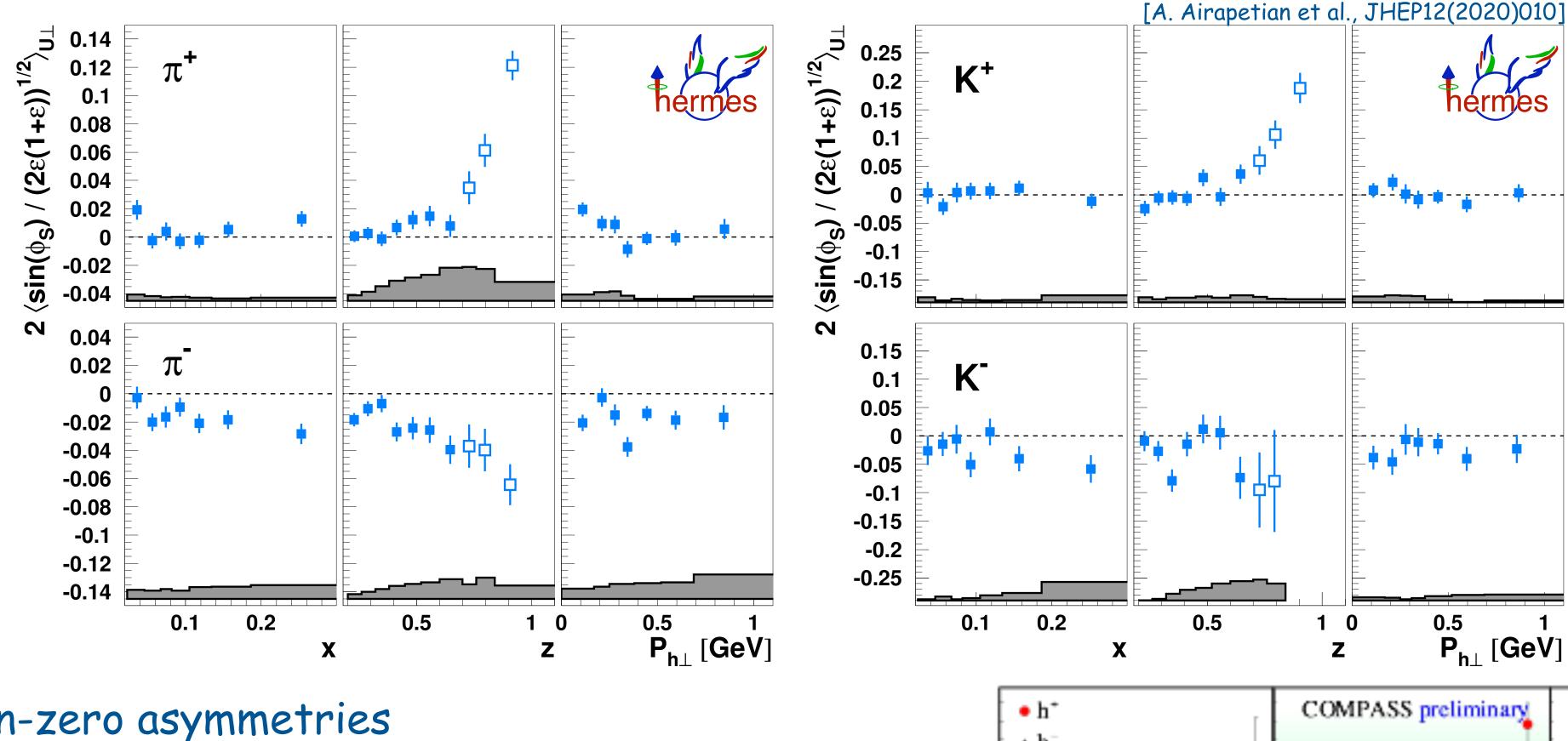
• quadrupole deformation in momentum space

Pretzelosity

- chiral-odd > needs Collins FF (or similar)
- ¹H, ²H & ³He data from various experiments consistently small/vanishing
- cancelations? pretzelosity=zero? or just the additional general suppression of the asymmetry by two powers of $P_{h\perp}/M_N$

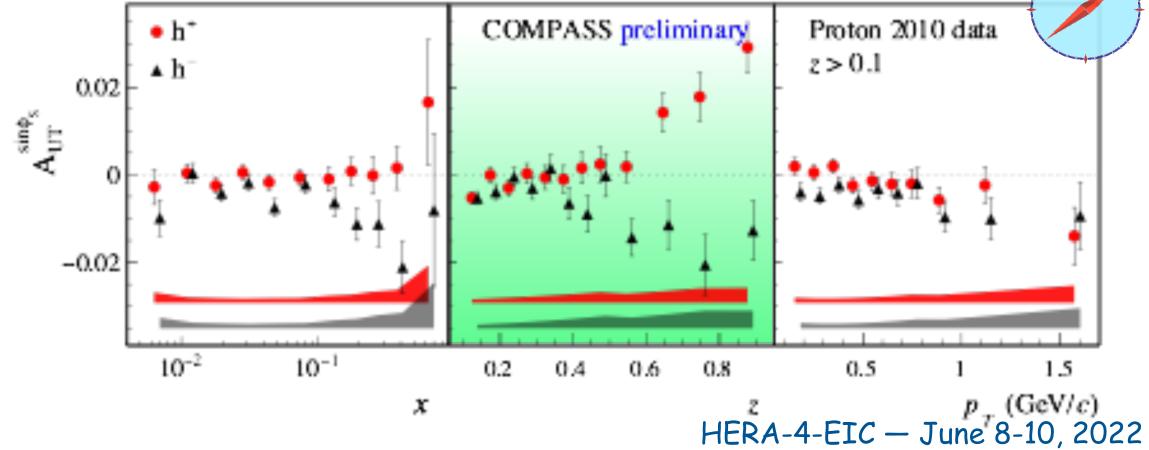


surprises: subleading twist, e.g., $\langle \sin(\phi_s) \rangle_{UT}$



36

- clearly non-zero asymmetries
- opposite sign for charged pions (Collins-like behavior)
- striking z dependence and in particular magnitude
- similar observation at COMPASS

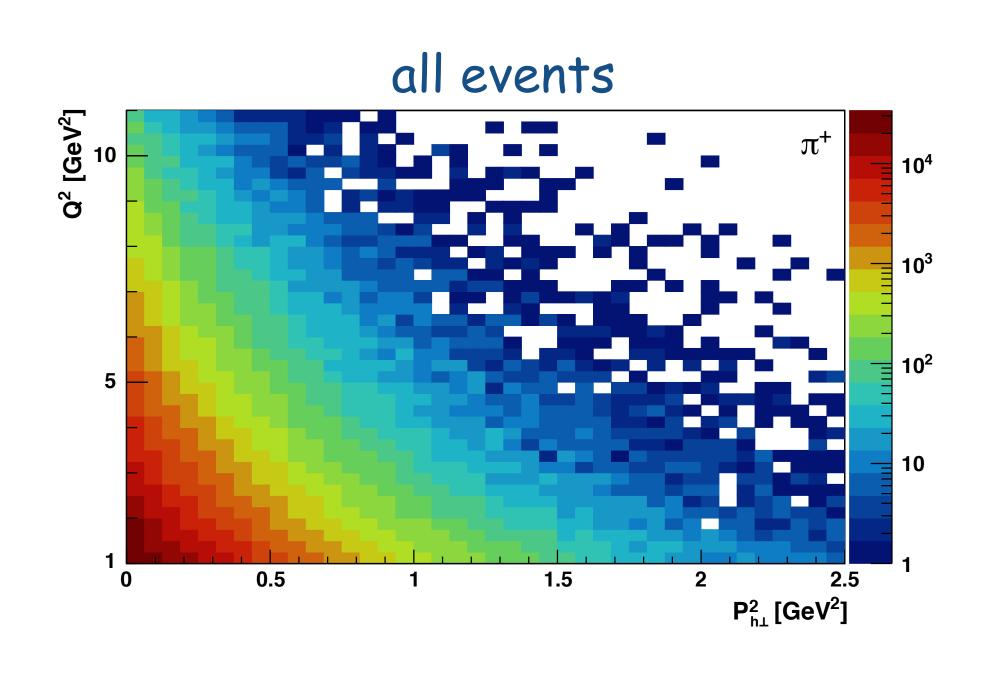


COMPAS:

Gunar Schnell

devil in the details & lessons learnt on the way

TMD factorization: a 2-scale problem



- TMD factorization requires a large scale (Q²) and small transverse momentum
- lacktriangle overall, Q mainly larger than $P_{h\perp}$
- not fulfilled in all kinematic bins
- more challenging, especially at low x (=low Q²), for more stringent constraint of $zQ >> P_{h\perp}$

choice of fitting function

$$A_{LU}^h \simeq \sqrt{2\epsilon(1-\epsilon)} \; rac{F_{LU}^{h,\sin\phi}}{F_{UU}^h} \; \sin\phi$$
 $A_{LU}^{h} \stackrel{ ext{M.L. fit}}{\simeq} \; \sqrt{2\epsilon(1-\epsilon)} \, A_{LU}^{h,\sin\phi} \; \sin\phi$ $A_{LU}^{h} \stackrel{ ext{M.L. fit}}{\simeq} \; ilde{A}_{LU}^{h,\sin\phi} \; \sin\phi$

$$\begin{split} \frac{\mathrm{d}\sigma^h}{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}P_{h\perp}^2\,\mathrm{d}\phi} &= \frac{2\pi\alpha^2}{xyQ^2}\frac{y^2}{2(1-\epsilon)}\bigg(1+\frac{\gamma^2}{2x}\bigg) \\ \bigg\{F_{UU,T}^h + \epsilon F_{UU,L}^h + \lambda\Lambda\sqrt{1-\epsilon^2}F_{LL}^h \\ &+ \sqrt{2\epsilon}\left[\lambda\sqrt{1-\epsilon}\,F_{LU}^{h,\sin\phi} + \Lambda\sqrt{1+\epsilon}\,F_{UL}^{h,\sin\phi}\right]\sin\phi \\ &+ \sqrt{2\epsilon}\left[\lambda\Lambda\sqrt{1-\epsilon}\,F_{LL}^{h,\cos\phi} + \sqrt{1+\epsilon}\,F_{UU}^{h,\cos\phi}\right]\cos\phi \\ &+ \Lambda\epsilon\,F_{UL}^{h,\sin2\phi}\sin2\phi + \epsilon\,F_{UU}^{h,\cos2\phi}\cos2\phi \,\bigg\} \end{split}$$

$$A_{LU}^{h} \equiv \frac{\sigma_{+-}^{h} + \sigma_{++}^{h} - \sigma_{-+}^{h} - \sigma_{--}^{h}}{\sigma_{+-}^{h} + \sigma_{++}^{h} + \sigma_{-+}^{h} + \sigma_{--}^{h}}$$

choice of fitting function

$$A_{LU}^{h} \simeq \sqrt{2\epsilon(1-\epsilon)} \; \frac{F_{LU}^{h,\sin\phi}}{F_{UU}^{h}} \; \sin\phi$$

$$A_{LU}^{h} \overset{\text{M.L. fit}}{\simeq} \; \sqrt{2\epsilon(1-\epsilon)} \, A_{LU}^{h,\sin\phi} \; \sin\phi \qquad \qquad A_{LU}^{h} \overset{\text{M.L. fit}}{\simeq} \; \tilde{A}_{LU}^{h,\sin\phi} \; \sin\phi$$

asymmetry amplitudes extracted by minimizing, e.g.,

$$-\ln \mathbb{L} = -\sum_{i} w_{i} \ln \left[1 + P_{B,i} \sqrt{2\epsilon_{i}(1 - \epsilon_{i})} A_{LU}^{h,\sin(\phi)} \sin(\phi_{i}) \right]$$

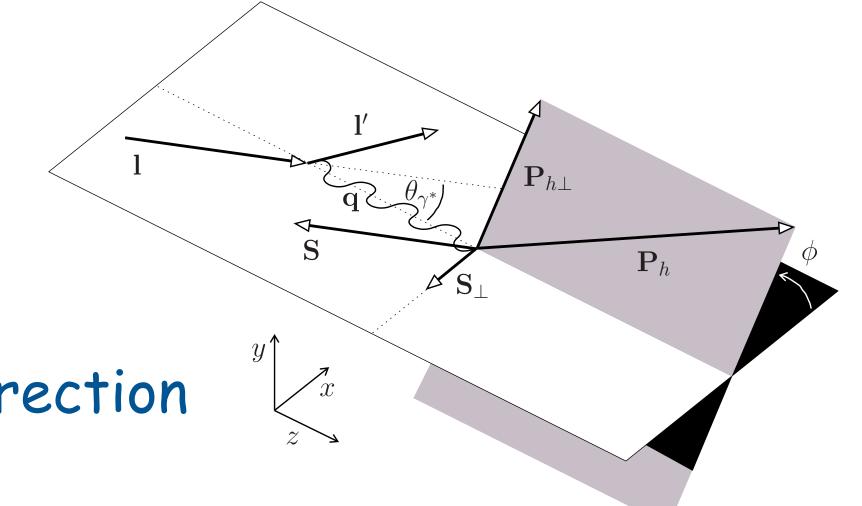
where w_i is event weight from hadron-ID, charge-symmetric BG etc.

• need to include all possible modulations in fit

mixing of target polarizations

theory done w.r.t. virtual-photon direction

experiments use targets polarized w.r.t. lepton-beam direction

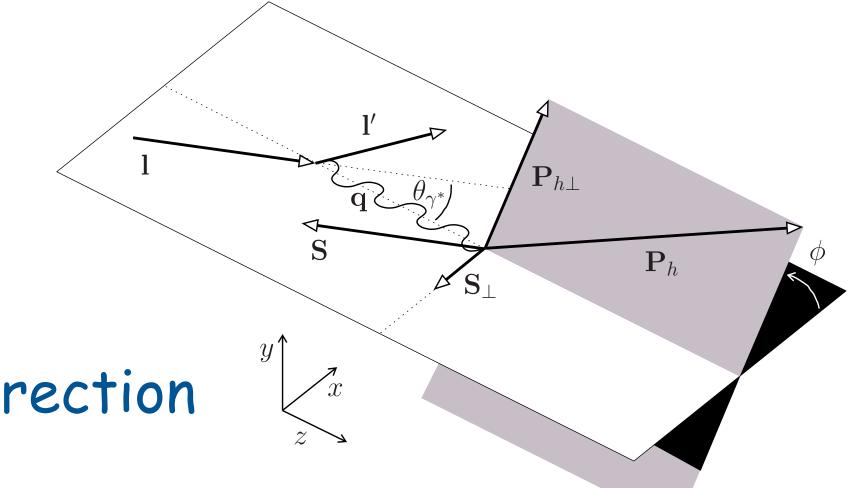


Gunar Schnell 40 HERA-4-EIC — June 8-10, 2022

mixing of target polarizations

- theory done w.r.t. virtual-photon direction
- experiments use targets polarized w.r.t. lepton-beam direction

$$\begin{pmatrix}
\left\langle \sin \phi \right\rangle_{UL}^{\mathsf{I}} \\
\left\langle \sin(\phi - \phi_S) \right\rangle_{UT}^{\mathsf{I}} \\
\left\langle \sin(\phi + \phi_S) \right\rangle_{UT}^{\mathsf{I}}
\end{pmatrix} = \begin{pmatrix}
\cos \theta_{\gamma^*} & -\sin \theta_{\gamma^*} & -\sin \theta_{\gamma^*} \\
\frac{1}{2} \sin \theta_{\gamma^*} & \cos \theta_{\gamma^*} & 0 \\
\frac{1}{2} \sin \theta_{\gamma^*} & 0 & \cos \theta_{\gamma^*}
\end{pmatrix} \begin{pmatrix}
\left\langle \sin \phi \right\rangle_{UL}^{\mathsf{q}} \\
\left\langle \sin(\phi - \phi_S) \right\rangle_{UT}^{\mathsf{U}} \\
\left\langle \sin(\phi + \phi_S) \right\rangle_{UT}^{\mathsf{U}}
\end{pmatrix}$$

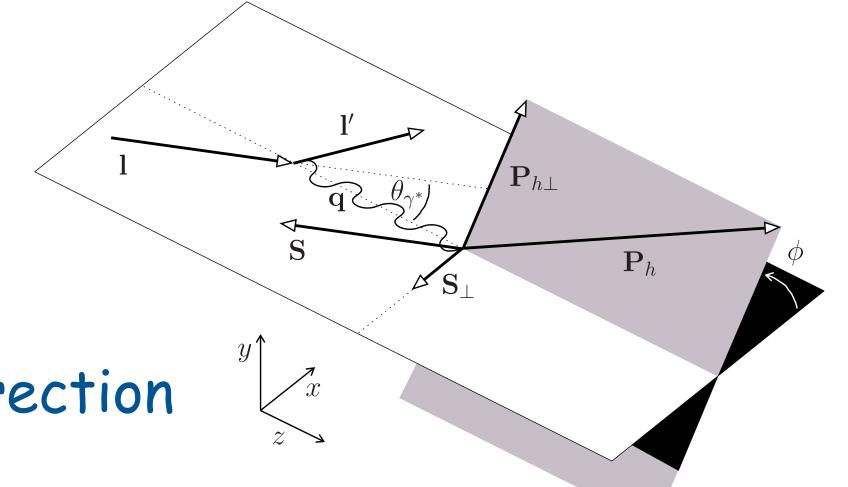


mixing of target polarizations

- theory done w.r.t. virtual-photon direction
- experiments use targets polarized w.r.t. lepton-beam direction

$$\begin{pmatrix}
\left\langle \sin \phi \right\rangle_{UL}^{\mathsf{I}} \\
\left\langle \sin(\phi - \phi_S) \right\rangle_{UT}^{\mathsf{I}} \\
\left\langle \sin(\phi + \phi_S) \right\rangle_{UT}^{\mathsf{I}}
\end{pmatrix} = \begin{pmatrix}
\cos \theta_{\gamma^*} & -\sin \theta_{\gamma^*} & -\sin \theta_{\gamma^*} \\
\frac{1}{2} \sin \theta_{\gamma^*} & \cos \theta_{\gamma^*} & 0 \\
\frac{1}{2} \sin \theta_{\gamma^*} & 0 & \cos \theta_{\gamma^*}
\end{pmatrix} \begin{pmatrix}
\left\langle \sin \phi \right\rangle_{UL}^{\mathsf{q}} \\
\left\langle \sin(\phi - \phi_S) \right\rangle_{UT}^{\mathsf{U}} \\
\left\langle \sin(\phi + \phi_S) \right\rangle_{UT}^{\mathsf{U}}
\end{pmatrix}$$

need data on same target for both polarization orientations!



detector effects — need for multi-d analyses

$$\frac{N^{+}(x) - N^{-}(x)}{N^{+}(x) + N^{-}(x)} = \frac{\int d\omega \, \epsilon(x, \omega) \, \Delta\sigma(x, \omega)}{\int d\omega \, \epsilon(x, \omega) \, \sigma(x, \omega)}$$

 \bullet measured cross sections / asymmetries often contain "remnants" of experimental acceptance ϵ

detector effects — need for multi-d analyses

$$\frac{N^{+}(x) - N^{-}(x)}{N^{+}(x) + N^{-}(x)} = \frac{\int d\omega \, \epsilon(x, \omega) \, \Delta\sigma(x, \omega)}{\int d\omega \, \epsilon(x, \omega) \, \sigma(x, \omega)} \neq \frac{\int d\omega \, \Delta\sigma(x, \omega)}{\int d\omega \, \sigma(x, \omega)}$$

 \bullet measured cross sections / asymmetries often contain "remnants" of experimental acceptance ϵ

detector effects — need for multi-d analyses

$$\frac{N^{+}(x) - N^{-}(x)}{N^{+}(x) + N^{-}(x)} = \frac{\int d\omega \, \epsilon(x, \omega) \, \Delta\sigma(x, \omega)}{\int d\omega \, \epsilon(x, \omega) \, \sigma(x, \omega)} \neq A(x, \langle \omega \rangle)$$

- \bullet measured cross sections / asymmetries often contain "remnants" of experimental acceptance ϵ
- difficult to evaluate precisely in absence of good physics model
 - general challenge to statistically precise data sets
 - avoid 1d binning/presentation of data

• inclusive DIS: relatively simple as only 2d (and generally weak Q² dependence)

Gunar Schnell 42 HERA-4-EIC — June 8-10, 2022

- inclusive DIS: relatively simple as only 2d (and generally weak Q2 dependence)
- ullet SIDIS: at least 2 more variables (z, $P_{h\perp}$) dependences not necessarily trivial

Gunar Schnell 42 HERA-4-EIC — June 8-10, 2022

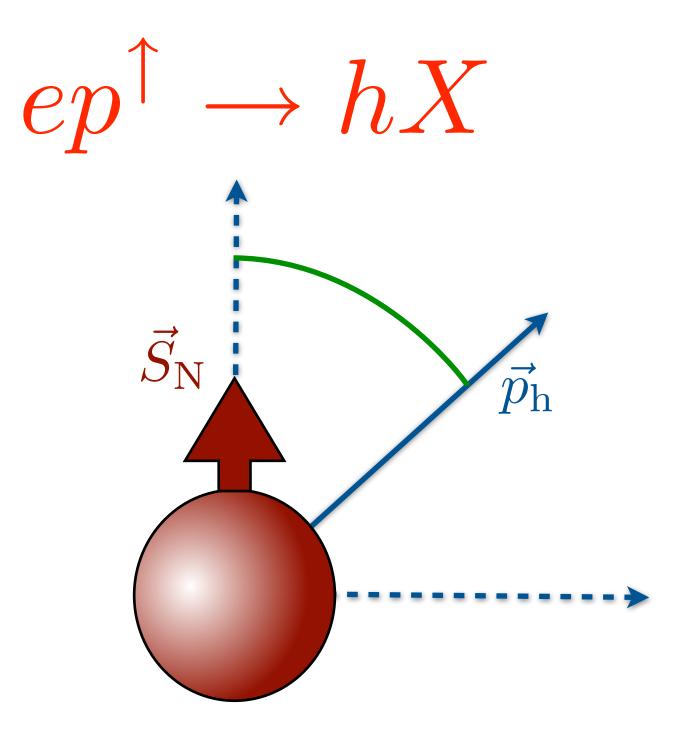
- inclusive DIS: relatively simple as only 2d (and generally weak Q² dependence)
- SIDIS: at least 2 more variables $(z, P_{h\perp})$ dependences not necessarily trivial
- most TMD cross sections differential in at least 5 variables
 - some easily parametrized (e.g., azimuthal dependences), others mostly unknown

Gunar Schnell 42 HERA-4-EIC — June 8-10, 2022

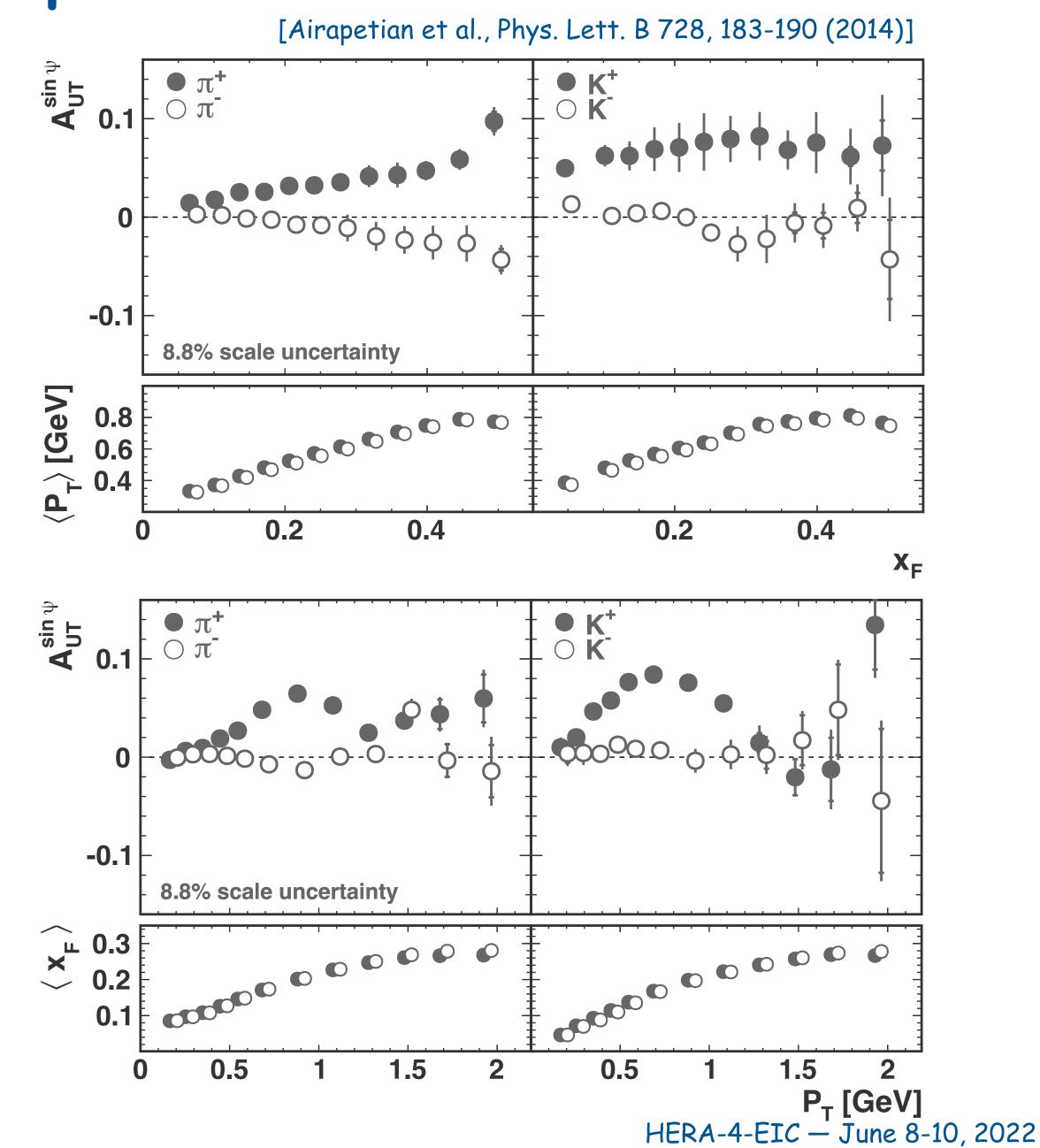
- inclusive DIS: relatively simple as only 2d (and generally weak Q² dependence)
- SIDIS: at least 2 more variables $(z, P_{h\perp})$ dependences not necessarily trivial
- most TMD cross sections differential in at least 5 variables
 - some easily parametrized (e.g., azimuthal dependences), others mostly unknown
- 1-dimensional binning provide only (sometimes misleading) glimpse of true physics
 - even different projections can't fully disentangle underlying physics dependences
 - \bullet e.g., binning in x involves [incomplete] integration(s) over $P_{h\perp}$

- inclusive DIS: relatively simple as only 2d (and generally weak Q² dependence)
- SIDIS: at least 2 more variables $(z, P_{h\perp})$ dependences not necessarily trivial
- most TMD cross sections differential in at least 5 variables
 - some easily parametrized (e.g., azimuthal dependences), others mostly unknown
- 1-dimensional binning provide only (sometimes misleading) glimpse of true physics
 - even different projections can't fully disentangle underlying physics dependences
 - \bullet e.g., binning in x involves [incomplete] integration(s) over $P_{h\perp}$
- further complication: physics (cross sections) folded with acceptance
 - NO experiment has flat acceptance in full multi-d kinematic space

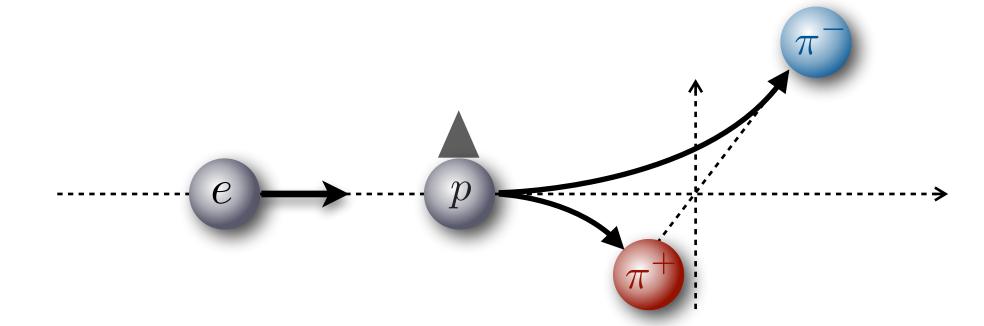
 clear left-right asymmetries for pions and positive kaons



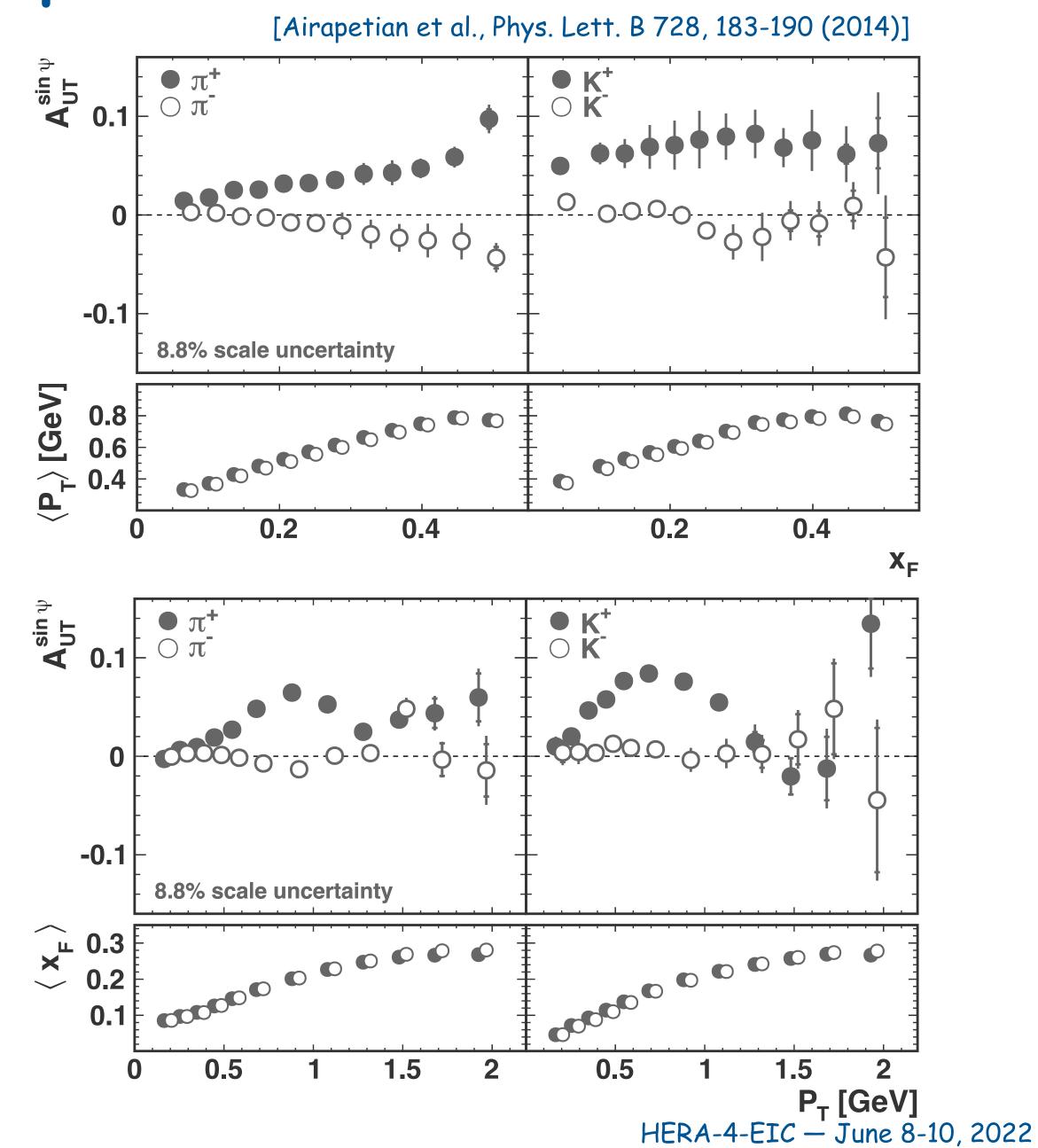
lepton going into the plane



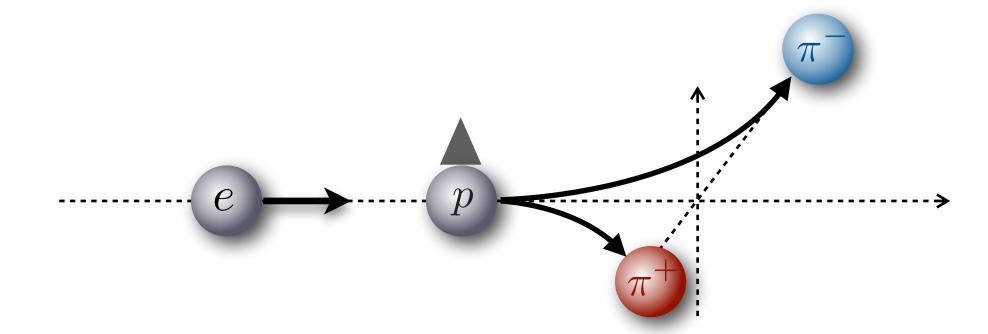
- clear left-right asymmetries for pions and positive kaons
- increasing with x_F (as in pp)



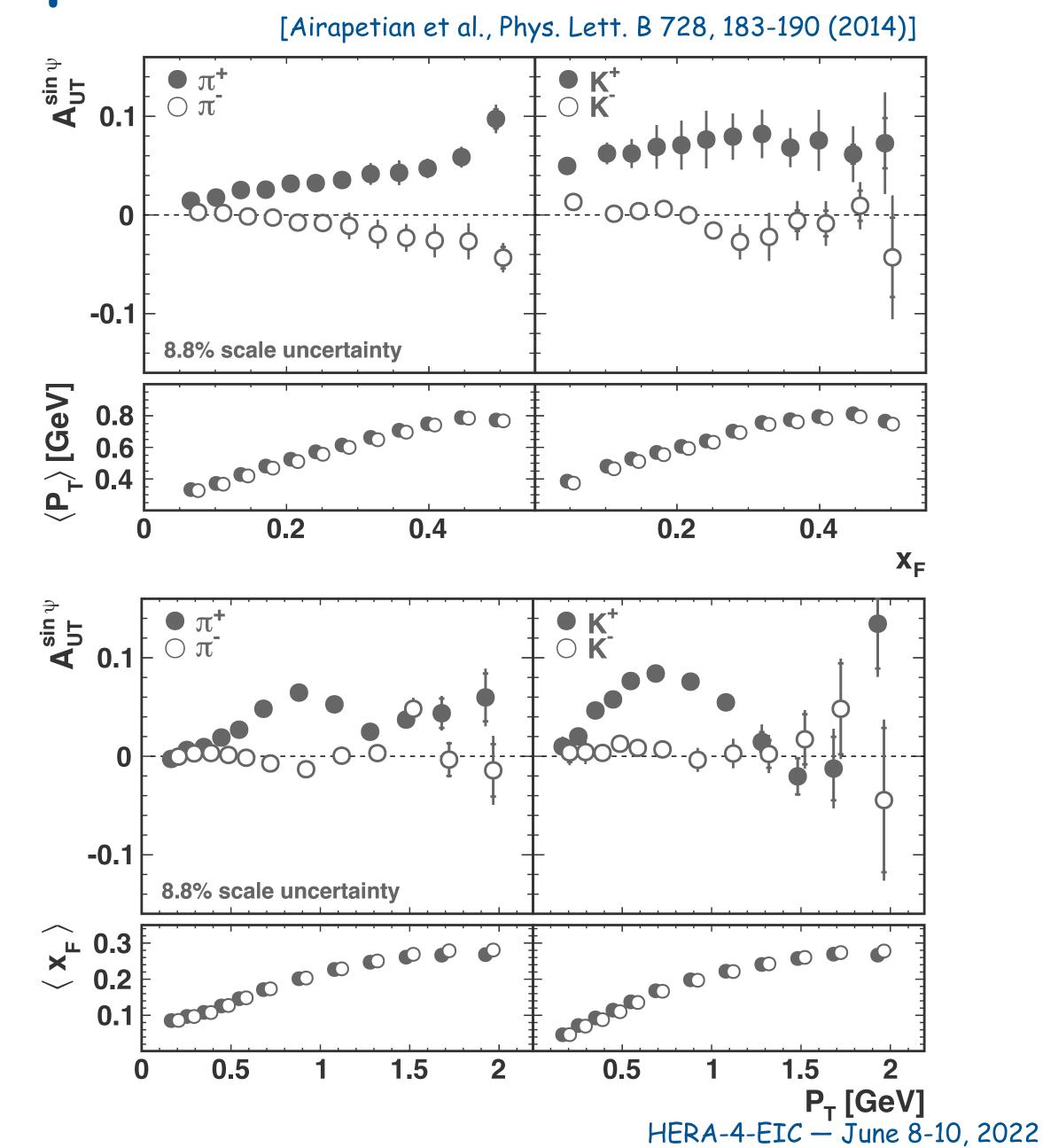
• initially increasing with P_T with a fall-off at larger P_T

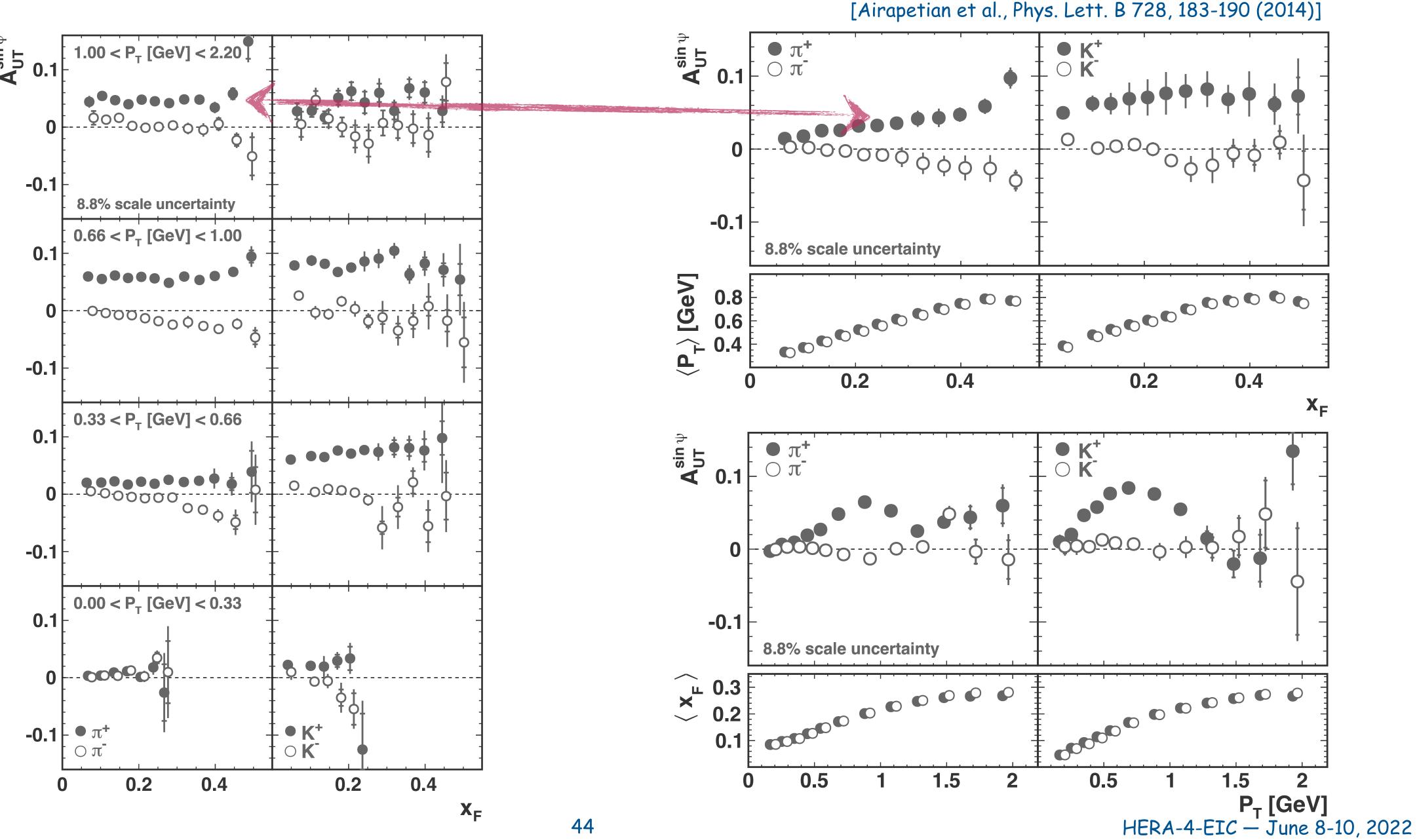


- clear left-right asymmetries for pions and positive kaons
- increasing with x_F (as in pp)

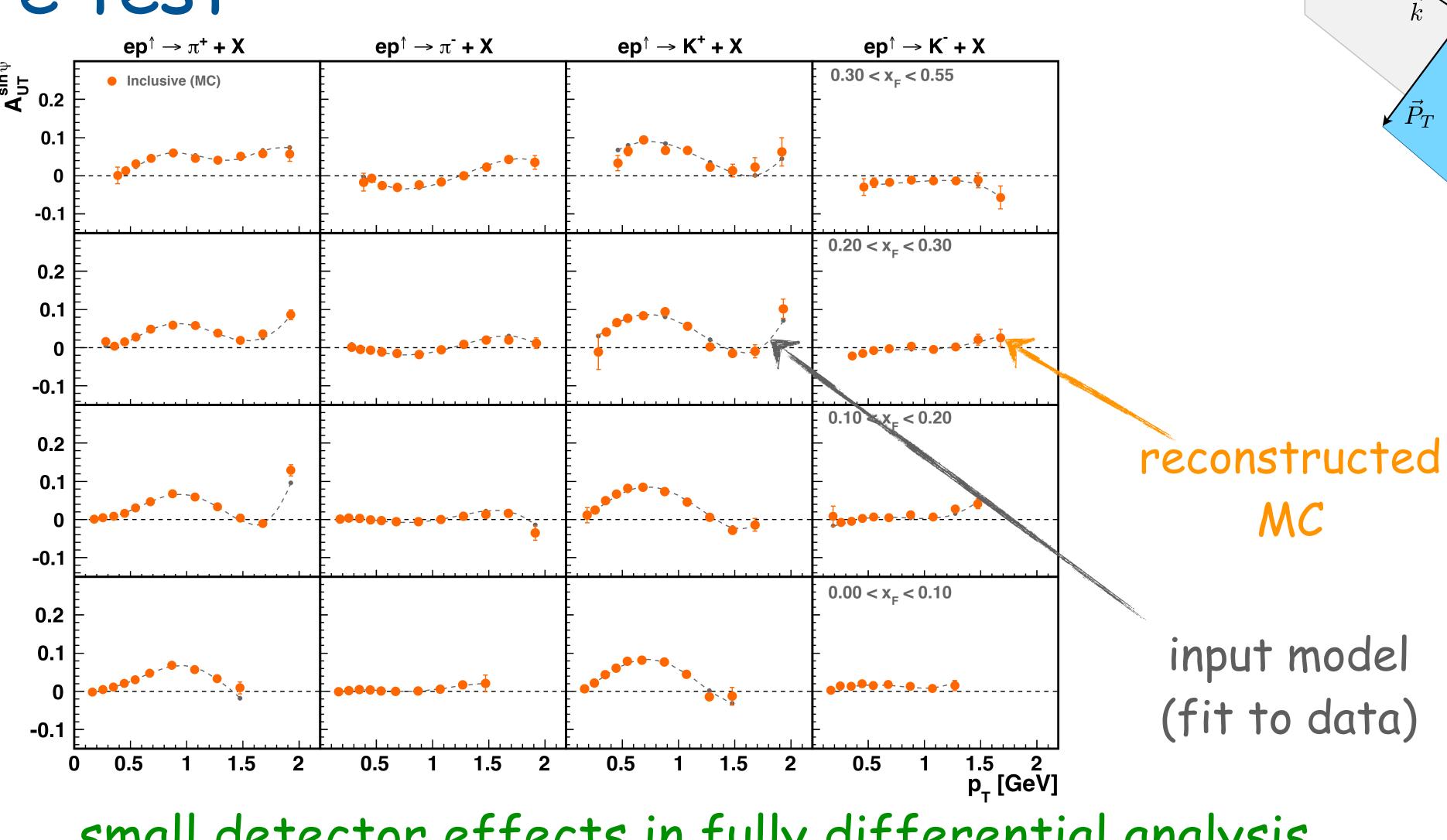


- initially increasing with P_T with a fall-off at larger P_T
- x_F and P_T correlated
 - → look at 2D dependences





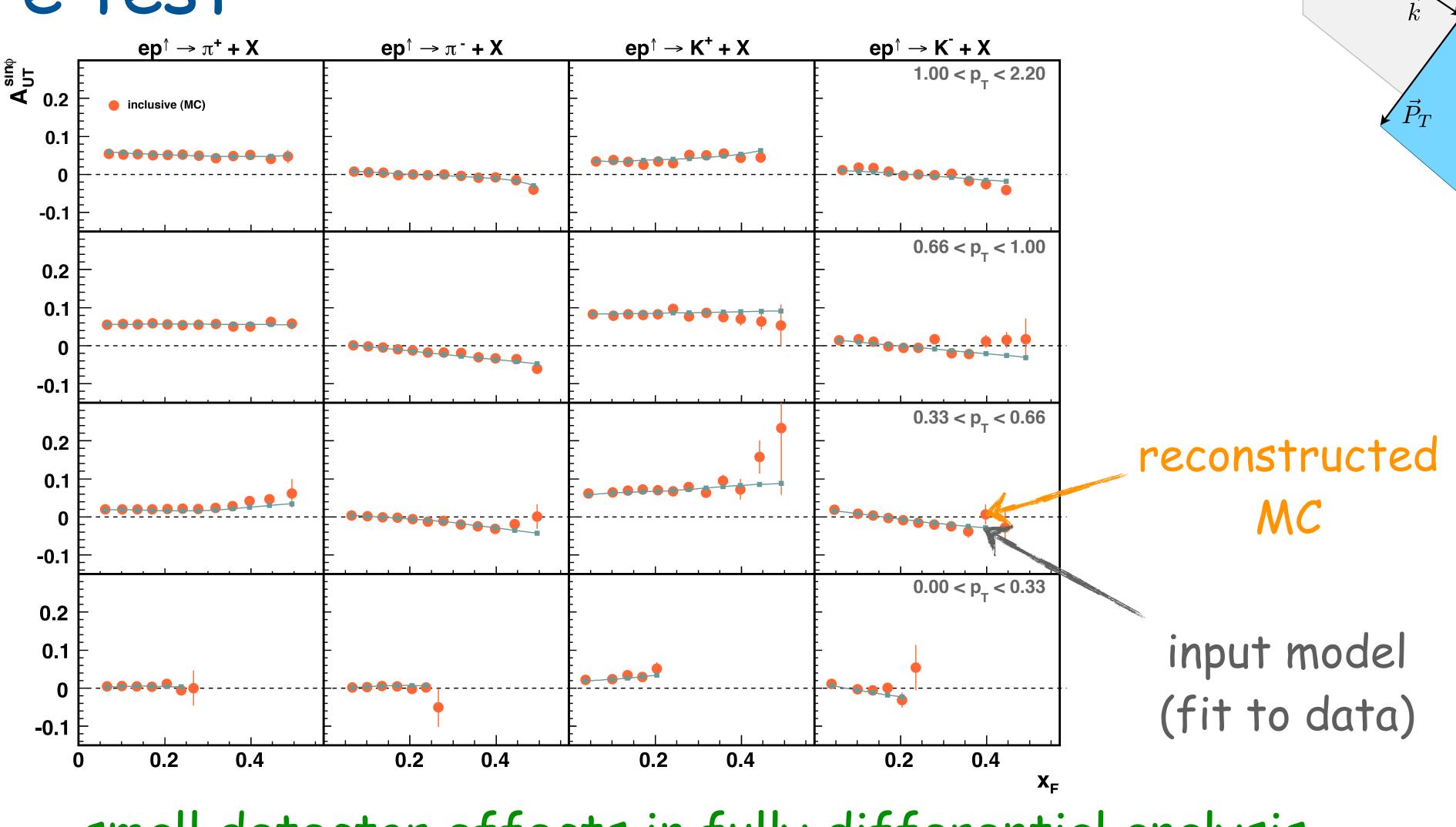
"closure test"



small detector effects in fully differential analysis

Gunar Schnell HERA-4-EIC - June 8-10, 2022

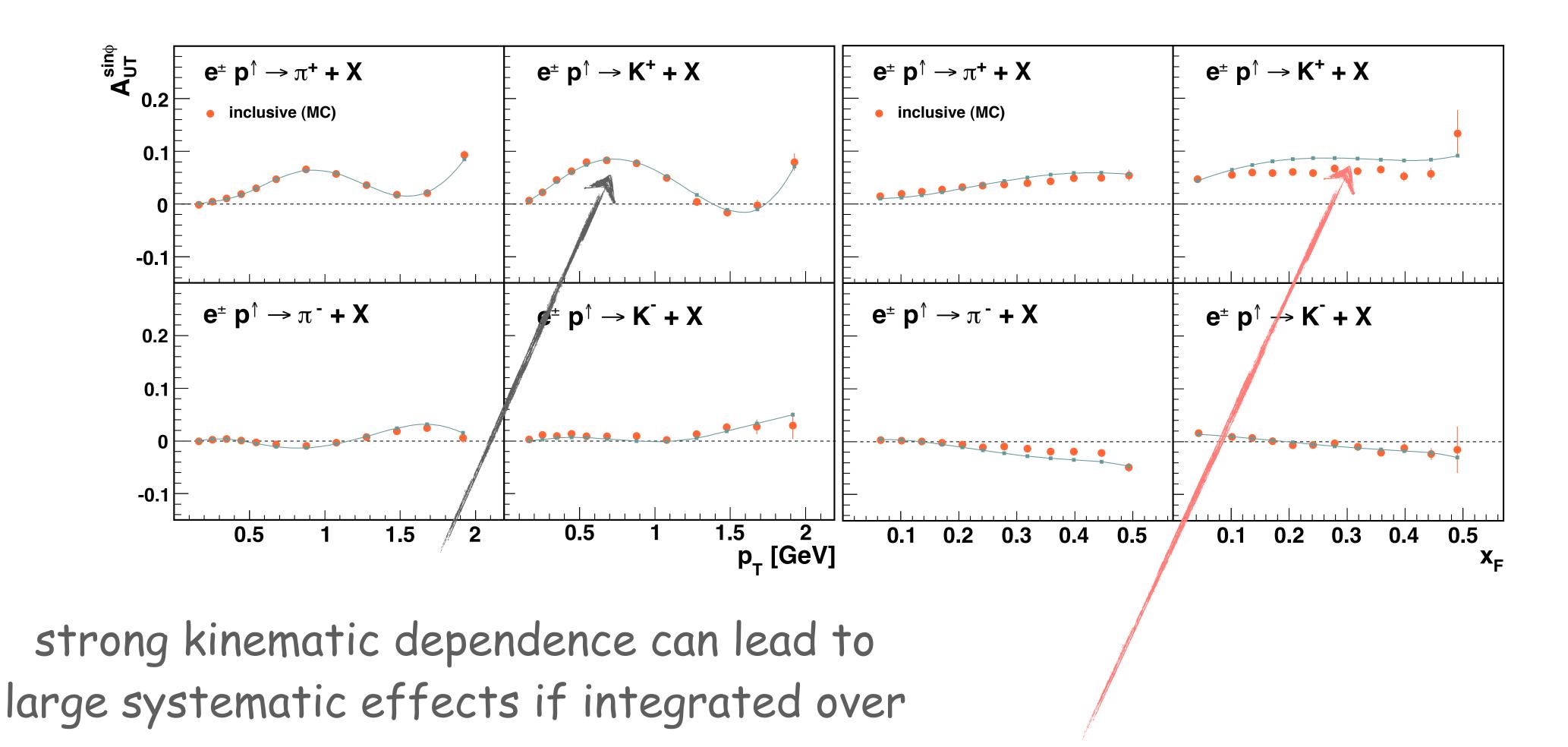
"closure test"



small detector effects in fully differential analysis

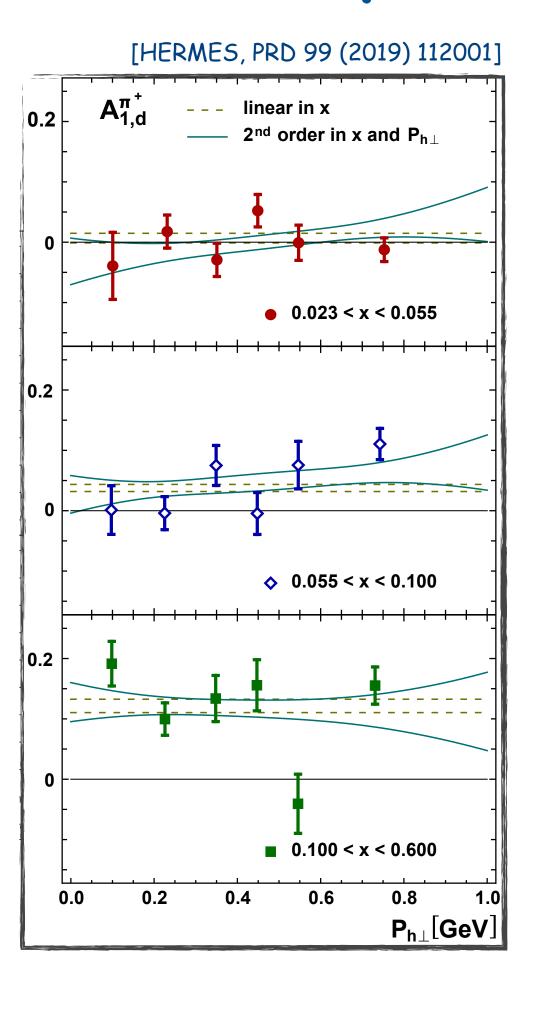
Gunar Schnell 46
HERA-4-EIC — June 8-10, 2022

"closure test"



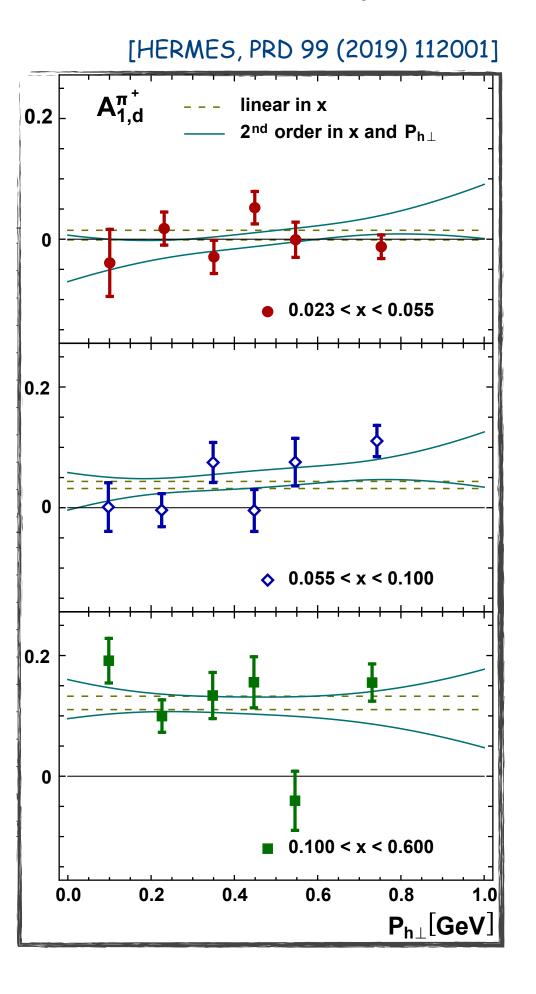
not so small detector effects in 1D analysis

- Why have 1d projections survived for so long?
 - faster to catch features of functional dependence
 - most prominent asymmetry was A_{LL} (or A_1)
 - viewed with "collinear monocles" thus blind for 3d effects
 - on strong dependence on hadron kinematics observed



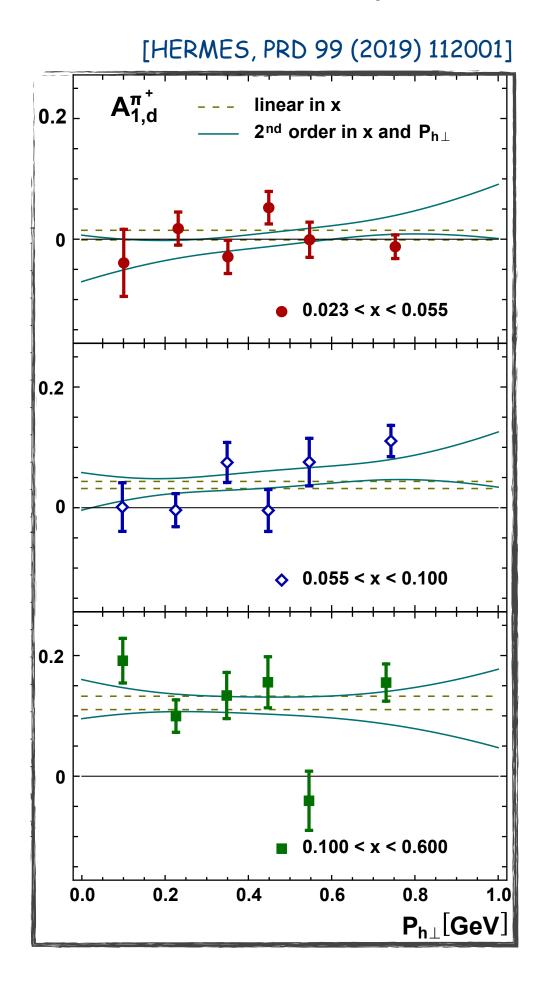
Gunar Schnell 48
HERA-4-EIC — June 8-10, 2022

- Why have 1d projections survived for so long?
 - faster to catch features of functional dependence
 - \bullet most prominent asymmetry was A_{LL} (or A_1)
 - viewed with "collinear monocles" thus blind for 3d effects
 - on strong dependence on hadron kinematics observed
- however, a priori this is a wrong starting point
 - TMD physics with strong dependence on hadron kinematics
 - even data for azimuthally flat A₁ can be influenced by azimuthal acceptance



Gunar Schnell 48
HERA-4-EIC — June 8-10, 2022

- Why have 1d projections survived for so long?
 - faster to catch features of functional dependence
 - \bullet most prominent asymmetry was A_{LL} (or A_1)
 - viewed with "collinear monocles" thus blind for 3d effects
 - on strong dependence on hadron kinematics observed
- however, a priori this is a wrong starting point
 - TMD physics with strong dependence on hadron kinematics
 - \odot even data for azimuthally flat A_1 can be influenced by azimuthal acceptance
- need to evaluate systematics due to integration over phase space => Monte Carlo



correcting for geometric acceptance

extract acceptance from Monte Carlo simulation?

$$\epsilon(\phi,\Omega) \ = \ \frac{\epsilon(\phi,\Omega)\sigma_{UU}(\phi,\Omega)}{\sigma_{UU}(\phi,\Omega)} \qquad \qquad \Omega = x,y,z,\dots$$
 simulated acceptance simulated cross section

correcting for geometric acceptance

extract acceptance from Monte Carlo simulation?

$$\epsilon(\phi, \Omega) = \frac{\epsilon(\phi, \Omega)\sigma_{UU}(\phi, \Omega)}{\sigma_{UU}(\phi, \Omega)}
\neq \frac{\int d\Omega \, \sigma_{UU}(\phi, \Omega) \, \epsilon(\phi, \Omega)}{\int d\Omega \, \sigma_{UU}(\phi, \Omega)}$$

$$\Omega = x, y, z, \dots$$

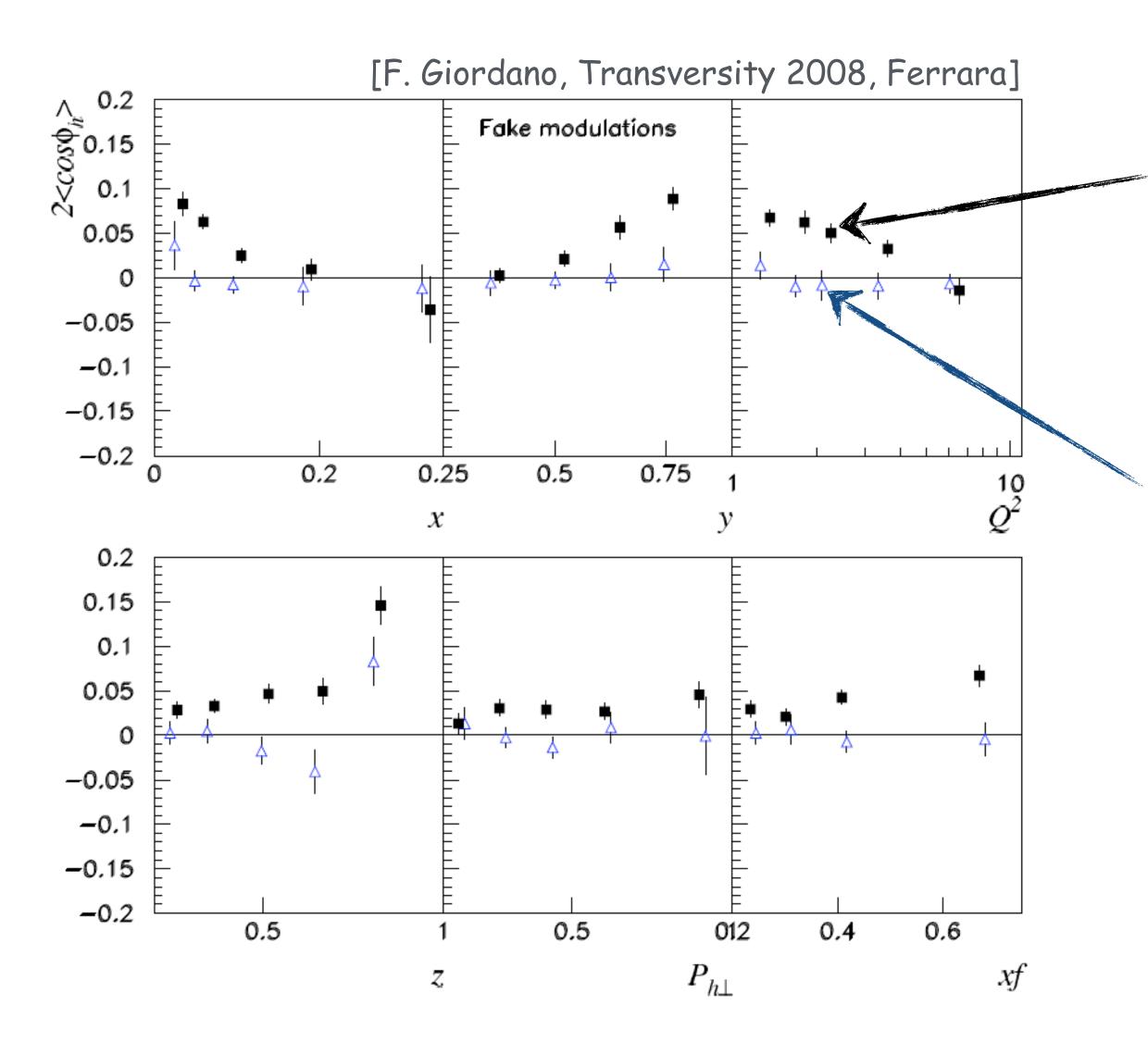
correcting for geometric acceptance

extract acceptance from Monte Carlo simulation?

$$\epsilon(\phi, \Omega) = \frac{\epsilon(\phi, \Omega)\sigma_{UU}(\phi, \Omega)}{\sigma_{UU}(\phi, \Omega)} \qquad \Omega = x, y, z, \dots
\neq \frac{\int d\Omega \, \sigma_{UU}(\phi, \Omega) \, \epsilon(\phi, \Omega)}{\int d\Omega \, \sigma_{UU}(\phi, \Omega)}
\neq \int d\Omega \, \epsilon(\phi, \Omega) \equiv \epsilon(\phi)$$

cross-section model does NOT CANCEL in general when integrating numerator and denominator over (large) ranges in kinematic variables!

"classique" example: $\langle\cos\phi\rangle_{\rm UU}$

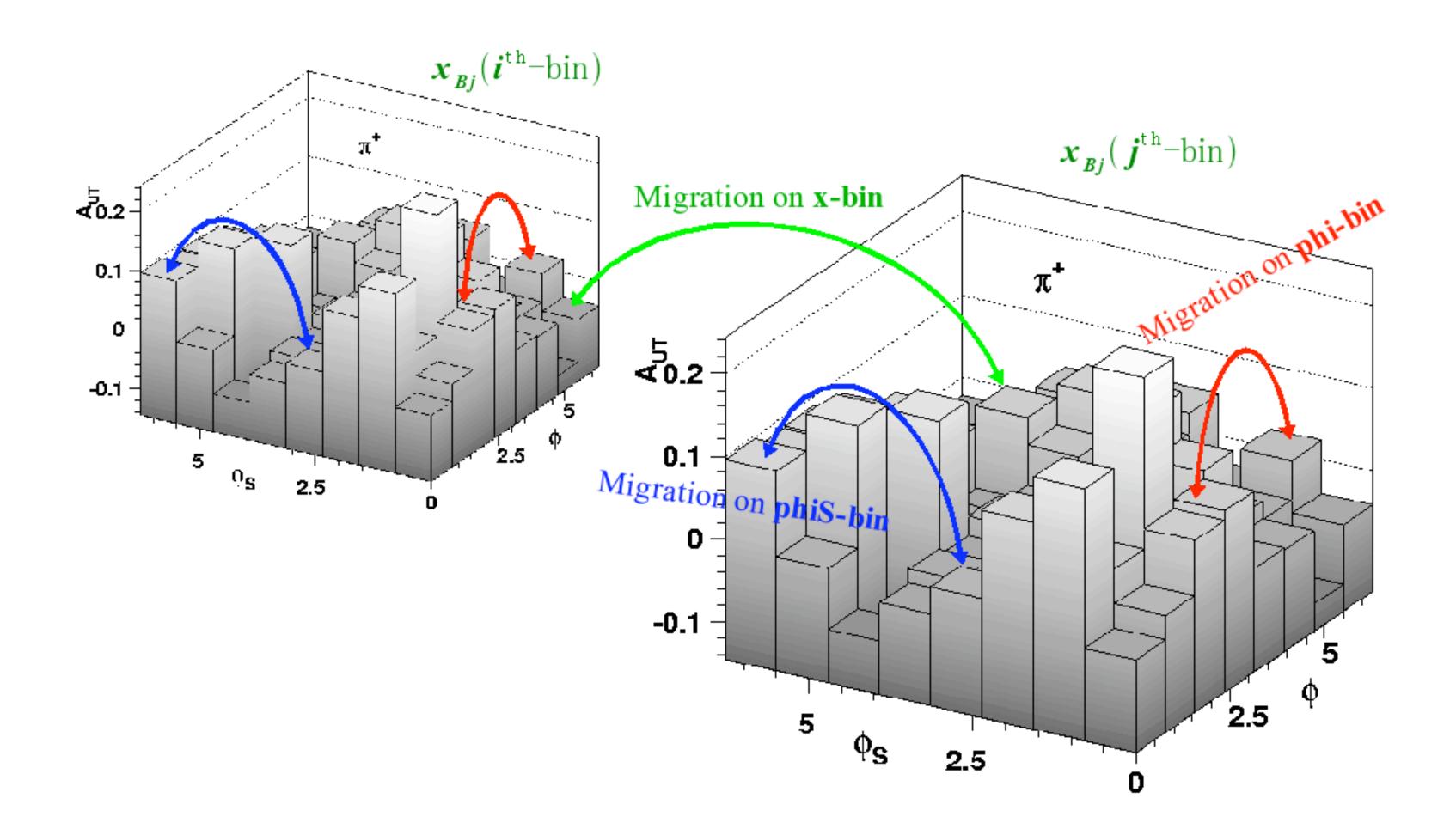


1D correction

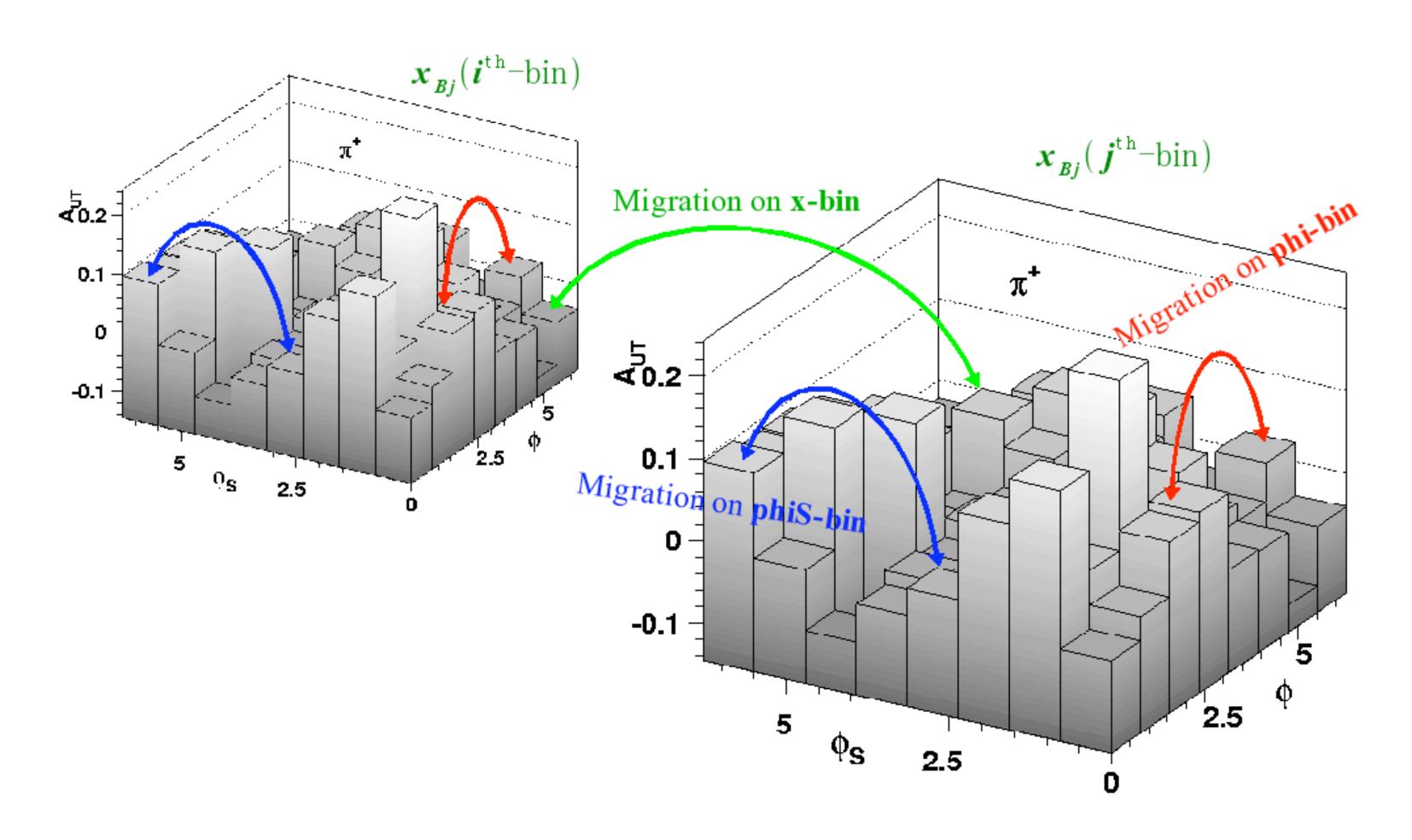
(input: MC without azimuthal modulation)

full 5D correction

further complication: event migration



further complication: event migration



- migration correlates yields in different bins
- can't be corrected properly in bin-by-bin approach

further complication: event migration -> unfolding

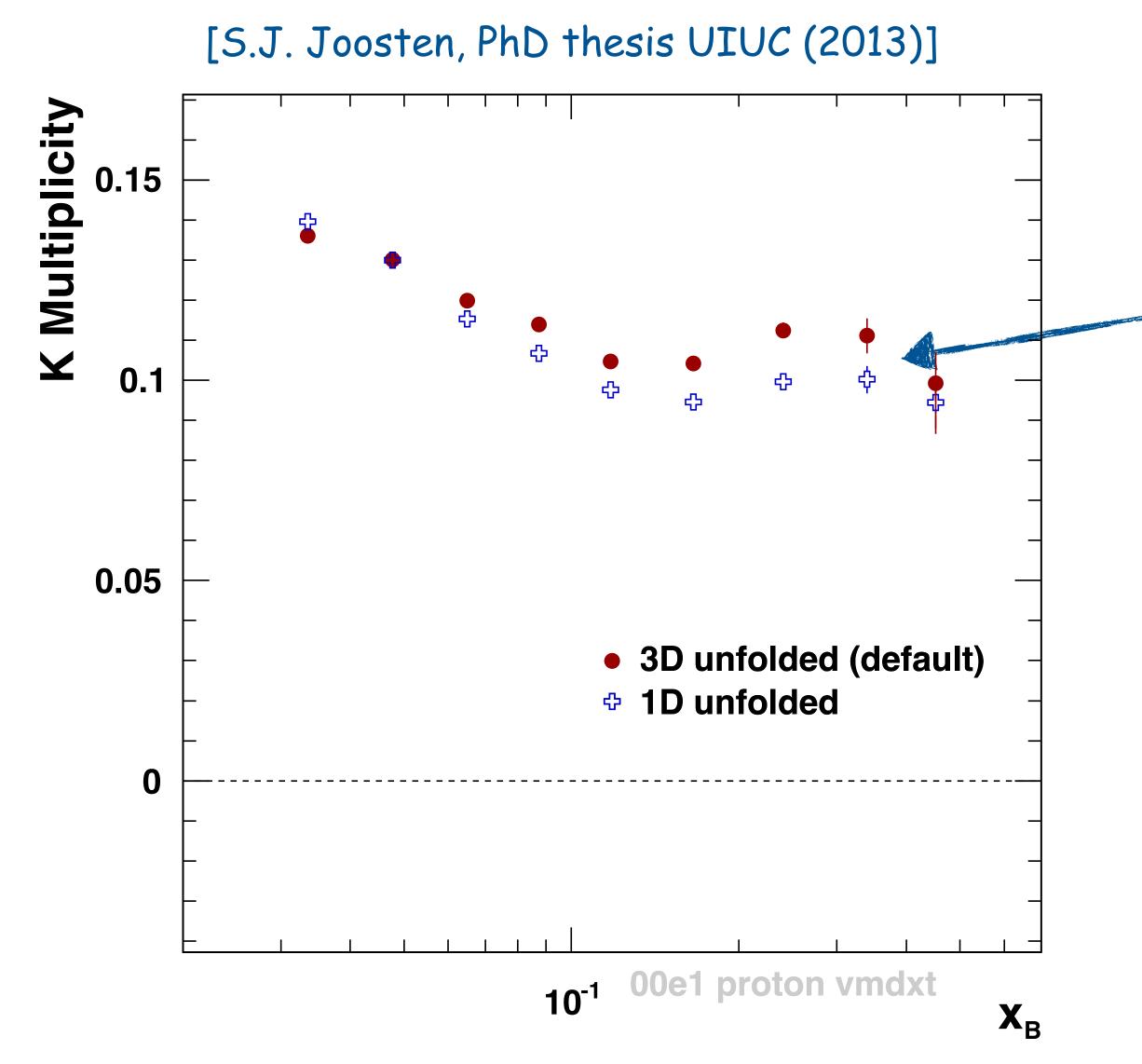
$$\mathcal{Y}^{ ext{exp}}(\Omega_i) \propto \sum_{j=1}^N S_{ij} \int_j d\Omega \, d\sigma(\Omega) + \mathcal{B}(\Omega_i)$$

- experimental yield in ith bin depends on all Born bins j ...
- ... and on BG entering kinematic range from outside region

further complication: event migration -> unfolding

$$\mathcal{Y}^{ ext{exp}}(\Omega_i) \propto \sum_{j=1}^N S_{ij} \int_j d\Omega \, d\sigma(\Omega) + \mathcal{B}(\Omega_i)$$

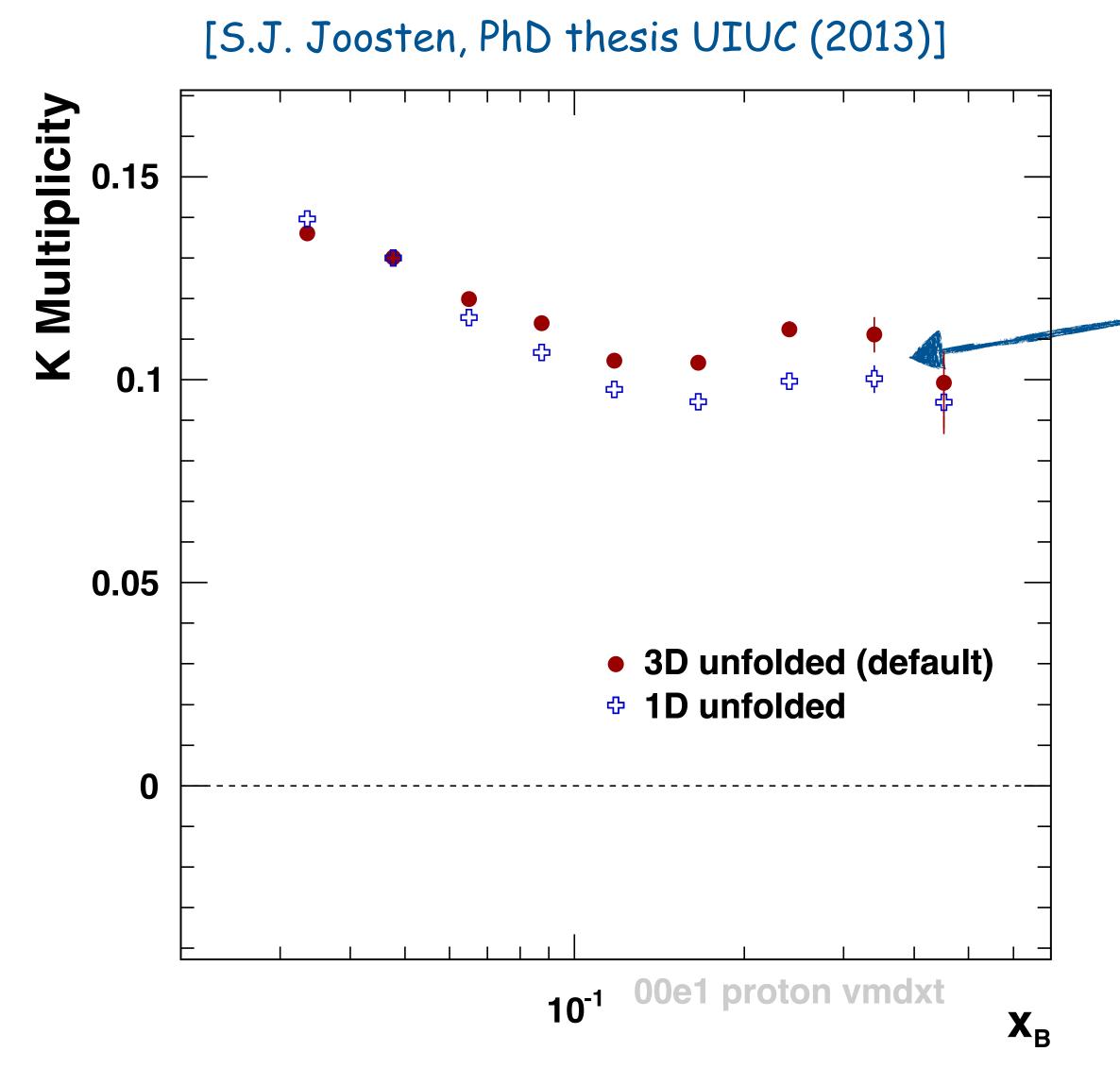
- experimental yield in ith bin depends on all Born bins j ...
- ... and on BG entering kinematic range from outside region
- smearing matrix Sij embeds information on migration
 - determined from Monte Carlo independent of physics model in limit of infinitesimally small bins and/or flat acceptance/cross-section in every bin
 - in real life: dependence on BG and physics model due to finite bin sizes
- inversion of relation gives Born cross section from measured yields



Neglecting to unfold in z changes x dependence dramatically

→ 1D unfolding clearly insufficient

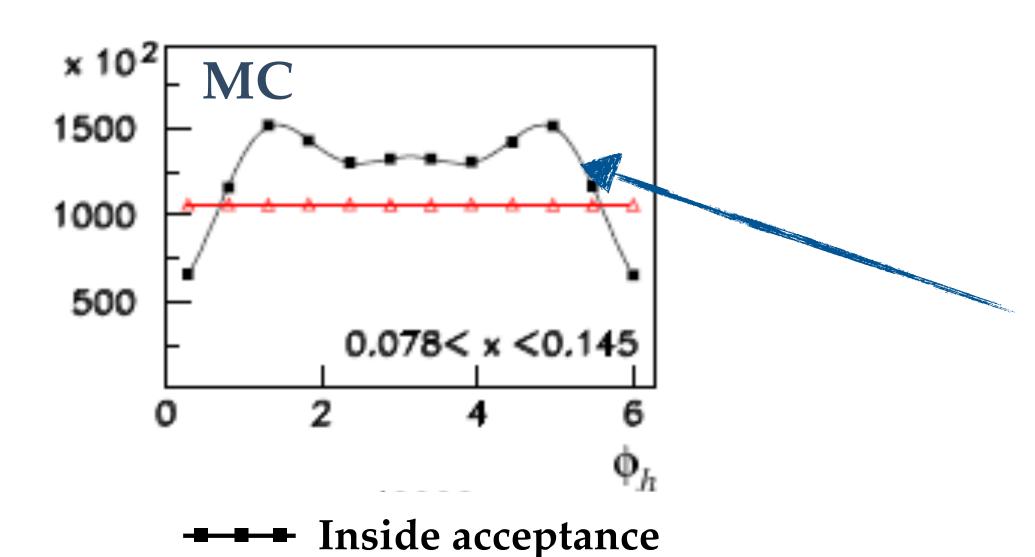
Gunar Schnell 53 HERA-4-EIC — June 8-10, 2022



Neglecting to unfold in z changes x dependence dramatically

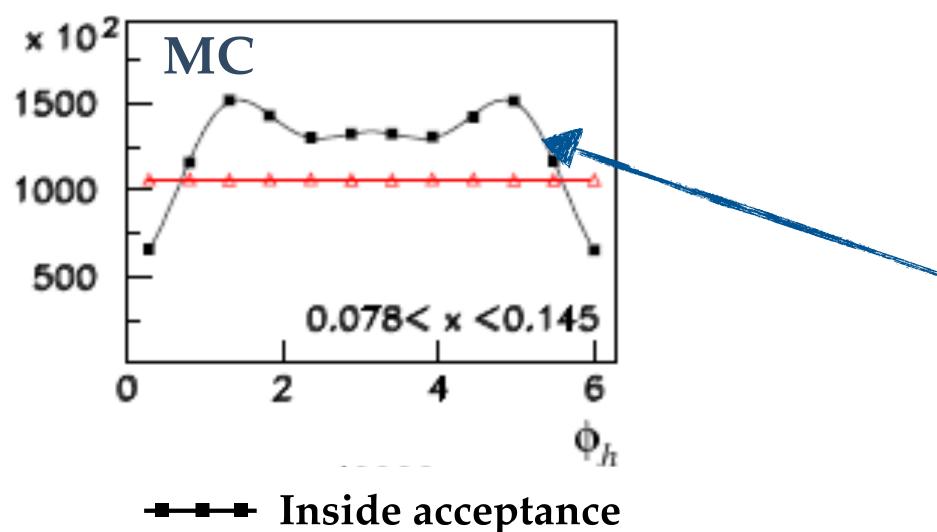
→ 1D unfolding clearly insufficient

even though only interested in collinear observable, need to carefully consider all, e.g., also transverse, d.o.f.



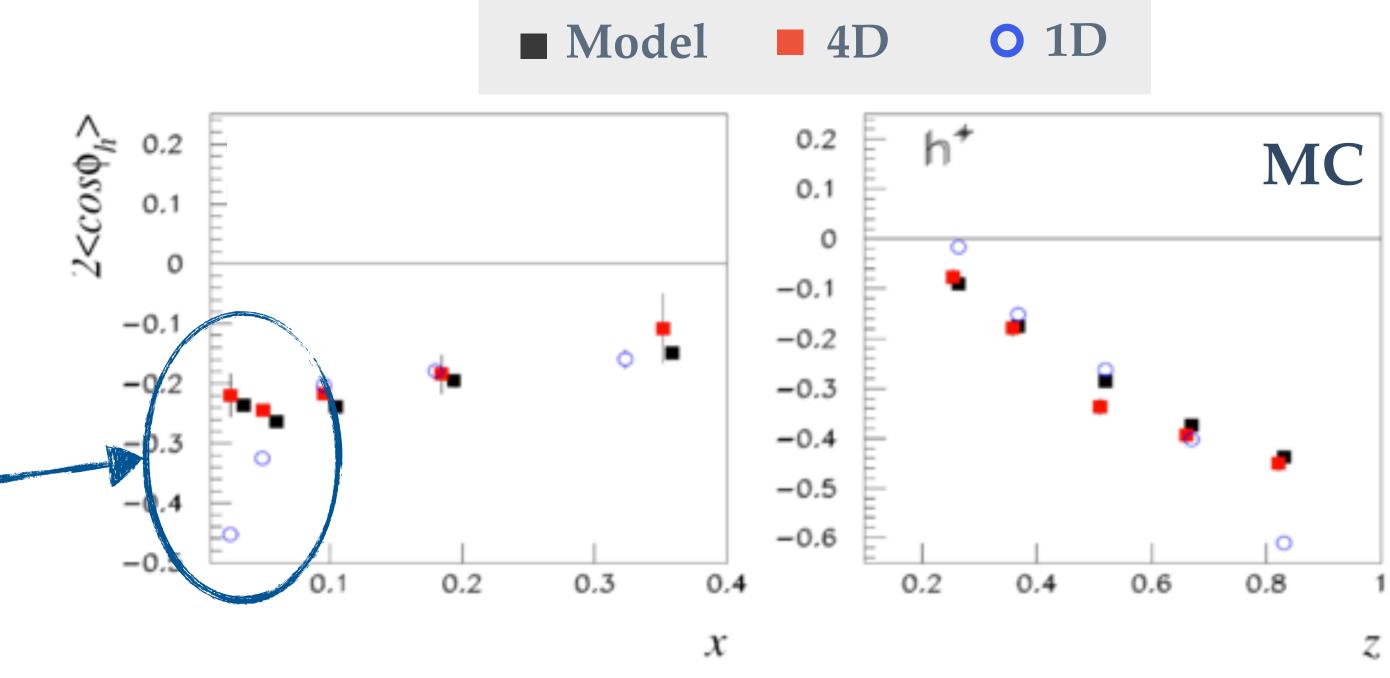
lue Generated in 4π

fully simulated yield with clear cosine modulations from migration and acceptance



 $lue{\pi}$ Generated in 4π

fully simulated yield with clear cosine modulations from migration and acceptance

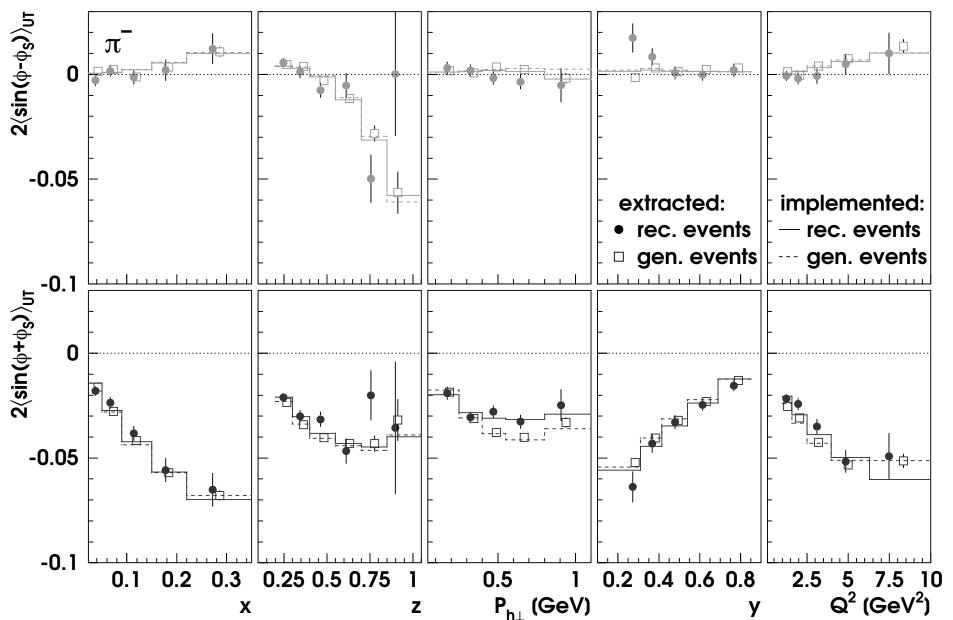


1D clearly not sufficient

Monte Carlo simulation for TMD analyses

early Collins and Sivers analyses used dedicated
 TMD single-hadron MC: gmc_{TRANS} based on
 Gaussian Ansatz

• fully analytic, but no full-blown "event generator"



Gunar Schnell 55 HERA-4-EIC — June 8-10, 2022

Monte Carlo simulation for TMD analyses

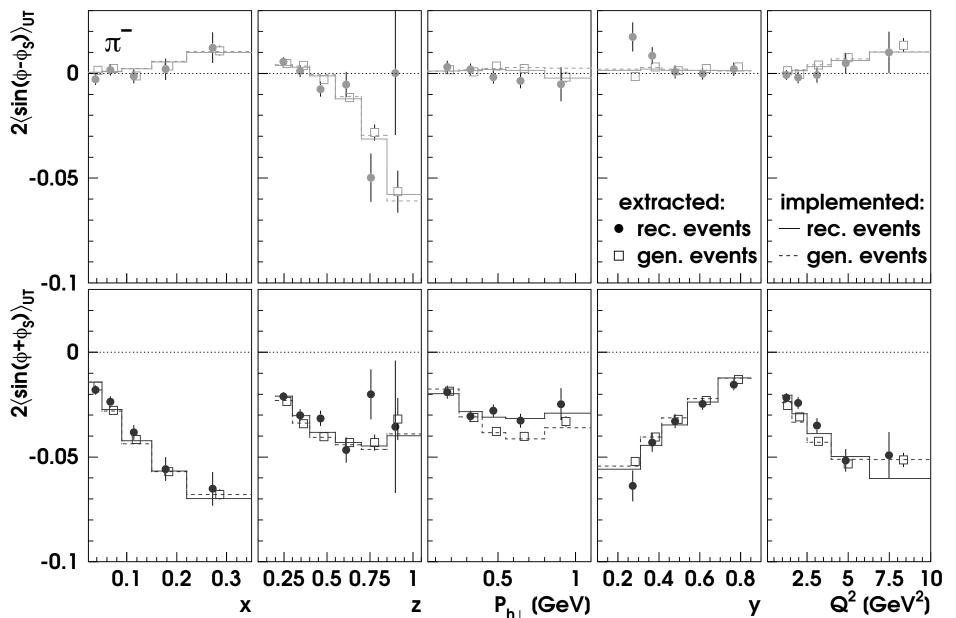
- early Collins and Sivers analyses used dedicated
 TMD single-hadron MC: gmc_{TRANS} based on
 Gaussian Ansatz
 - fully analytic, but no full-blown "event generator"
- adopted "polarizing" procedure for PYTHIA, introducing spin states according to model for spindependent cross section:

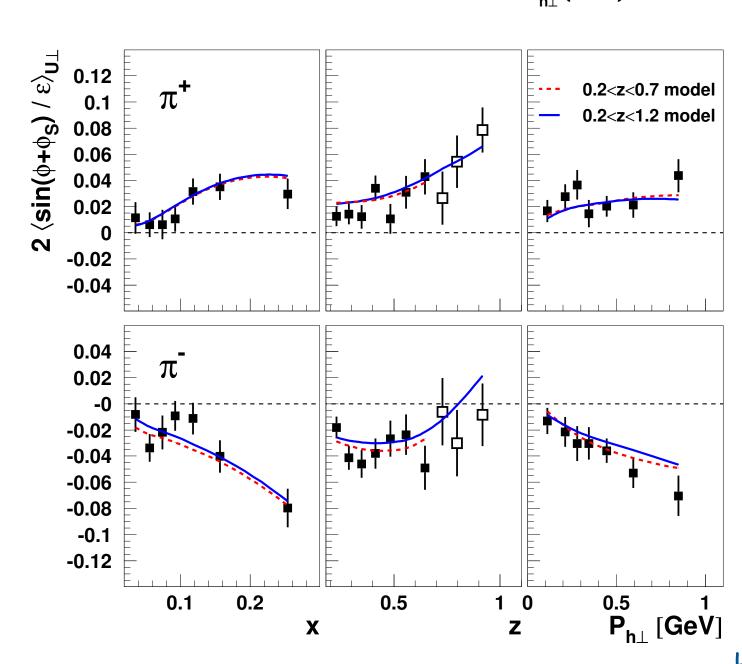
$$\rho < \frac{1}{2} \left[1 + \mathcal{A}_{U\perp}^{\sin(\phi - \phi_S)}(\Omega^i) \sin(\phi^i - \phi_S^i) \right] \quad \Rightarrow \quad \mathcal{P} = +1$$

$$\rho > \frac{1}{2} \left[1 + \mathcal{A}_{U\perp}^{\sin(\phi - \phi_S)}(\Omega^i) \sin(\phi^i - \phi_S^i) \right] \quad \Rightarrow \quad \mathcal{P} = -1$$

throwing a random variable $0 < \rho < 1$

 model: fully differential Taylor series fit to HERMES data





Monte Carlo simulation for TMD analyses

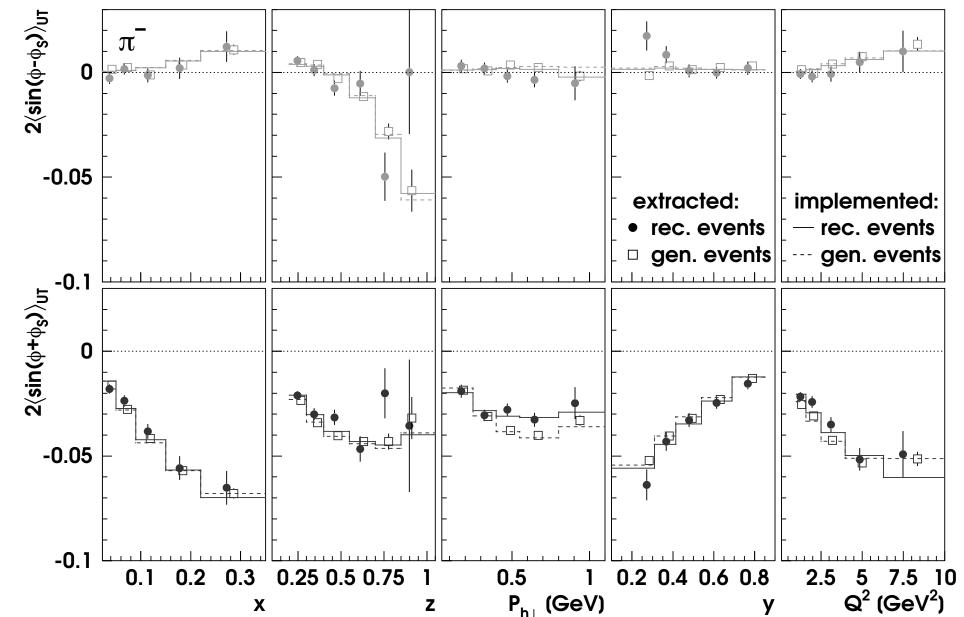
- early Collins and Sivers analyses used dedicated
 TMD single-hadron MC: gmc_{TRANS} based on
 Gaussian Ansatz
 - fully analytic, but no full-blown "event generator"
- adopted "polarizing" procedure for PYTHIA, introducing spin states according to model for spindependent cross section:

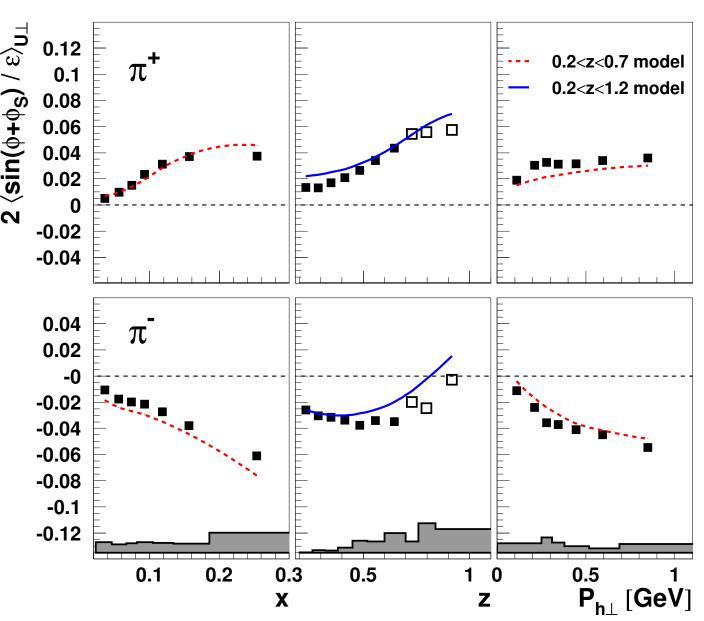
$$\rho < \frac{1}{2} \left[1 + \mathcal{A}_{\text{U}\perp}^{\sin(\phi - \phi_S)}(\Omega^i) \sin(\phi^i - \phi_S^i) \right] \quad \Rightarrow \quad \mathcal{P} = +1$$

$$\rho > \frac{1}{2} \left[1 + \mathcal{A}_{\text{U}\perp}^{\sin(\phi - \phi_S)}(\Omega^i) \sin(\phi^i - \phi_S^i) \right] \quad \Rightarrow \quad \mathcal{P} = -1$$

throwing a random variable $0<\rho<1$

- model: fully differential Taylor series fit to HERMES data
- systematics: extracted asymmetry vs. asymmetry model evaluated at average kinematics





Monte Carlo simulation for TMD ap-

early Collins and Sivers analyses used dedicated TMD single-hadron MC: gmctrans based on Gaussian Ansatz

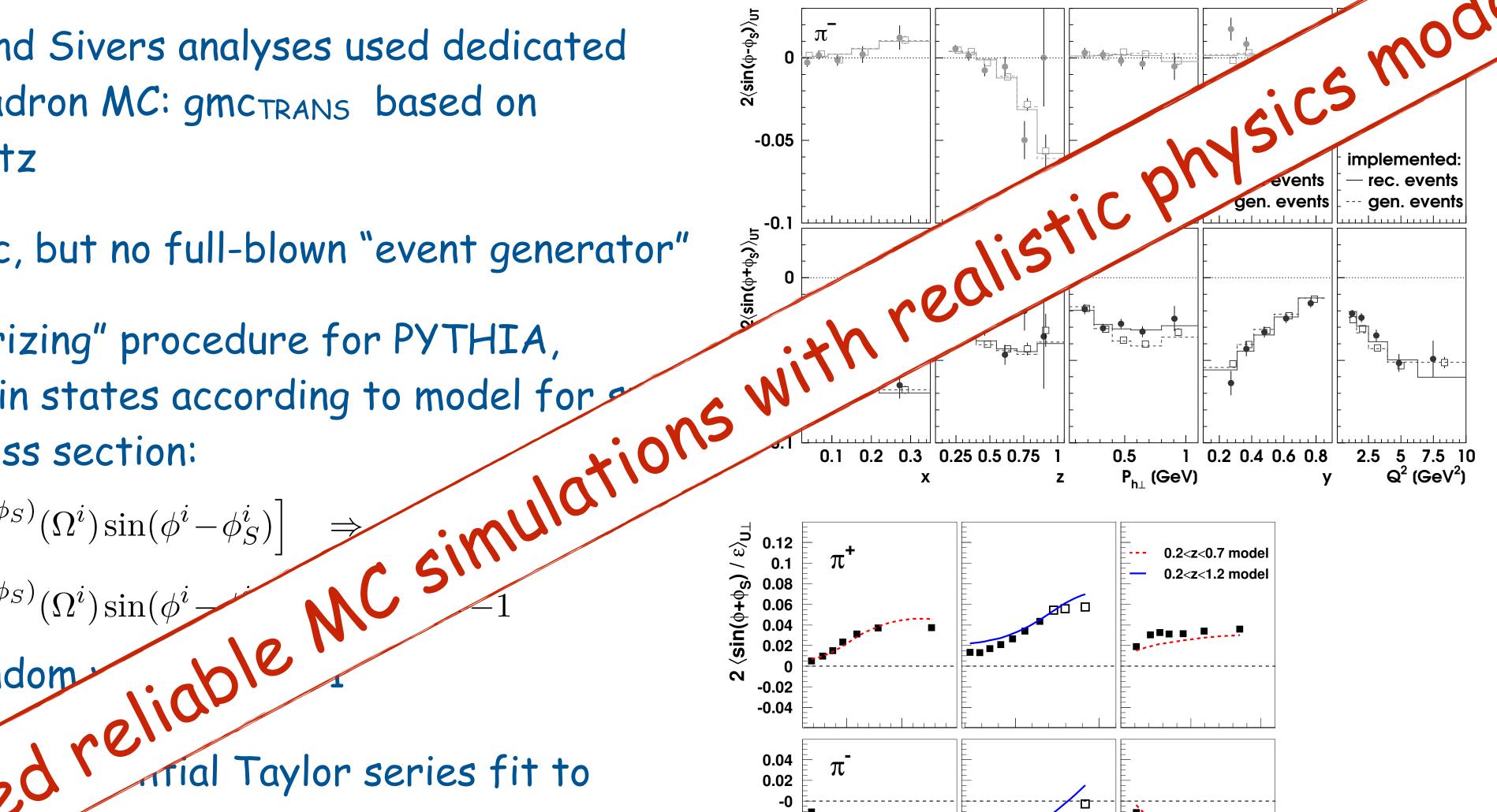
fully analytic, but no full-blown "event generator"

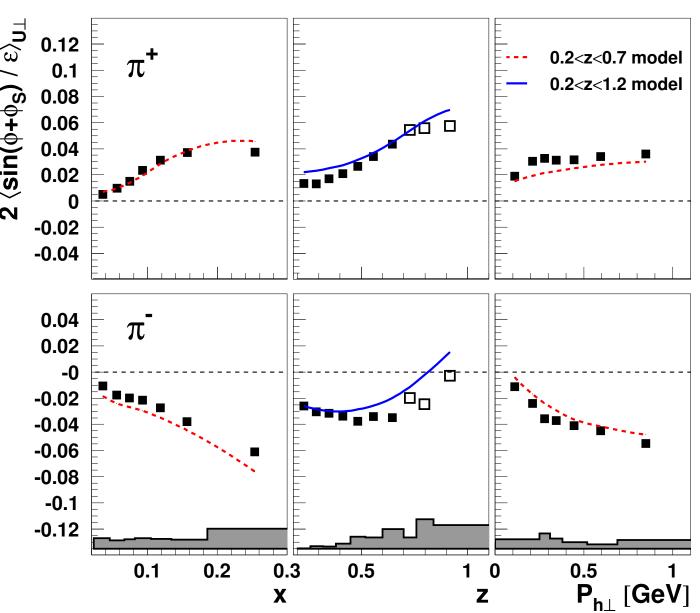
adopted "polarizing" procedure for PYTHIA, introducing spin states according to model for dependent cross section:

$$\rho < \frac{1}{2} \left[1 + \mathcal{A}_{\text{U}\perp}^{\sin(\phi - \phi_S)}(\Omega^i) \sin(\phi^i - \phi_S^i) \right] \Rightarrow \rho > \frac{1}{2} \left[1 + \mathcal{A}_{\text{U}\perp}^{\sin(\phi - \phi_S)}(\Omega^i) \sin(\phi^i - \phi_S^i) \right]$$
throwing a random

Mial Taylor series fit to

arics: extracted asymmetry vs. asymmetry sdel evaluated at average kinematics





achievements & future opportunities

HERMES publication statistics (March 2022)

HERMES Publications

Total number of published HERMES papers: 83

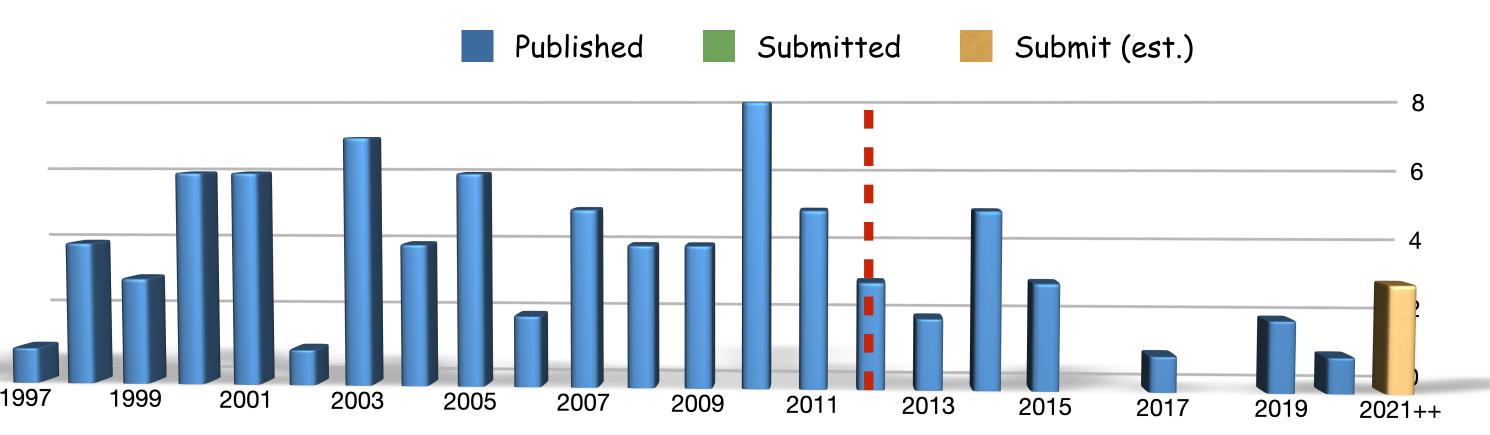
Total number of citations: 10,010

121

Average citations per paper:

2 top-cite 500+ & 9 topcite 250+

[inspirehep.net as of March. 29, 2022]



Gunar Schnell 57 HERA-4-EIC — June 8-10, 2022

HERMES publication statistics (March 2022)

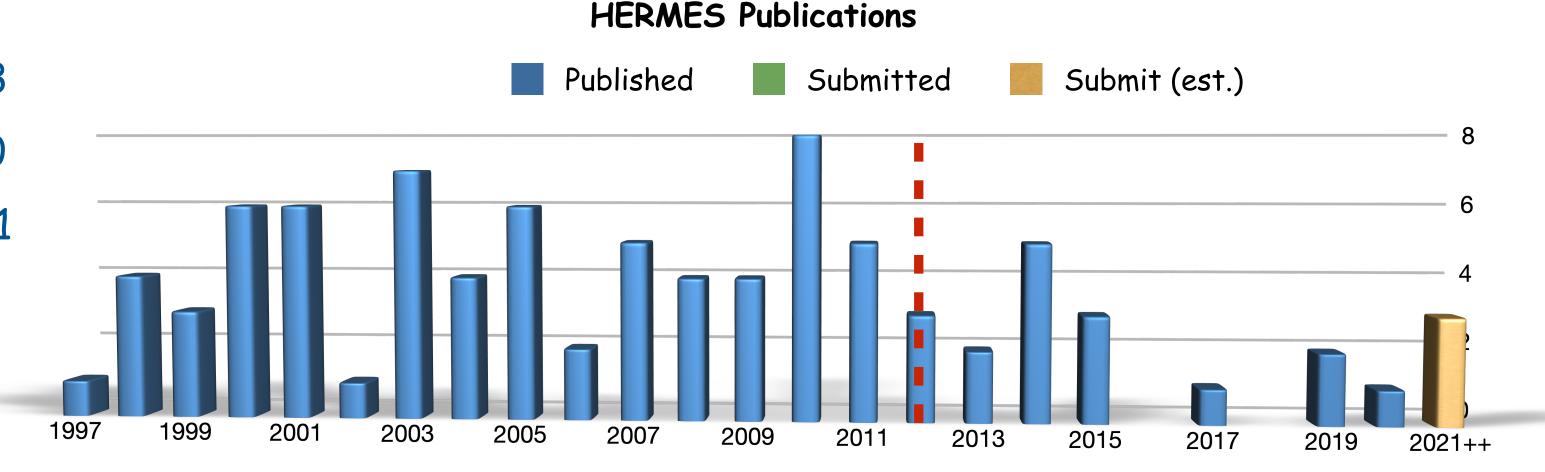
Total number of published HERMES papers: 83

Total number of citations: 10,010

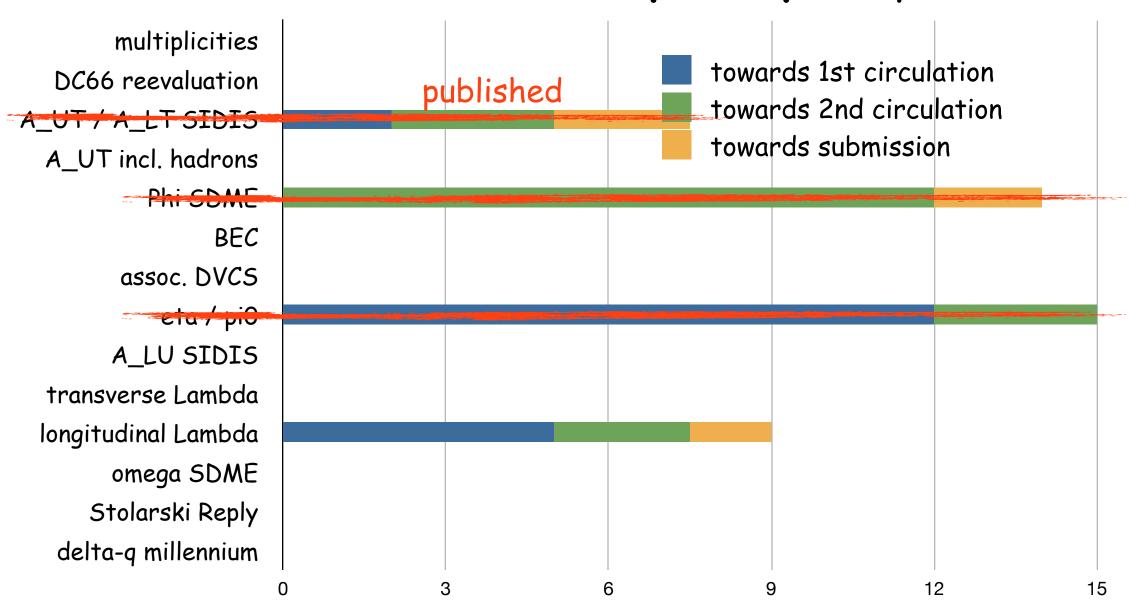
Average citations per paper: 121

2 top-cite 500+ & 9 topcite 250+

[inspirehep.net as of March. 29, 2022]



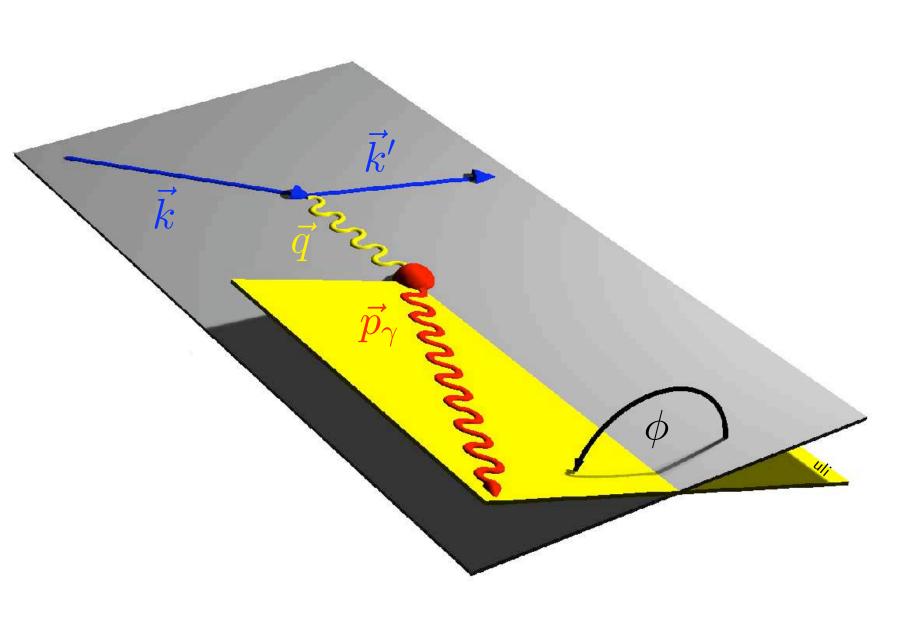
Publication schedule for 2012 priority analysis (March 2022)



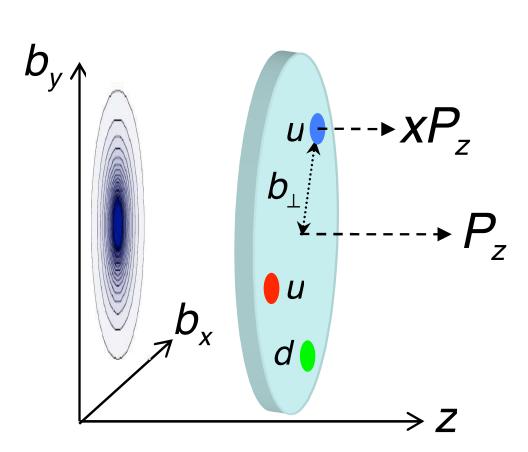
- despite tremendous drop in analysis manpower, almost all priority analyses identified finished
 - two analyses dropped
 - one still ongoing in advanced state
- at same time new ideas; partially already published, others waiting for manpower ...

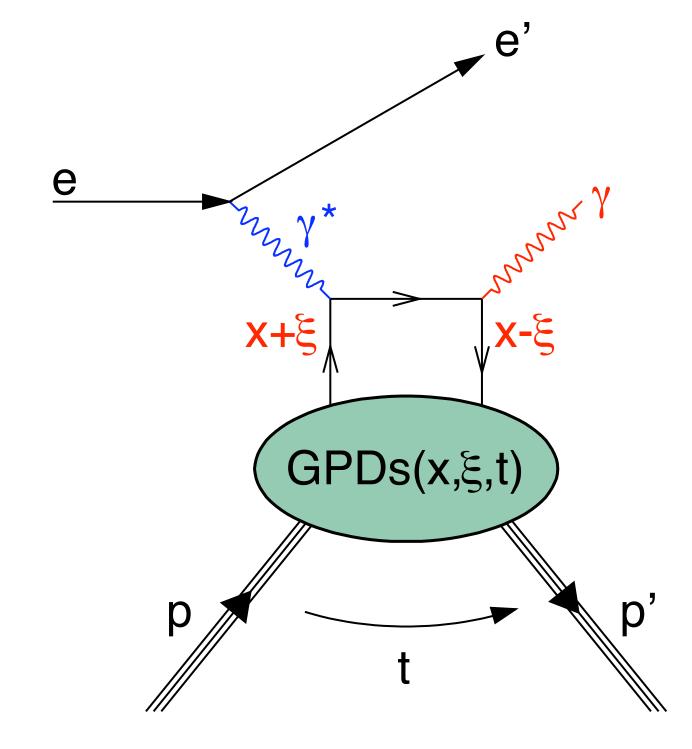
Gunar Schnell

months



DVCS



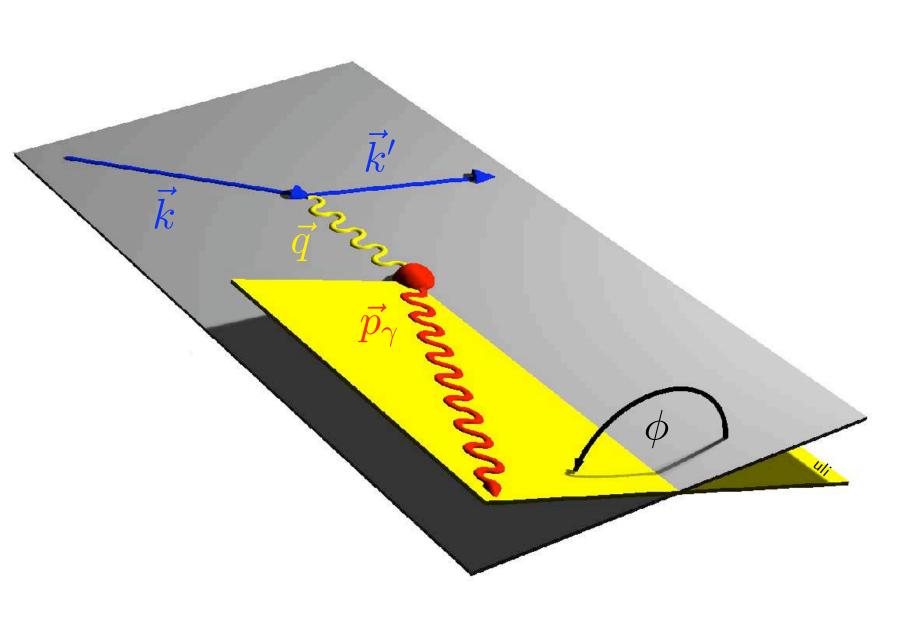


- beam polarization PB
- beam charge CB
- here: unpolarized target (many more modulations for polarized targets)

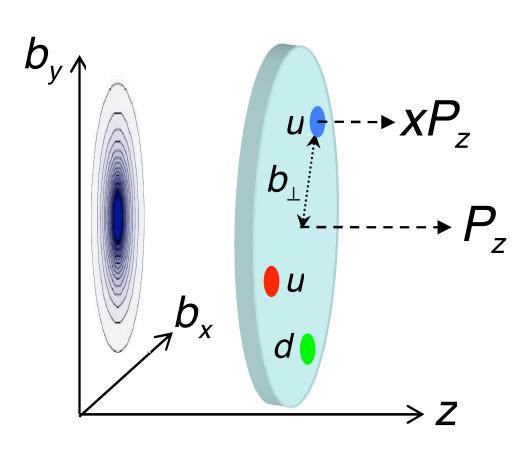
Fourier expansion for ϕ :

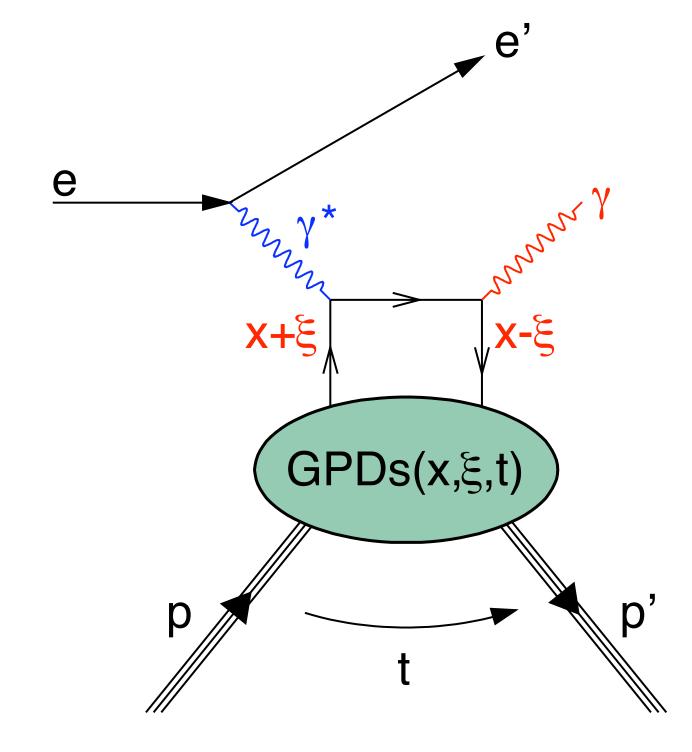
$$|\mathcal{T}_{\text{BH}}|^2 = \frac{K_{\text{BH}}}{\mathcal{P}_1(\phi)\mathcal{P}_2(\phi)} \sum_{n=0}^2 c_n^{\text{BH}} \cos(n\phi)$$

$$\text{calculable in QED}$$
(using form-factor measurements)



DVCS



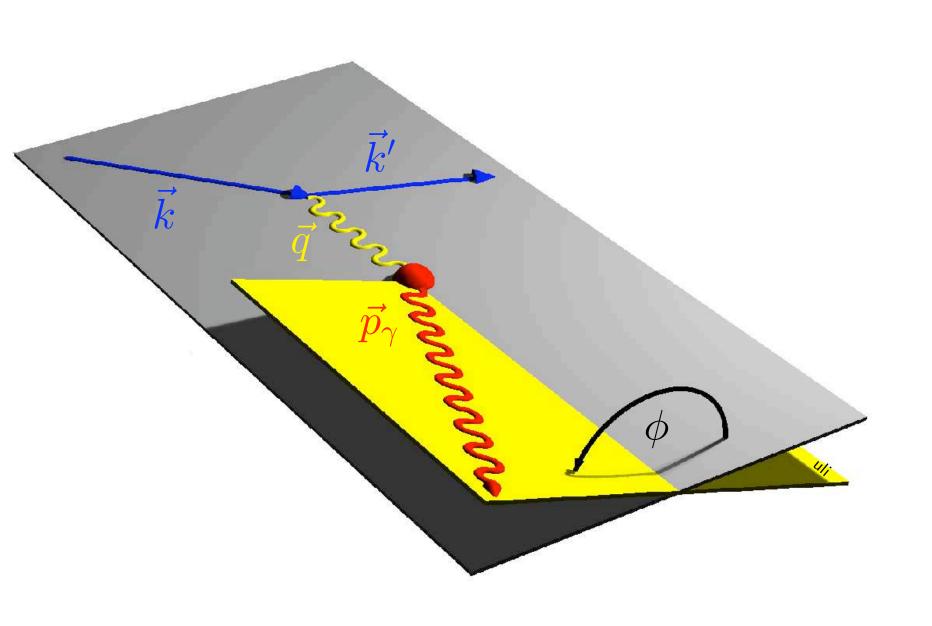


- beam polarization PB
- beam charge CB
- here: unpolarized target (many more modulations for polarized targets)

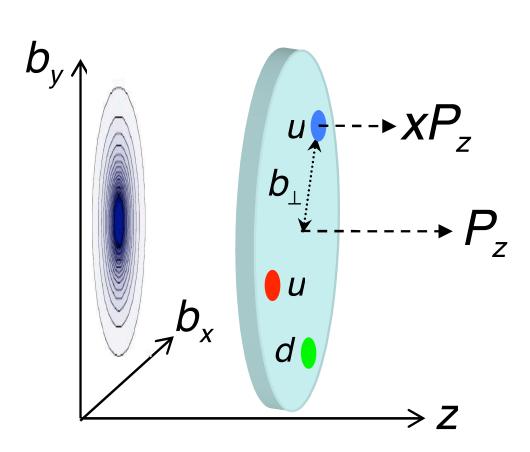
Fourier expansion for ϕ :

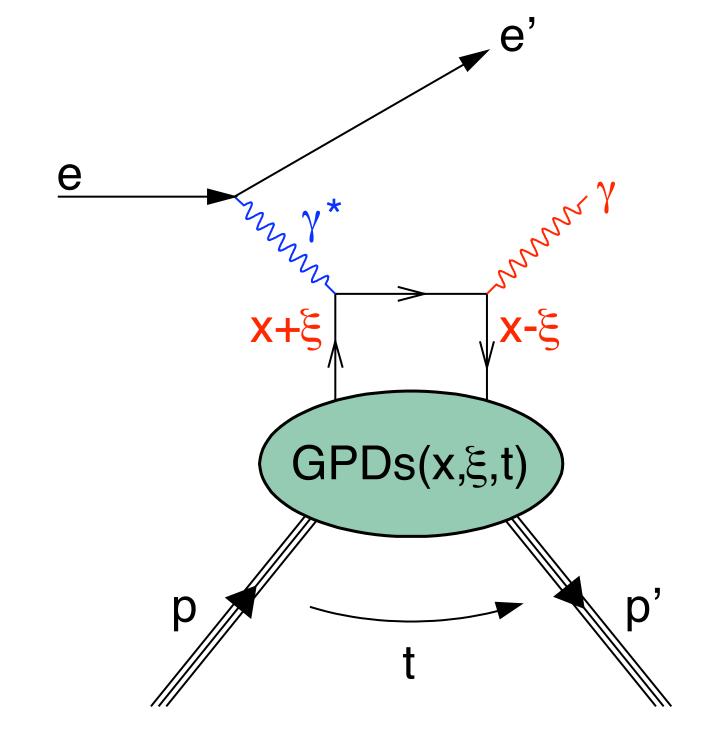
$$|\mathcal{T}_{\text{BH}}|^2 = \frac{K_{\text{BH}}}{\mathcal{P}_1(\phi)\mathcal{P}_2(\phi)} \sum_{n=0}^2 c_n^{\text{BH}} \cos(n\phi)$$

$$|\mathcal{T}_{\text{DVCS}}|^2 = K_{\text{DVCS}} \left[\sum_{n=0}^{2} c_n^{\text{DVCS}} \cos(n\phi) + P_B \sum_{n=1}^{1} s_n^{\text{DVCS}} \sin(n\phi) \right]$$



DVCS





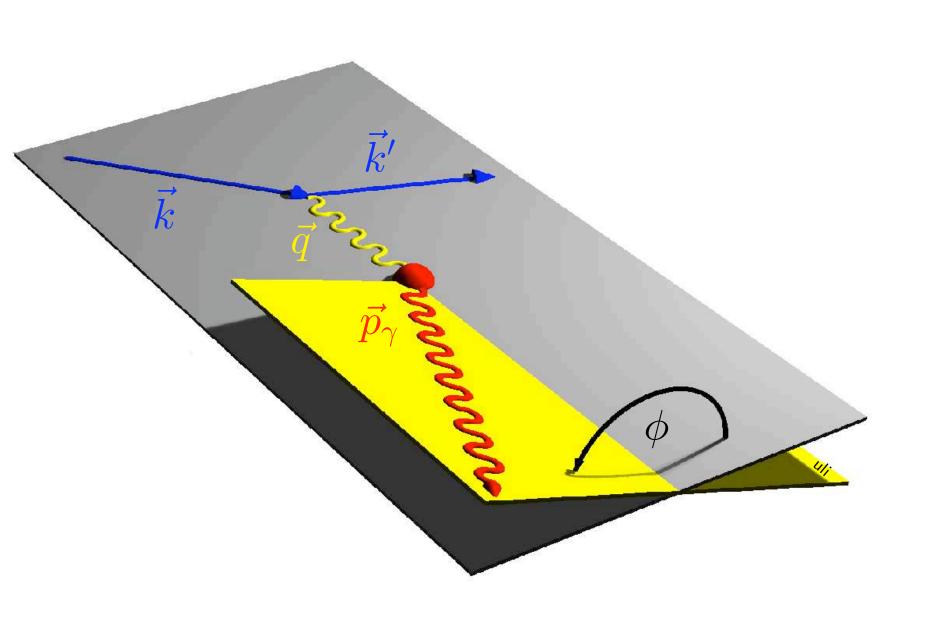
- beam polarization PB
- beam charge CB
- here: unpolarized target (many more modulations for polarized targets)

Fourier expansion for ϕ :

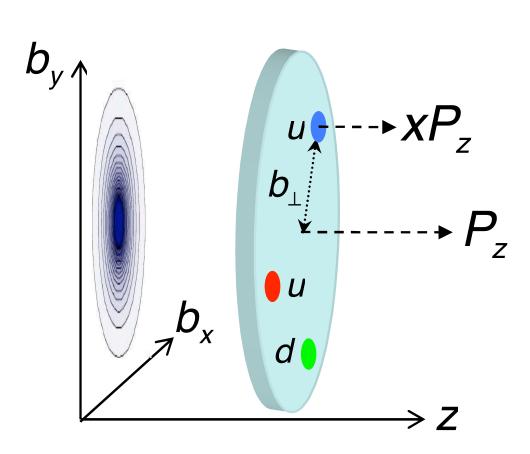
$$|\mathcal{T}_{\text{BH}}|^2 = \frac{K_{\text{BH}}}{\mathcal{P}_1(\phi)\mathcal{P}_2(\phi)} \sum_{n=0}^2 c_n^{\text{BH}} \cos(n\phi)$$

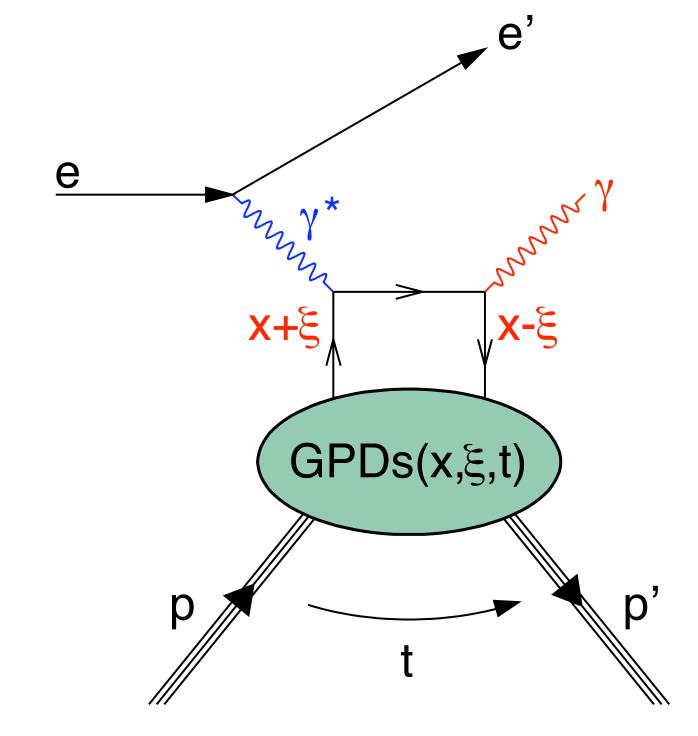
$$|\mathcal{T}_{\text{DVCS}}|^2 = K_{\text{DVCS}} \left[\sum_{n=0}^2 c_n^{\text{DVCS}} \cos(n\phi) + P_B \sum_{n=1}^1 s_n^{\text{DVCS}} \sin(n\phi) \right]$$

$$\mathcal{I} = \frac{C_B K_{\mathcal{I}}}{\mathcal{P}_1(\phi)\mathcal{P}_2(\phi)} \left[\sum_{n=0}^3 c_n^{\mathcal{I}} \cos(n\phi) + P_B \sum_{n=1}^2 s_n^{\mathcal{I}} \sin(n\phi) \right]$$



DVCS





- · beam polarization PB
- beam charge CB
- here: unpolarized target (many more modulations for polarized targets)

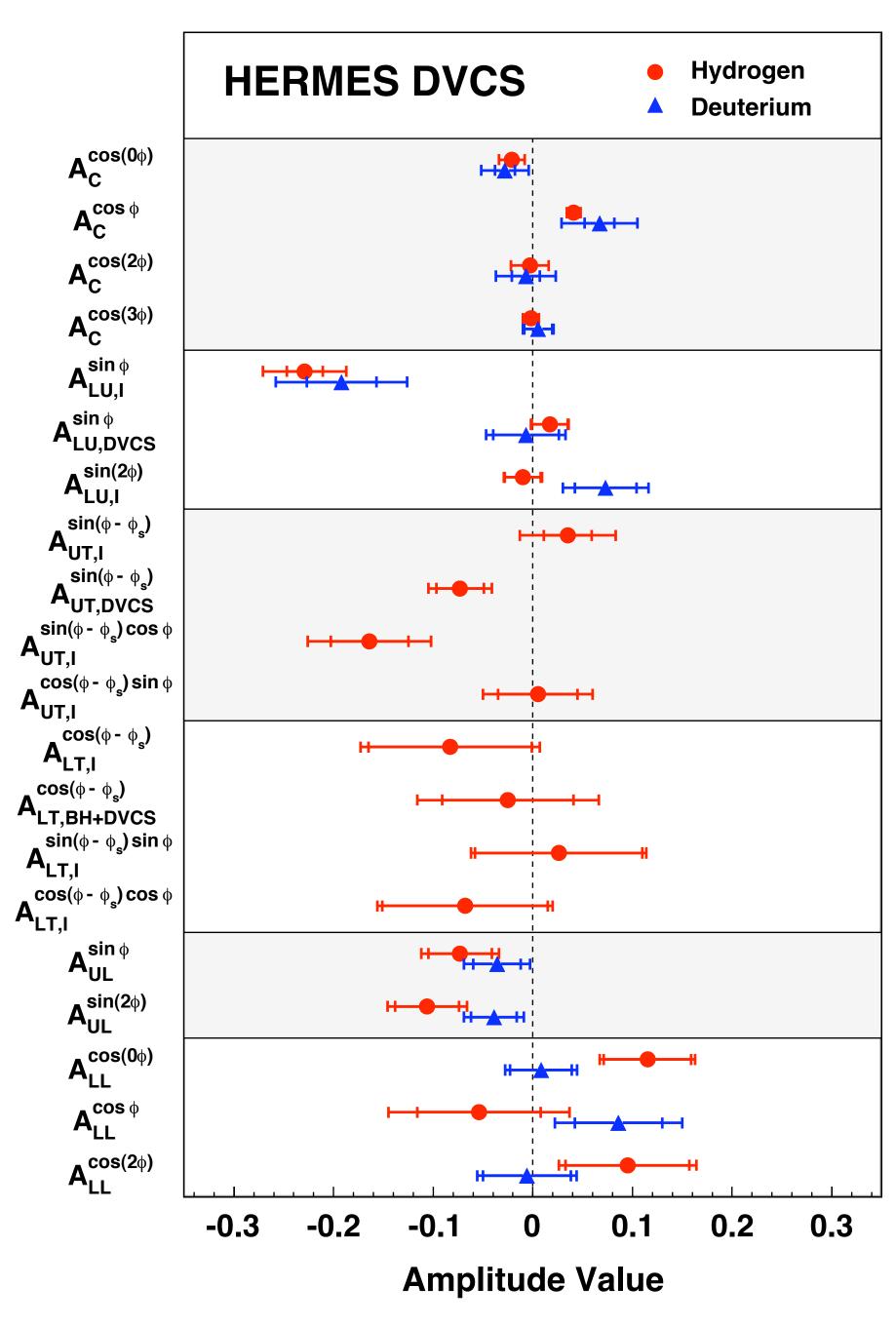
Fourier expansion for ϕ :

$$|\mathcal{T}_{\text{BH}}|^2 = \frac{K_{\text{BH}}}{\mathcal{P}_1(\phi)\mathcal{P}_2(\phi)} \sum_{n=0}^{2} c_n^{\text{BH}} \cos(n\phi)$$

$$|\mathcal{T}_{\text{DVCS}}|^2 = K_{\text{DVCS}} \left[\sum_{n=0}^{2} c_n^{\text{DVCS}} \cos(n\phi) + P_B \sum_{n=1}^{1} s_n^{\text{DVCS}} \sin(n\phi) \right]$$

$$\mathcal{I} = \frac{C_B K_{\mathcal{I}}}{\mathcal{P}_1(\phi)\mathcal{P}_2(\phi)} \left[\sum_{n=0}^{3} c_n^{\mathcal{I}} \cos(n\phi) + P_B \sum_{n=1}^{2} s_n^{\mathcal{I}} \sin(n\phi) \right]$$

bilinear ("DVCS") or linear in GPDs



Beam-charge asymmetry:

GPD H

GPD H

PRD 75 (2007) 011103

NPB 829 (2010) 1

JHEP 11 (2009) 083

Beam-helicity asymmetry: PRC 81 (2010) 035202

PRL 87 (2001) 182001

JHEP 07 (2012) 032

Transverse target spin asymmetries: GPD E from proton target

> JHEP 06 (2008) 066 PLB 704 (2011) 15

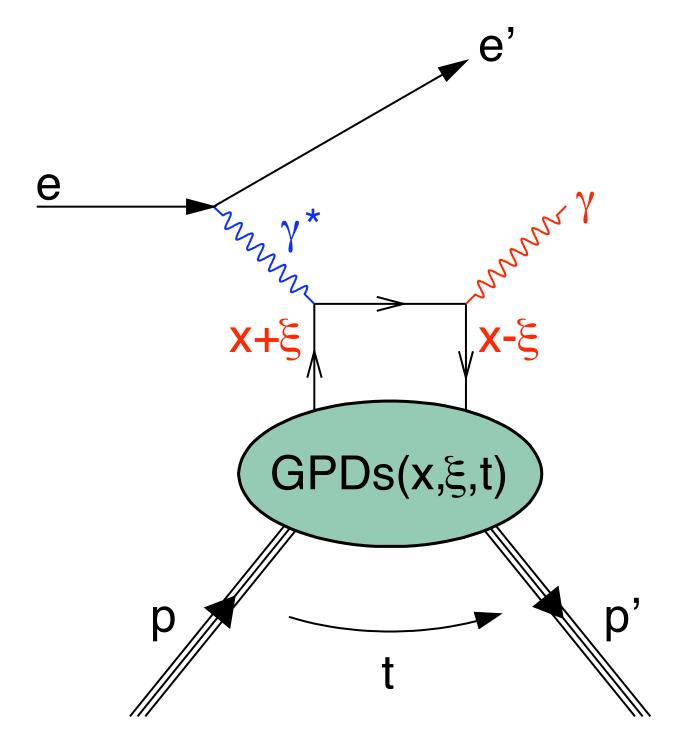
Longitudinal target spin asymmetry:

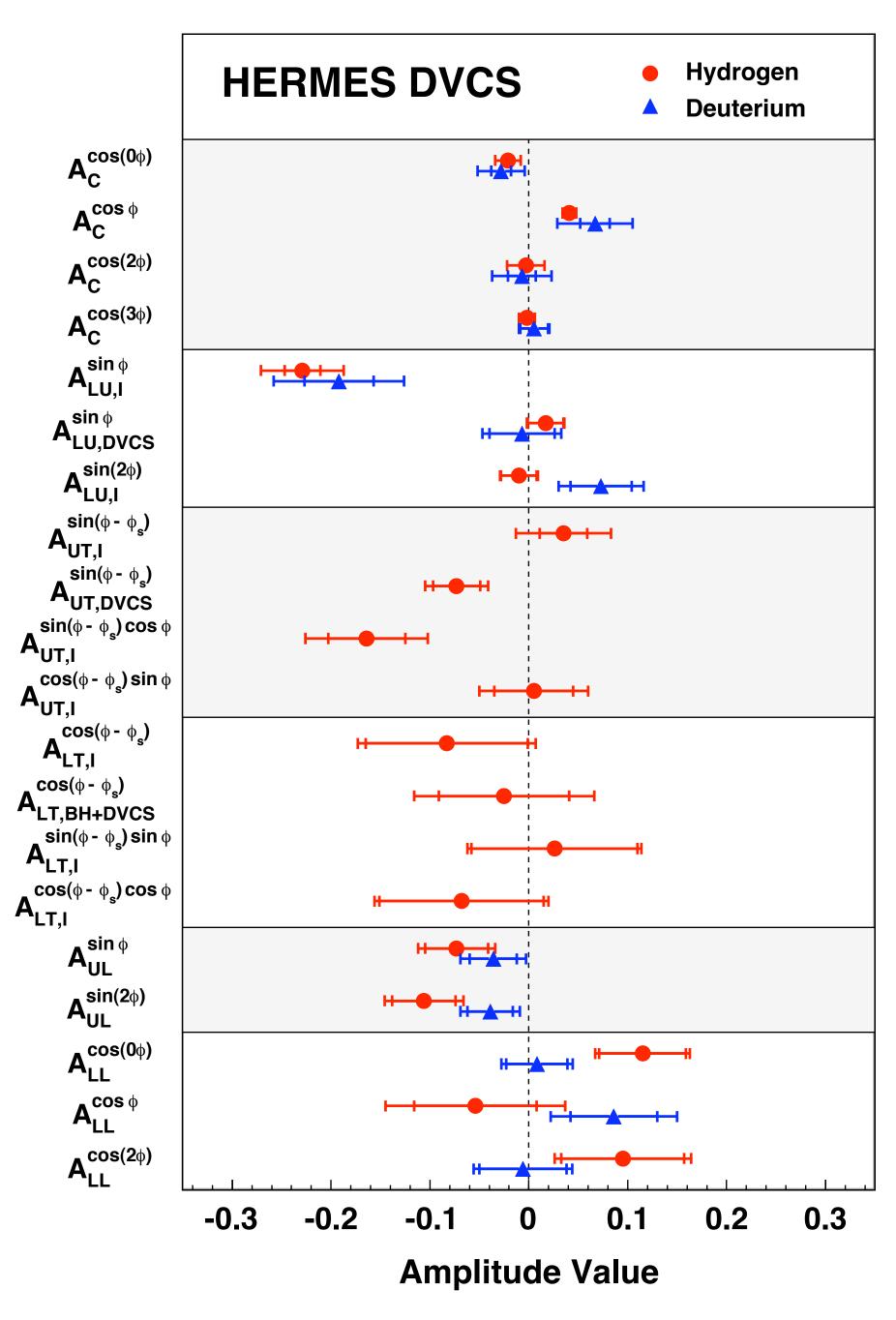
GPD H

JHEP 06 (2010) 019 NPB 842 (2011) 265

Double-spin asymmetry:

GPD H





Beam-charge asymmetry:

GPD H

GPD H

PRD 75 (2007) 011103

NPB 829 (2010) 1

JHEP 11 (2009) 083

Beam-helicity asymmetry: PRC 81 (2010) 035202

PRC 61 (2010) 033202

PRL 87 (2001) 182001

JHEP 07 (2012) 032

Transverse target spin asymmetries:

GPD E from proton target

JHEP 06 (2008) 066 PLB 704 (2011) 15

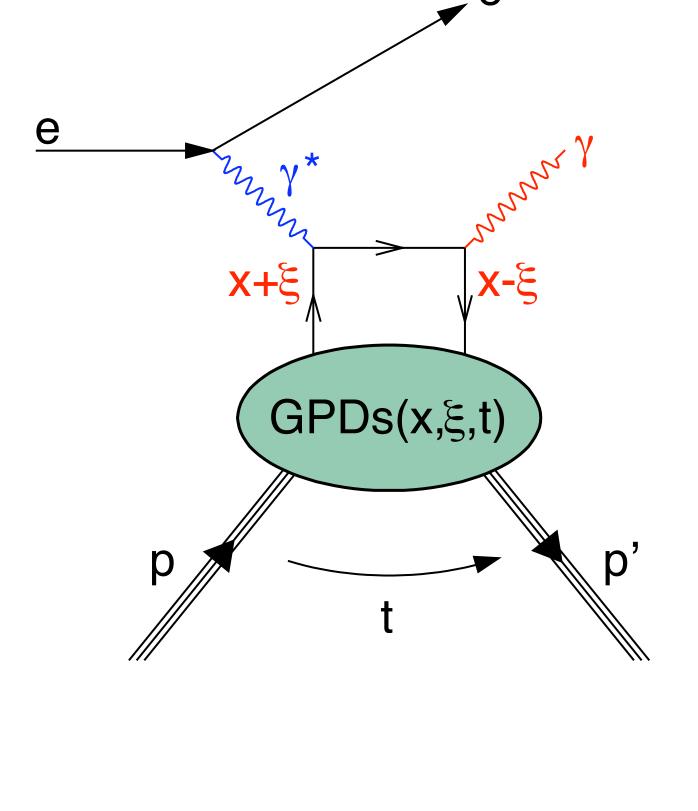
Longitudinal target spin asymmetry:

GPD H

JHEP 06 (2010) 019 NPB 842 (2011) 265

Double-spin asymmetry:

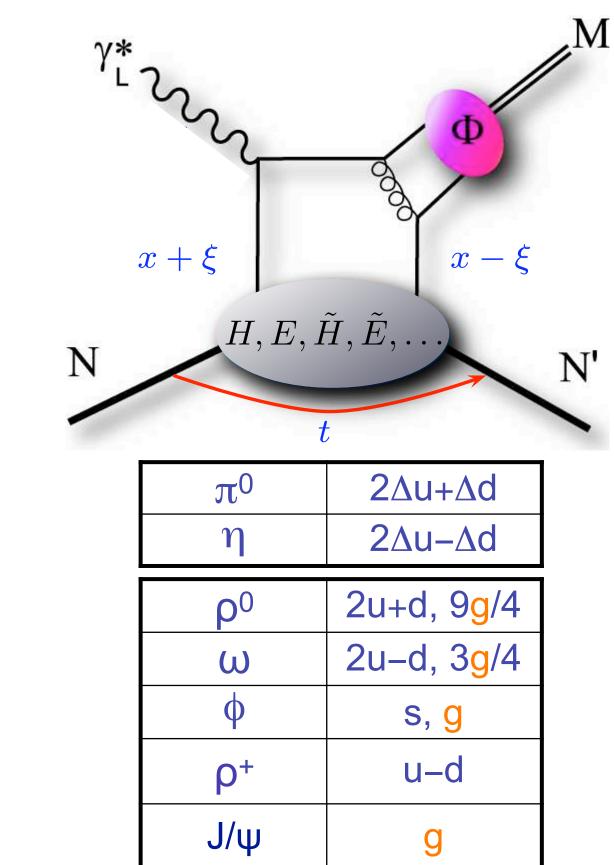
GPD H



however, no crosssection measurement so far at HERMES kinematics!

exclusive meson production

- GPDs convoluted with meson amplitude
- access to various quark-flavor combinations
- factorization proven for longitudinal photons
- generalized to transverse photons in GK model



GK ... S. Goloskokov & P. Kroll, e.g., EPJ C50 (2007) 829; C53 (2008) 367

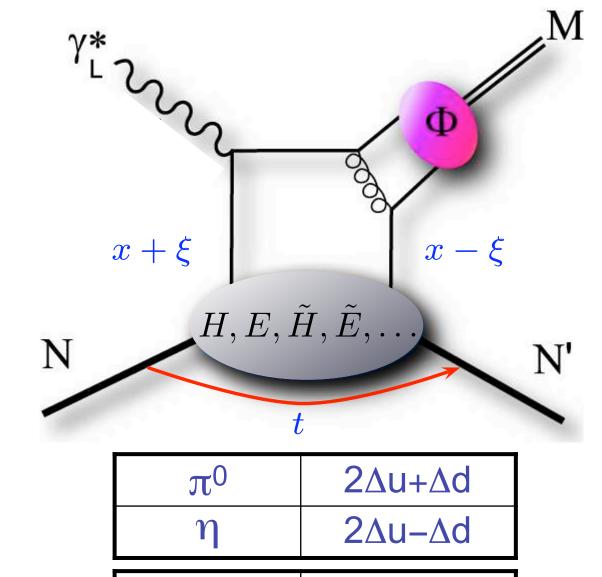
exclusive meson production

- GPDs convoluted with meson amplitude
- access to various quark-flavor combinations
- factorization proven for longitudinal photons
- generalized to transverse photons in GK model
- vector-meson cross section:

$$\frac{d\sigma}{dx_B dQ^2 dt d\phi_S d\phi d\cos\theta d\varphi} = \frac{d\sigma}{dx_B dQ^2 dt} W(x_B, Q^2, t, \phi_S, \phi, \cos\theta, \varphi)$$

$$W = W_{UU} + P_B W_{LU} + S_L W_{UL} + P_B S_L W_{LL} + S_T W_{UT} + P_B S_T W_{LT}$$

look at various angular (decay) distributions to study helicity transitions ["spin-density matrix elements" (SDMEs), "amplitude ratios"]



η	2∆u–∆d
ρ^0	2u+d, 9g/4
ω	2u-d, 3g/4
ф	s, g
ρ+	u–d
J/ψ	g

SDMEs from angular decay distribution

unpolarized long. polarized beam

(angle definitions in backup)

$$\mathcal{W}^{U+L}(\Phi,\phi,\cos\Theta) = \mathcal{W}^{U}(\Phi,\phi,\cos\Theta) + \mathcal{W}^{L}(\Phi,\phi,\cos\Theta),$$

$$\mathcal{W}^{U}(\Phi,\phi,\cos\Theta) = \frac{3}{8\pi^{2}} \left[\frac{1}{2} \left(1 - r_{00}^{04} \right) + \frac{1}{2} \left(3r_{00}^{04} - 1 \right) \cos^{2}\Theta - \sqrt{2} \operatorname{Re} \left\{ r_{10}^{04} \right\} \sin 2\Theta \cos \phi - r_{1-1}^{04} \sin^{2}\Theta \cos 2\phi \right.$$

$$\left. - \epsilon \cos 2\Phi \left(r_{11}^{1} \sin^{2}\Theta + r_{00}^{1} \cos^{2}\Theta - \sqrt{2} \operatorname{Re} \left\{ r_{10}^{1} \right\} \sin 2\Theta \cos \phi - r_{1-1}^{1} \sin^{2}\Theta \cos 2\phi \right) \right.$$

$$\left. - \epsilon \sin 2\Phi \left(\sqrt{2} \operatorname{Im} \left\{ r_{10}^{2} \right\} \sin 2\Theta \sin \phi + \operatorname{Im} \left\{ r_{1-1}^{2} \right\} \sin^{2}\Theta \sin 2\phi \right) \right.$$

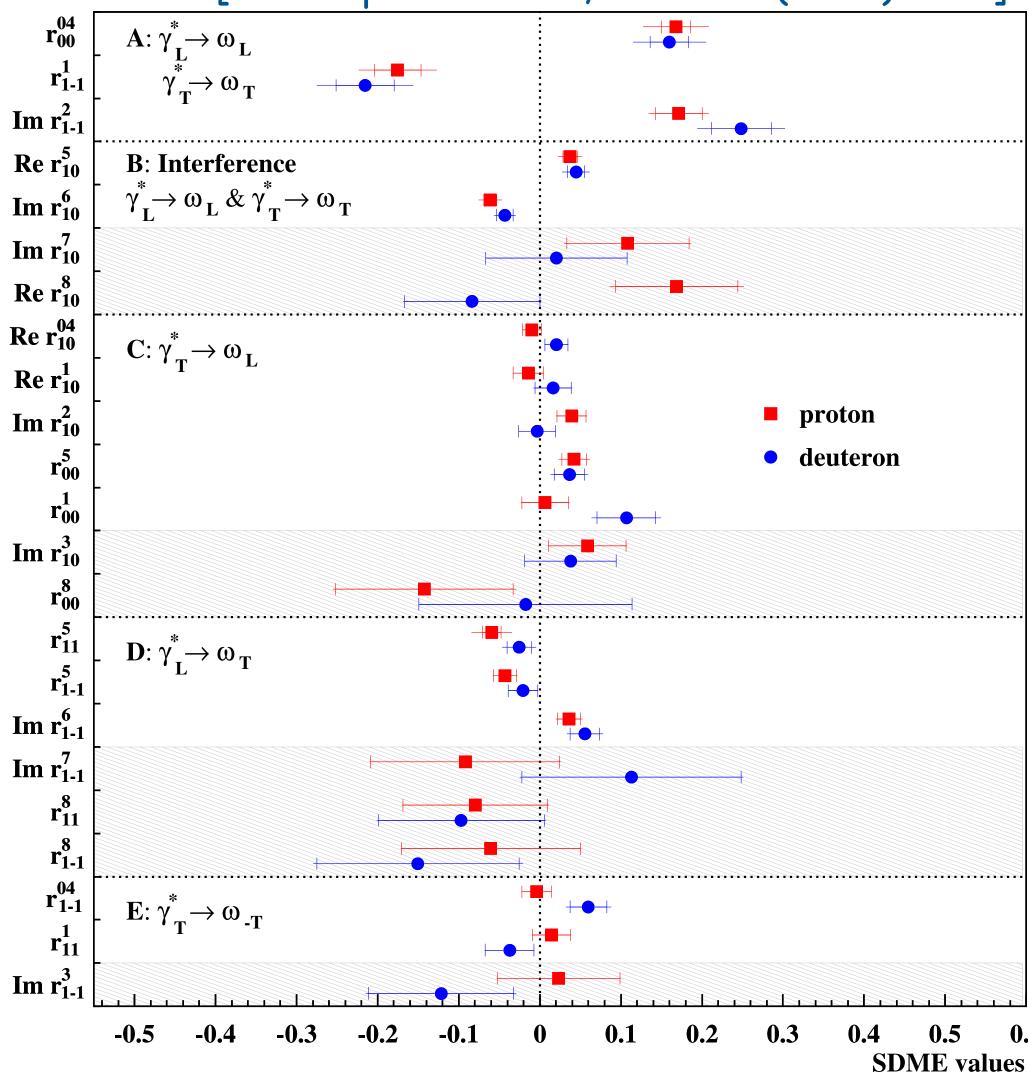
$$\left. + \sqrt{2\epsilon (1+\epsilon)} \cos \Phi \left(r_{11}^{5} \sin^{2}\Theta + r_{00}^{5} \cos^{2}\Theta - \sqrt{2} \operatorname{Re} \left\{ r_{10}^{5} \right\} \sin 2\Theta \cos \phi - r_{1-1}^{5} \sin^{2}\Theta \cos 2\phi \right) \right.$$

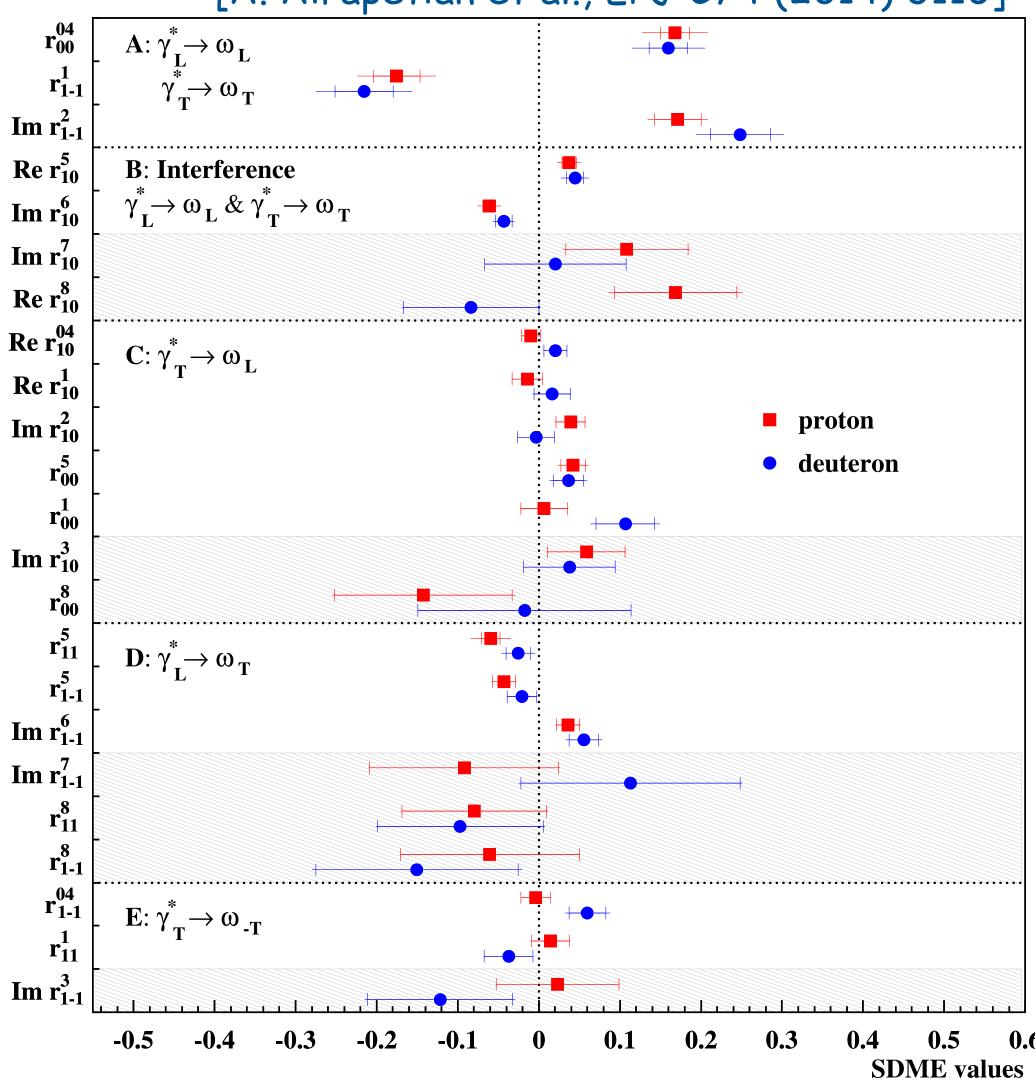
$$\left. + \sqrt{2\epsilon (1+\epsilon)} \sin \Phi \left(\sqrt{2} \operatorname{Im} \left\{ r_{10}^{6} \right\} \sin 2\Theta \sin \phi + \operatorname{Im} \left\{ r_{1-1}^{6} \right\} \sin^{2}\Theta \sin 2\phi \right) \right],$$

$$\mathcal{W}^{L}(\Phi,\phi,\cos\Theta) = \frac{3}{8\pi^{2}} P_{\text{beam}} \left[\sqrt{1-\epsilon^{2}} \left(\sqrt{2} \operatorname{Im} \left\{ r_{10}^{3} \right\} \sin 2\Theta \sin \phi + \operatorname{Im} \left\{ r_{1-1}^{3} \right\} \sin^{2}\Theta \sin 2\phi \right) \right.$$

$$\left. + \sqrt{2\epsilon (1-\epsilon)} \cos \Phi \left(\sqrt{2} \operatorname{Im} \left\{ r_{10}^{7} \right\} \sin 2\Theta \sin \phi + \operatorname{Im} \left\{ r_{1-1}^{7} \right\} \sin^{2}\Theta \sin 2\phi \right) \right.$$

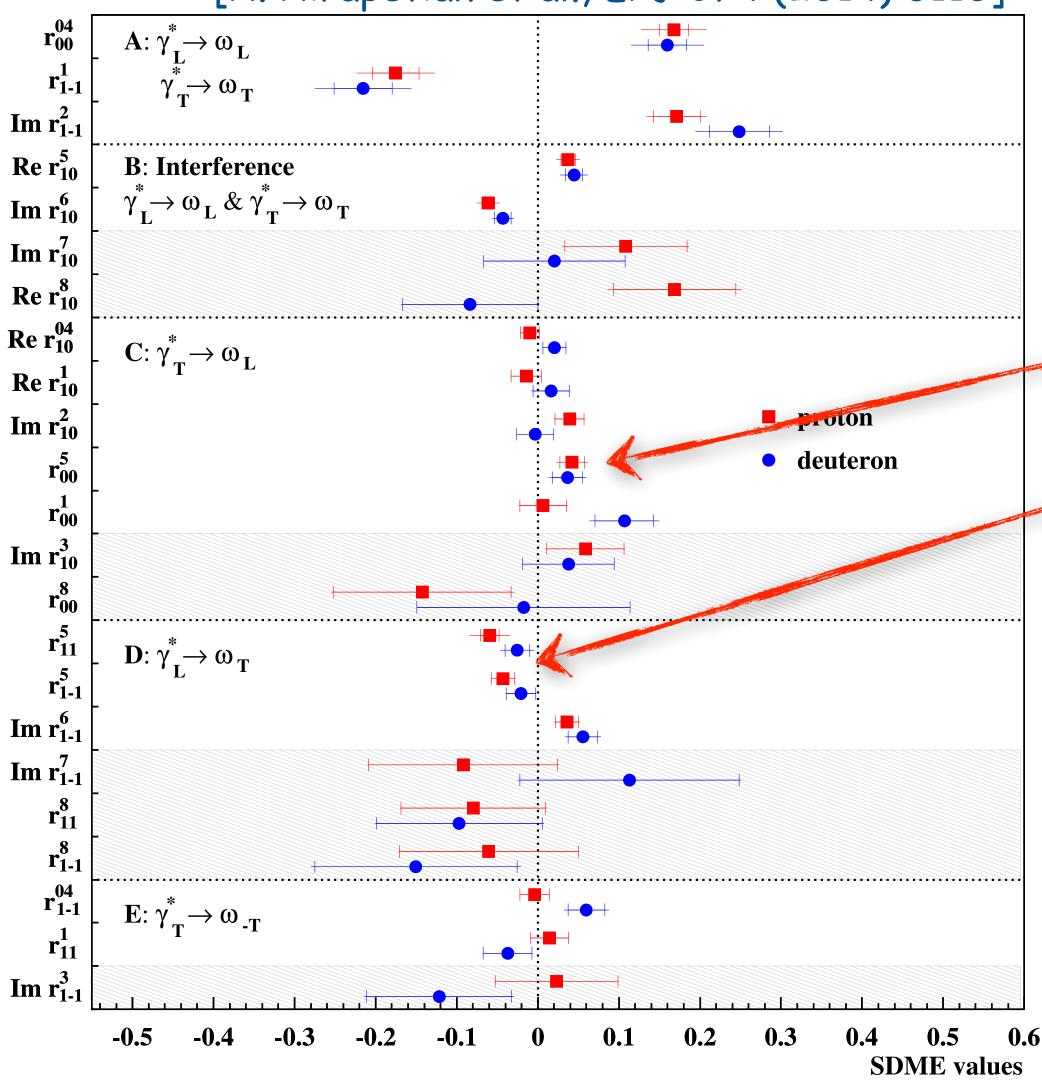
 $+\sqrt{2\epsilon(1-\epsilon)}\sin\Phi\left(r_{11}^{8}\sin^{2}\Theta+r_{00}^{8}\cos^{2}\Theta-\sqrt{2}\operatorname{Re}\left\{r_{10}^{8}\right\}\sin2\Theta\cos\phi-r_{1-1}^{8}\sin^{2}\Theta\cos2\phi\right)\right].$ Gunar Schnell 62 HERA-4-EIC — June 8-10, 2022





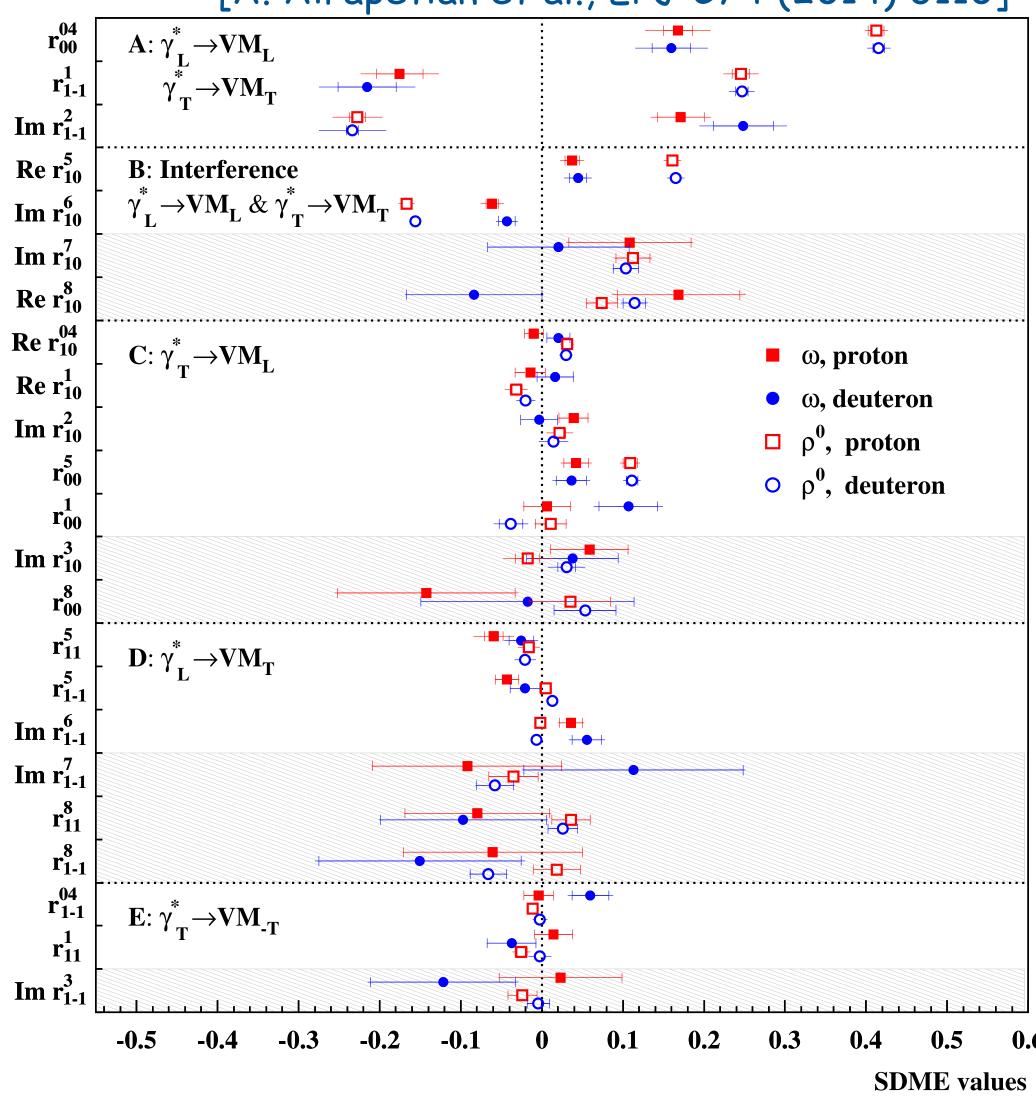
helicity-conserving SDMEs dominate

[A. Airapetian et al., EPJ C74 (2014) 3110]



- helicity-conserving SDMEs dominate
- hardly any violation of SCHC, except maybe for
 - r_{00}^5
 - $r_{11}^5 + r_{1-1}^5 \Im r_{1-1}^6$

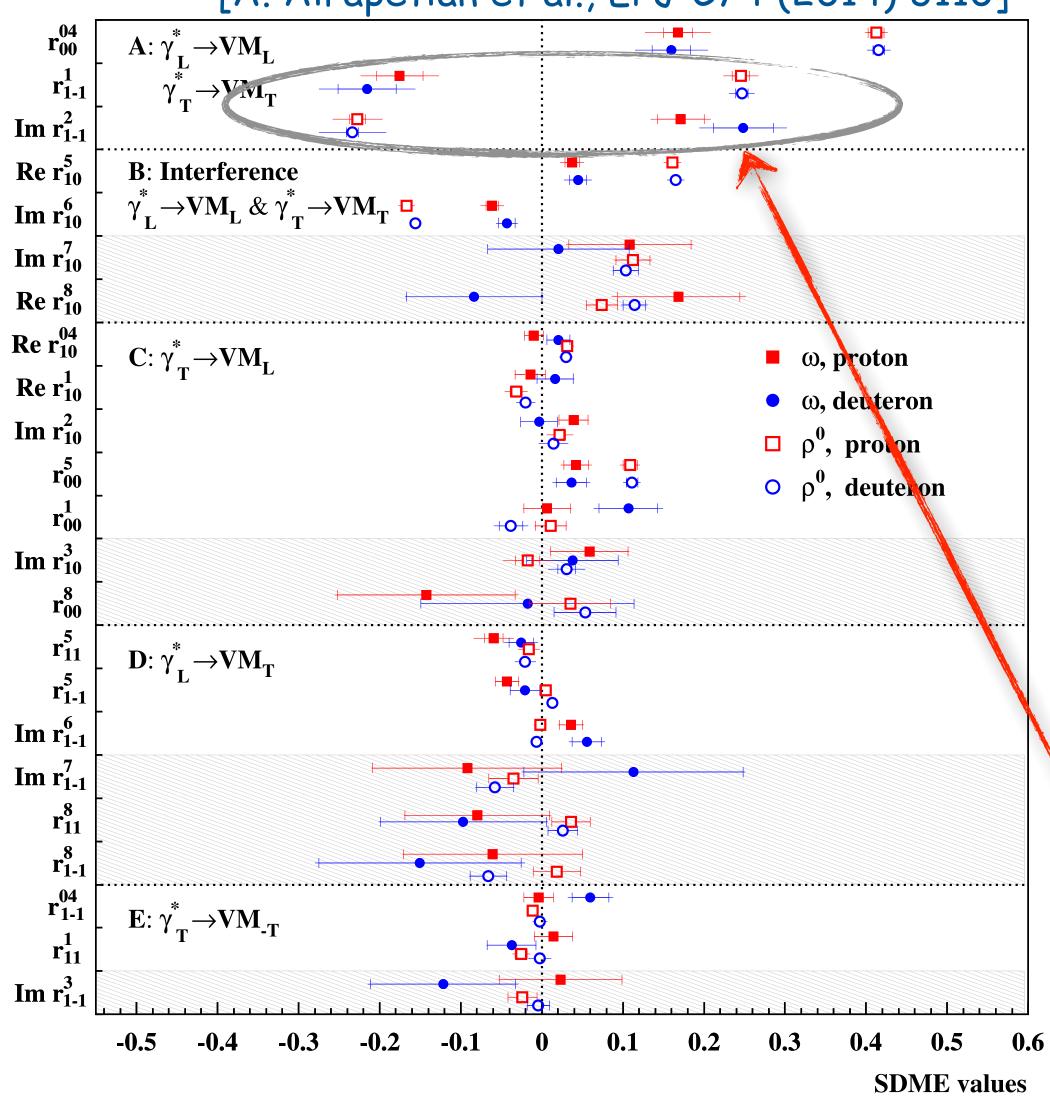
[A. Airapetian et al., EPJ C74 (2014) 3110]



- helicity-conserving SDMEs dominate
- hardly any violation of SCHC, except maybe for
 - r_{00}^5
 - $r_{11}^5 + r_{1-1}^5 \Im r_{1-1}^6$

• interference smaller than for ρ^0 ...

[A. Airapetian et al., EPJ C74 (2014) 3110]



- helicity-conserving SDMEs dominate
- hardly any violation of SCHC, except maybe for
 - r_{00}^5
 - $r_{11}^5 + r_{1-1}^5 \Im r_{1-1}^6$
- interference smaller than for ρ^0 ...
- ... and opposite signs for

$$r_{1-1}^1 \& \Im r_{1-1}^2$$

exclusive meson production

- analyses only use subset of data
 - high-statistics data set from 2006/07 with dedicated recoil-proton detector not used so far
- ullet corresponding analysis for ϕ started but not finished / published
- analysis can be expanded to, e.g., pion-pairs
 - only HERA-I data published: PLB 599 (2004) 212
- exclusive pion/kaon cross sections
 - only pions (w/o 2006/07 data) published: PLB 659 (2008) 486
- exclusive kaon spin-asymmetries
 - only pions published with partially surprisingly large asym's: PLB 682 (2010) 345
 - kaons in SIDIS exhibit large asymmetries!

(semi)-inclusive hadron production

- beam-helicity transfer to Lambda being analyzed in DIS regime (spin-dependent fragmentation function)
 - preliminary results for high-statistics quasi-photoproduction, but not published
- longitudinal and transverse target-spin transfer in quasi-photoproduction
 - preliminary results, but not published
- charged pion and kaon multiplicities: subset of data published: PRD 87 (2013) 074029
 - high-statistics 2006/07 data set not included; fully differential analysis missing
 - opi0 and eta also interesting, preliminary studies exist
- hadron production in nuclear environment; K- enhancement at large x&z ongoing

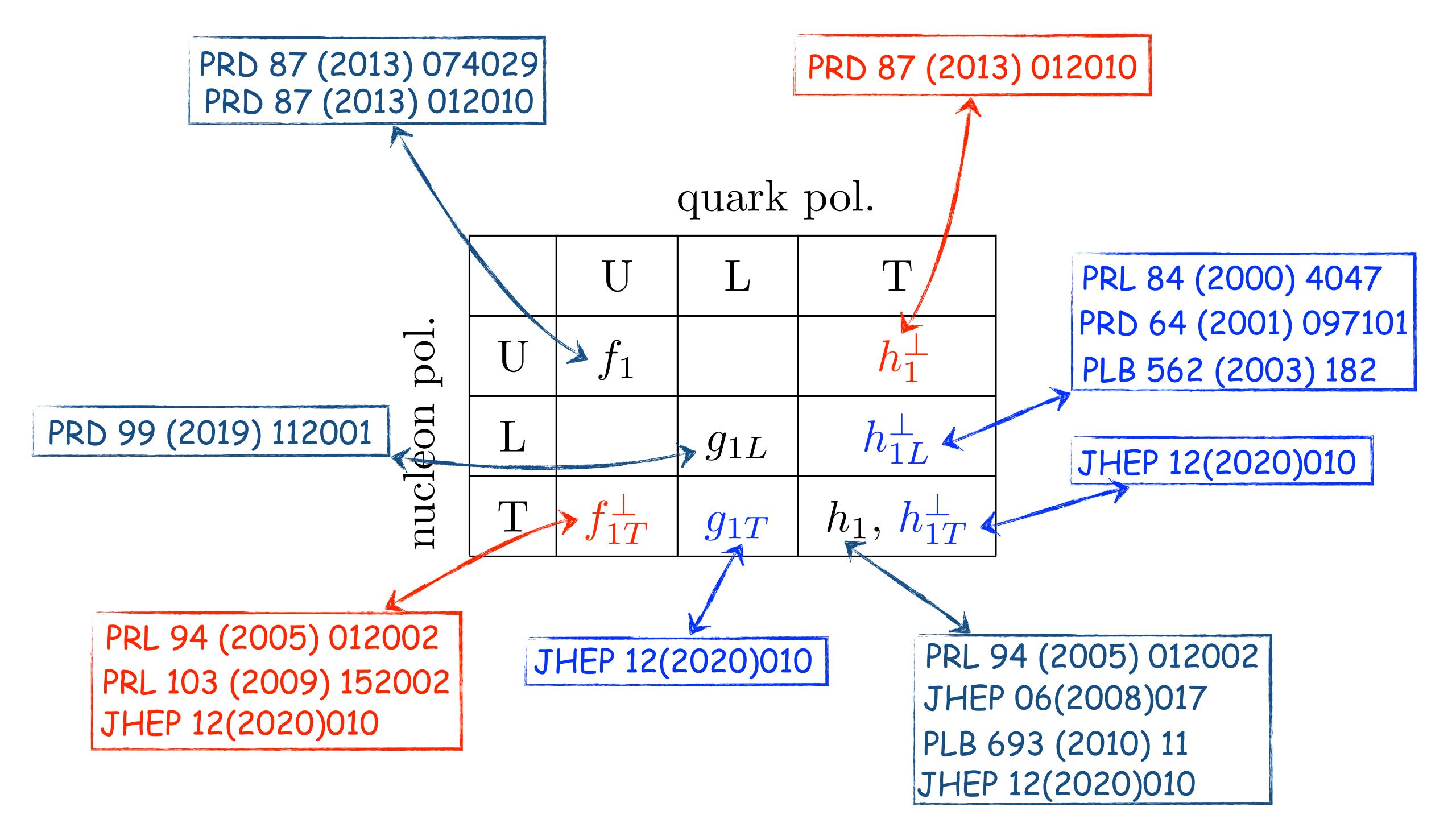
(semi)-inclusive hadron production

- ALT in inclusive pion and kaon production
 - \bullet A_{UT} published; sneak-preview of A_{LT} exists coming out from summer-student project
- beam-spin asymmetry in target-current-region hadron correlations
 - novel distributions (fracture functions etc.)
- beam-spin asymmetry in di-hadron production
 - transverse target-spin asymmetry published for pion pairs: JHEP 06 (2008) 017
- on in general, hadron production data in RIVET for Monte Carlo tuning
 - important kinematic region between high-energy and photo-production domains

summary

- HERMES was a latecomer to HERA
 - brought a new, exciting, and very successful spin to the physics program
 - focus on spin asymmetries in inclusive, semi-inclusive, and exclusive processes, but also on hadronization studies (including hadronization in nuclear environment)
- kinematic regime complementary to that of the EIC and the other HERA exp's
- analyses still ongoing with still a quite range of topics ... limited mainly by manpower
- while not 1:1 transferable to the EIC (e.g., fixed-target vs. collider), many analysis concepts can serve as a blue print for several studies to come at the EIC, but also at JLab
 - worthwhile to put some effort in keeping the knowledge alive until first related
 EIC data becomes available

backup slides



Published for SISSA by 🖺 Springer

RECEIVED: July 31, 2020 ACCEPTED: October 4, 2020 Published: December 2, 2020

I

Щ

N

N

Azimuthal single- and double-spin asymmetries in semi-inclusive deep-inelastic lepton scattering by transversely polarized protons

The HERMES Collaboration

- A. Airapetian, 13,16 N. Akopov, 26 Z. Akopov, 6 E.C. Aschenauer, 7 W. Augustyniak, 25
- R. Avakian, 26,a A. Bacchetta, 21 S. Belostotski, 19,a V. Bryzgalov, 20 G.P. Capitani, 11
- E. Cisbani, ²² G. Ciullo, ¹⁰ M. Contalbrigo, ¹⁰ W. Deconinck, ⁶ R. De Leo, ²
- E. De Sanctis, 11 M. Diefenthaler, 9 P. Di Nezza, 11 M. Düren, 13 G. Elbakian, 26
- F. Ellinghaus, 5 A. Fantoni, 11 L. Felawka, 23 G. Gavrilov, 6,19,23 V. Gharibyan, 26
- D. Hasch, 11 Y. Holler, 6 A. Ivanilov, 20 H.E. Jackson, 1,a S. Joosten, 12 R. Kaiser, 14
- G. Karyan, 6,26 E. Kinney, 5 A. Kisselev, 19 V. Kozlov, 17 P. Kravchenko, 9,19 L. Lagamba, 2
- L. Lapikás, ¹⁸ I. Lehmann, ¹⁴ P. Lenisa, ¹⁰ W. Lorenzon, ¹⁶ S.I. Manaenkov, ¹⁹
- B. Marianski, ^{25,a} H. Marukyan, ²⁶ Y. Miyachi, ²⁴ A. Movsisyan, ^{10,26} V. Muccifora, ¹¹
- Y. Naryshkin,¹⁹ A. Nass,⁹ G. Nazaryan,²⁶ W.-D. Nowak,⁷ L.L. Pappalardo,¹⁰
- P.E. Reimer, A.R. Reolon, 11 C. Riedl, 7,15 K. Rith, G. Rosner, A. Rostomyan, 6
- J. Rubin, ¹⁵ D. Ryckbosch, ¹² A. Schäfer, ²¹ G. Schnell, ^{3,4,12} B. Seitz, ¹⁴ T.-A. Shibata, ²⁴
- V. Shutov,⁸ M. Statera,¹⁰ A. Terkulov,¹⁷ M. Tytgat,¹² Y. Van Haarlem,¹²
- C. Van Hulse, ¹² D. Veretennikov, ^{3,19} I. Vilardi, ² S. Yaschenko, ⁹ D. Zeiler, ⁹
- B. Zihlmann⁶ and P. Zupranski²⁵

OPEN ACCESS, © The Authors. Article funded by SCOAP³.

https://doi.org/10.1007/JHEP12(2020)010

Azimuthal	modulation	Sign	ificant	non-va	nishing	Fourie	r ampli	tude
		π^+	π^-	K^+	K^-	p	π^0	$ar{p}$
$\sin(\phi + \phi_S)$	[Collins]	√	√	√		\checkmark		
$\sin (\phi - \phi_S)$	[Sivers]	√		\checkmark	\checkmark	\checkmark	(√)	\checkmark
$\sin (3\phi - \phi_S)$	[Pretzelosity]							
$\sin{(\phi_S)}$		(√)	\checkmark		\checkmark			
$\sin(2\phi - \phi_S)$								(\checkmark)
$\sin(2\phi + \phi_S)$				\checkmark				
$\cos\left(\phi-\phi_S\right)$	[Worm-gear]	√	(\checkmark)	(\checkmark)				
$\cos\left(\phi+\phi_S\right)$								
$\cos\left(\phi_S ight)$				\checkmark				
$\cos\left(2\phi - \phi_S\right)$								

¹Physics Division, Argonne National Laboratory, Argonne, Illinois 60439-4843, U.S.A.

²Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70124 Bari, Italy

³Department of Theoretical Physics, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain

⁴IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain

⁵Nuclear Physics Laboratory, University of Colorado, Boulder, Colorado 80309-0390, U.S.A.

⁶DESY, 22603 Hamburg, Germany

⁷DESY, 15738 Zeuthen, Germany

⁸Joint Institute for Nuclear Research, 141980 Dubna, Russia

^aDeceased.

Published for SISSA by 🗹 Springer

RECEIVED: July 31, 2020 ACCEPTED: October 4, 2020 PUBLISHED: December 2, 2020

H

Н

N

Azimuthal single- and double-spin asymmetries in semi-inclusive deep-inelastic lepton scattering by transversely polarized protons

The HERMES Collaboration

- A. Airapetian, ^{13,16} N. Akopov, ²⁶ Z. Akopov, ⁶ E.C. Aschenauer, ⁷ W. Augustyniak, ²⁵
- R. Avakian, 26,a A. Bacchetta, 21 S. Belostotski, 19,a V. Bryzgalov, 20 G.P. Capitani, 11
- E. Cisbani, ²² G. Ciullo, ¹⁰ M. Contalbrigo, ¹⁰ W. Deconinck, ⁶ R. De Leo, ²
- E. De Sanctis, 11 M. Diefenthaler, 9 P. Di Nezza, 11 M. Düren, 13 G. Elbakian, 26
- F. Ellinghaus, ⁵ A. Fantoni, ¹¹ L. Felawka, ²³ G. Gavrilov, 6,19,23 V. Gharibyan, ²⁶
- D. Hasch,¹¹ Y. Holler,⁶ A. Ivanilov,²⁰ H.E. Jackson,^{1,a} S. Joosten,¹² R. Kaiser,¹⁴
- G. Karyan, 6,26 E. Kinney, 5 A. Kisselev, 19 V. Kozlov, 17 P. Kravchenko, 9,19 L. Lagamba, 2
- L. Lapikás, ¹⁸ I. Lehmann, ¹⁴ P. Lenisa, ¹⁰ W. Lorenzon, ¹⁶ S.I. Manaenkov, ¹⁹
- B. Marianski, 25,a H. Marukyan, 26 Y. Miyachi, 24 A. Movsisyan, 10,26 V. Muccifora, 11
- Y. Naryshkin,¹⁹ A. Nass,⁹ G. Nazaryan,²⁶ W.-D. Nowak,⁷ L.L. Pappalardo,¹⁰
- P.E. Reimer, A.R. Reolon, 11 C. Riedl, 7,15 K. Rith, G. Rosner, A. Rostomyan, 6
- J. Rubin, ¹⁵ D. Ryckbosch, ¹² A. Schäfer, ²¹ G. Schnell, ^{3,4,12} B. Seitz, ¹⁴ T.-A. Shibata, ²⁴
- V. Shutov,⁸ M. Statera,¹⁰ A. Terkulov,¹⁷ M. Tytgat,¹² Y. Van Haarlem,¹²
- C. Van Hulse, ¹² D. Veretennikov, ^{3,19} I. Vilardi, ² S. Yaschenko, ⁹ D. Zeiler, ⁹
- B. Zihlmann⁶ and P. Zupranski²⁵

OPEN ACCESS, © The Authors. Article funded by SCOAP³.

 $\rm https://doi.org/10.1007/JHEP12(2020)010$

Azimuthal	modulation	Sign	ificant	non-va	nishing	Fourier	r ampli	tude
		π^+	π^-	K^+	K^-	p	π^{0}	$ar{p}$
$\sin(\phi + \phi_S)$	[Collins]	√	\checkmark	\checkmark		✓		
$\sin\left(\phi-\phi_S\right)$	[Sivers]	\checkmark		\checkmark	\checkmark	\checkmark	(\checkmark)	\checkmark
$\sin\left(3\phi-\phi_S\right)$	[Pretzelosity]							
$\sin\left(\phi_S ight)$		(\checkmark)	\checkmark		\checkmark			
$\sin\left(2\phi-\phi_S\right)$								(\checkmark)
$\sin\left(2\phi+\phi_S\right)$				\checkmark				
$\cos\left(\phi-\phi_S\right)$	[Worm-gear]	\checkmark	(\checkmark)	(\checkmark)				
$\cos\left(\phi+\phi_S\right)$			M					
$\cos\left(\phi_S ight)$				\checkmark				
$\cos\left(2\phi-\phi_S\right)$				×				

¹Physics Division, Argonne National Laboratory, Argonne, Illinois 60439-4843, U.S.A.

²Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70124 Bari, Italy

³Department of Theoretical Physics, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain

⁴IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain

⁵Nuclear Physics Laboratory, University of Colorado, Boulder, Colorado 80309-0390, U.S.A.

⁶DESY, 22603 Hamburg, Germany

⁷DESY, 15738 Zeuthen, Germany

⁸Joint Institute for Nuclear Research, 141980 Dubna, Russia

^aDeceased.

Published for SISSA by 2 Springer

RECEIVED: July 31, 2020 ACCEPTED: October 4, 2020 PUBLISHED: December 2, 2020

Azimuthal single- and double-spin asymmetries in semi-inclusive deep-inelastic lepton scattering by transversely polarized protons

The HERMES Collaboration

- A. Airapetian, ^{13,16} N. Akopov, ²⁶ Z. Akopov, ⁶ E.C. Aschenauer, ⁷ W. Augustyniak, ²⁵
- R. Avakian, 26,a A. Bacchetta, 21 S. Belostotski, 19,a V. Bryzgalov, 20 G.P. Capitani, 11
- E. Cisbani, ²² G. Ciullo, ¹⁰ M. Contalbrigo, ¹⁰ W. Deconinck, ⁶ R. De Leo, ²
- E. De Sanctis, 11 M. Diefenthaler, 9 P. Di Nezza, 11 M. Düren, 13 G. Elbakian, 26
- F. Ellinghaus, ⁵ A. Fantoni, ¹¹ L. Felawka, ²³ G. Gavrilov, 6,19,23 V. Gharibyan, ²⁶
- D. Hasch, 11 Y. Holler, 6 A. Ivanilov, 20 H.E. Jackson, 1,a S. Joosten, 12 R. Kaiser, 14
- G. Karyan, 6,26 E. Kinney, 5 A. Kisselev, 19 V. Kozlov, 17 P. Kravchenko, 9,19 L. Lagamba, 2
- L. Lapikás, ¹⁸ I. Lehmann, ¹⁴ P. Lenisa, ¹⁰ W. Lorenzon, ¹⁶ S.I. Manaenkov, ¹⁹
- B. Marianski, 25,a H. Marukyan, 26 Y. Miyachi, 24 A. Movsisyan, 10,26 V. Muccifora, 11
- Y. Naryshkin, 19 A. Nass, 9 G. Nazaryan, 26 W.-D. Nowak, 7 L.L. Pappalardo, 10
- P.E. Reimer, A.R. Reolon, 11 C. Riedl, 7,15 K. Rith, G. Rosner, A. Rostomyan, 6
- J. Rubin, ¹⁵ D. Ryckbosch, ¹² A. Schäfer, ²¹ G. Schnell, ^{3,4,12} B. Seitz, ¹⁴ T.-A. Shibata, ²⁴
- V. Shutov,⁸ M. Statera,¹⁰ A. Terkulov,¹⁷ M. Tytgat,¹² Y. Van Haarlem,¹²
- C. Van Hulse, ¹² D. Veretennikov, ^{3,19} I. Vilardi, ² S. Yaschenko, ⁹ D. Zeiler, ⁹
- B. Zihlmann⁶ and P. Zupranski²⁵

OPEN ACCESS, © The Authors Article funded by SCOAP³.

https://doi.org/10.1007/JHEP12(2020)010

JHEP12 (2020) 01

3d	1d

Azimuthal	modulation	Sign	ificant	non-va	nishing	Fourie	r ampli	tude
		π^+	π^{-}	K^+	K^-	p	π^0	$ar{p}$
$\sin(\phi + \phi_S)$	[Collins]	√	\checkmark	\checkmark		√		
$\sin (\phi - \phi_S)$	[Sivers]	√		\checkmark	\checkmark	\checkmark	(√)	\checkmark
$\sin(3\phi - \phi_S)$	[Pretzelosity]							
$\sin{(\phi_S)}$		(√)	\checkmark		\checkmark			
$\sin(2\phi - \phi_S)$								(\checkmark)
$\sin(2\phi + \phi_S)$				\checkmark				
$\cos(\phi - \phi_S)$	[Worm-gear]	√	(\checkmark)	(\checkmark)				
$\cos(\phi + \phi_S)$			M					
$\cos\left(\phi_S ight)$			•	\checkmark				
$\cos(2\phi - \phi_S)$				M				

¹Physics Division, Argonne National Laboratory, Argonne, Illinois 60439-4843, U.S.A.

²Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70124 Bari, Italy

³Department of Theoretical Physics, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain

⁴IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain

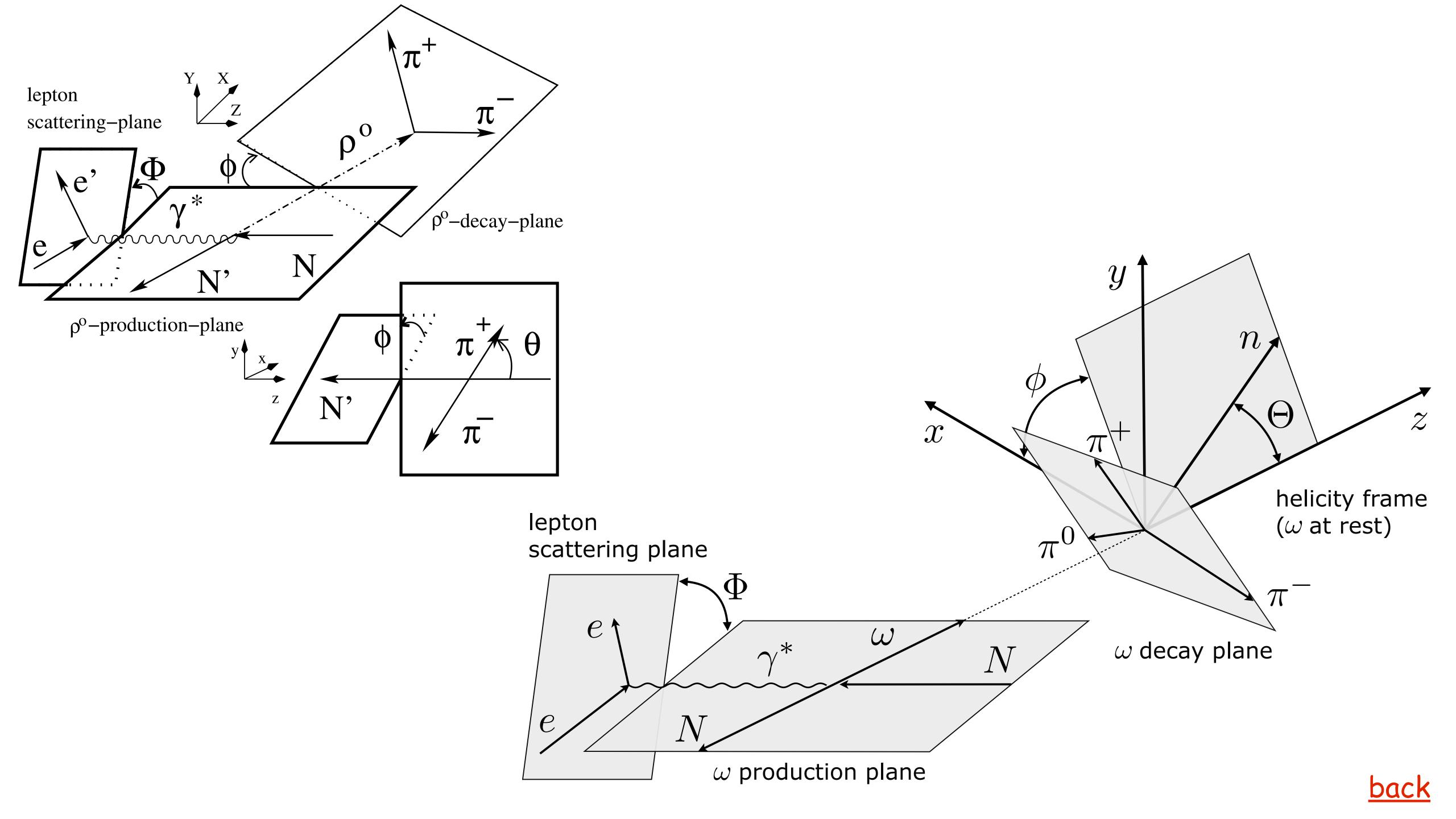
⁵Nuclear Physics Laboratory, University of Colorado, Boulder, Colorado 80309-0390, U.S.A.

⁶DESY, 22603 Hamburg, Germany

⁷DESY, 15738 Zeuthen, Germany

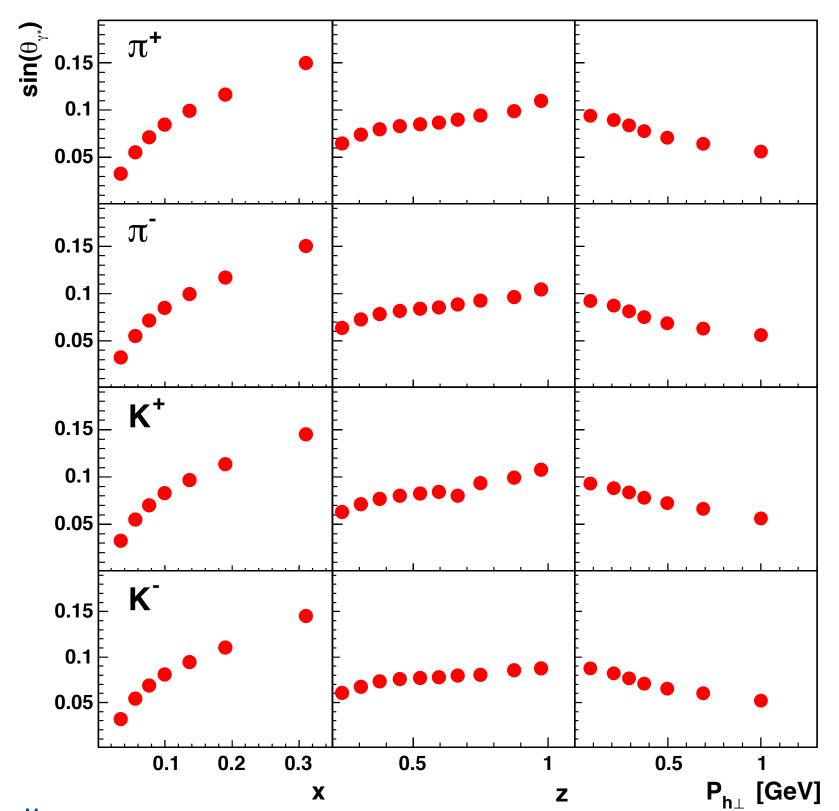
⁸Joint Institute for Nuclear Research, 141980 Dubna, Russia

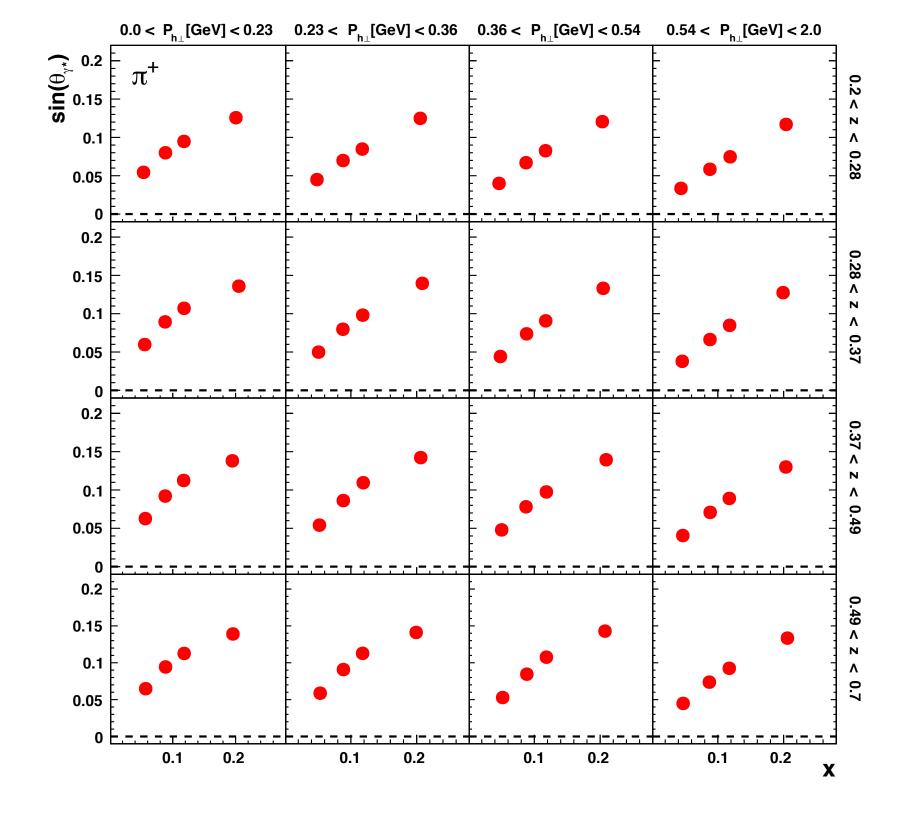
^aDeceased.

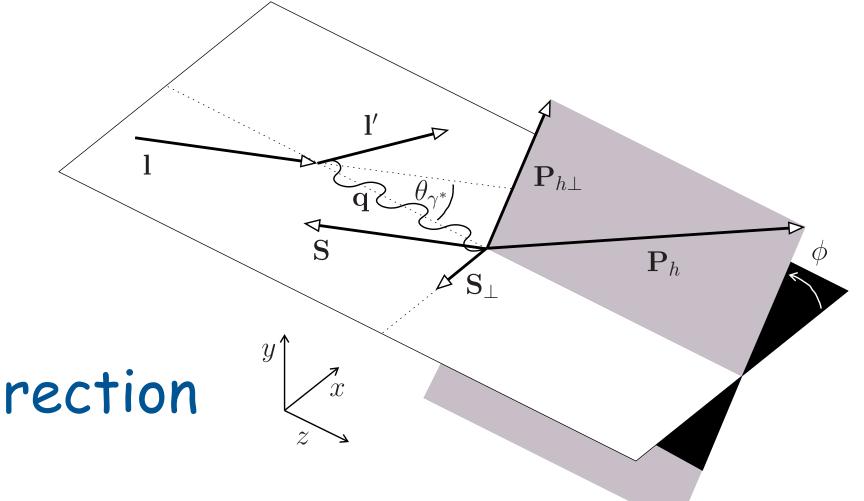


mixing of target polarizations

- theory done w.r.t. virtual-photon direction
- experiments use targets polarized w.r.t. lepton-beam direction
- mixing of longitudinal and transverse polarization effects



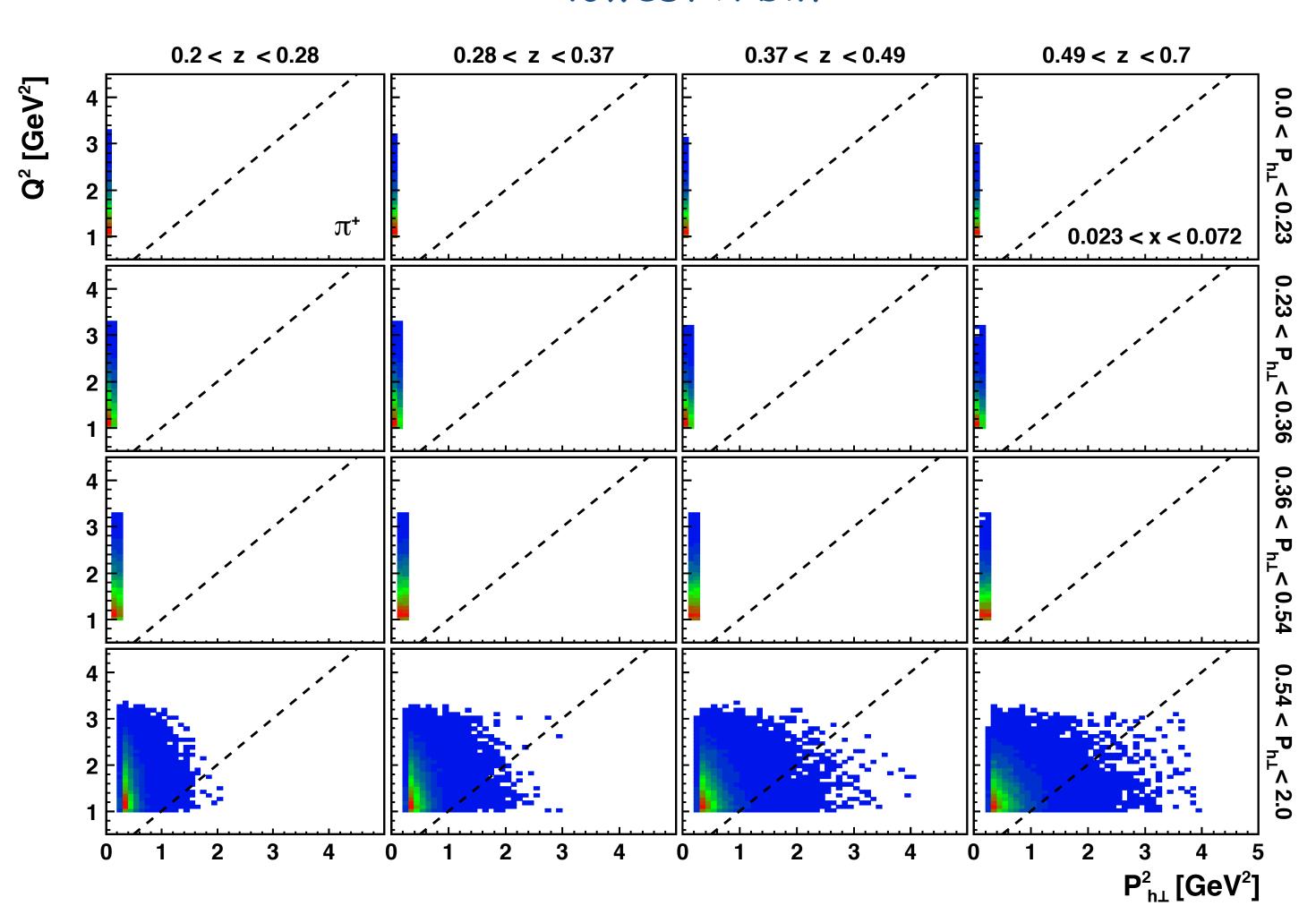




Gunar Schnell 72 HERA-4-EIC — June 8-10, 2022

TMD factorization: a 2-scale problem

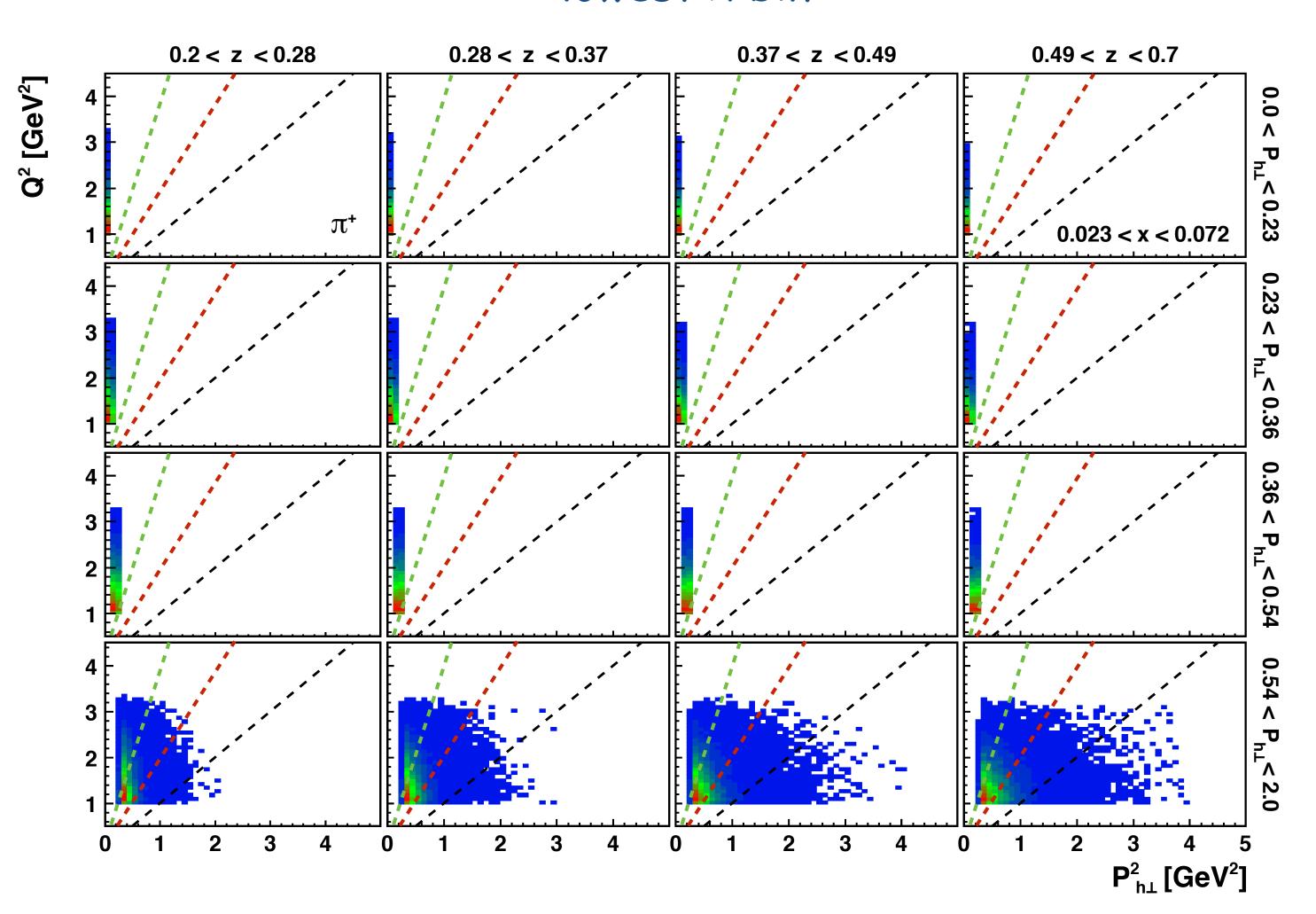
lowest x bin



$$- - - Q^2 = P^2_{h\perp}$$

TMD factorization: a 2-scale problem

lowest x bin



$$- - Q^2 = P^2_{h\perp}$$

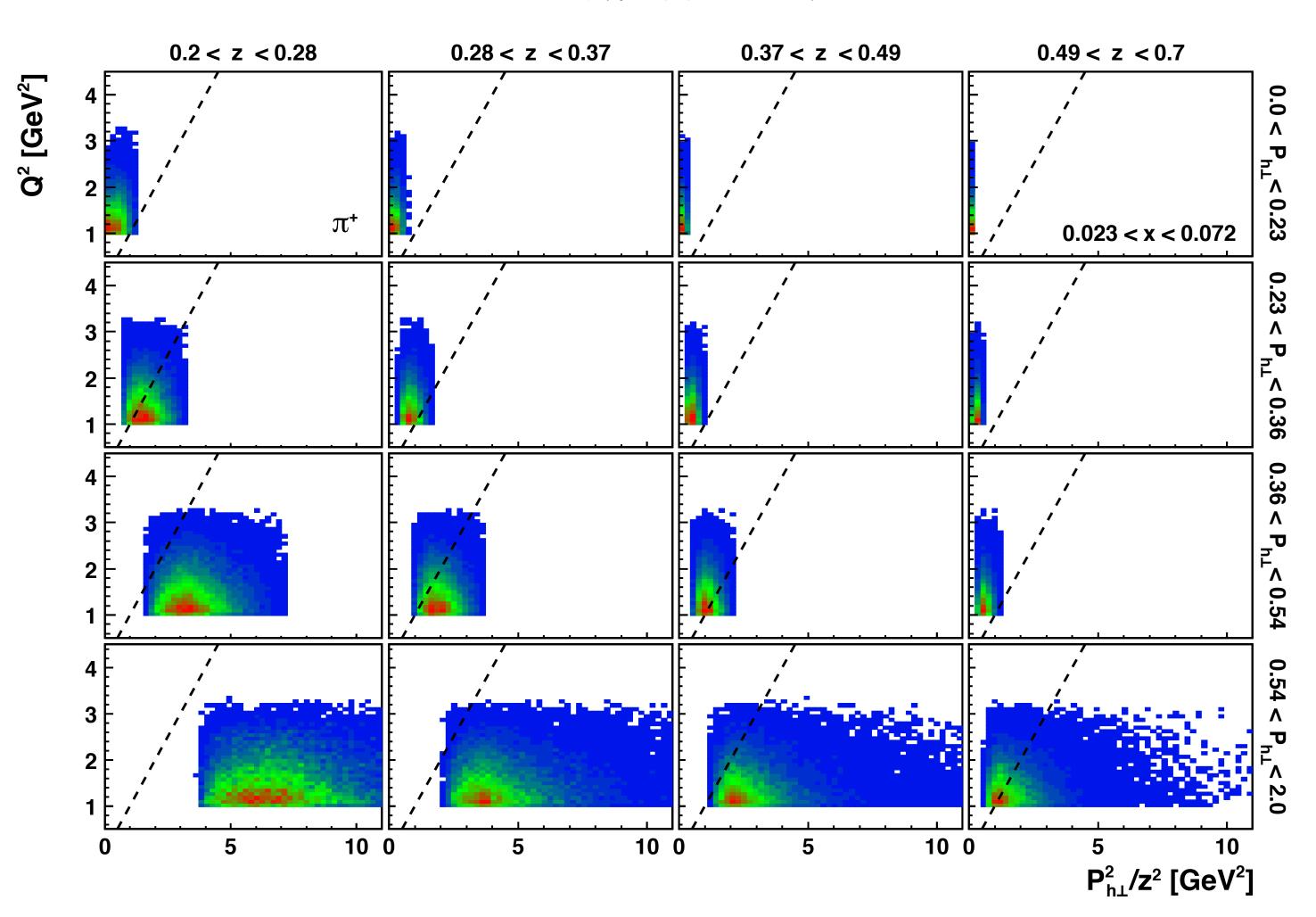
$$- - - Q^2 = 2 P^2_{h\perp}$$

$$- - - Q^2 = 4 P^2_{h\perp}$$

disclaimer: coloured lines drawn by hand

TMD factorization: a 2-scale problem

lowest x bin

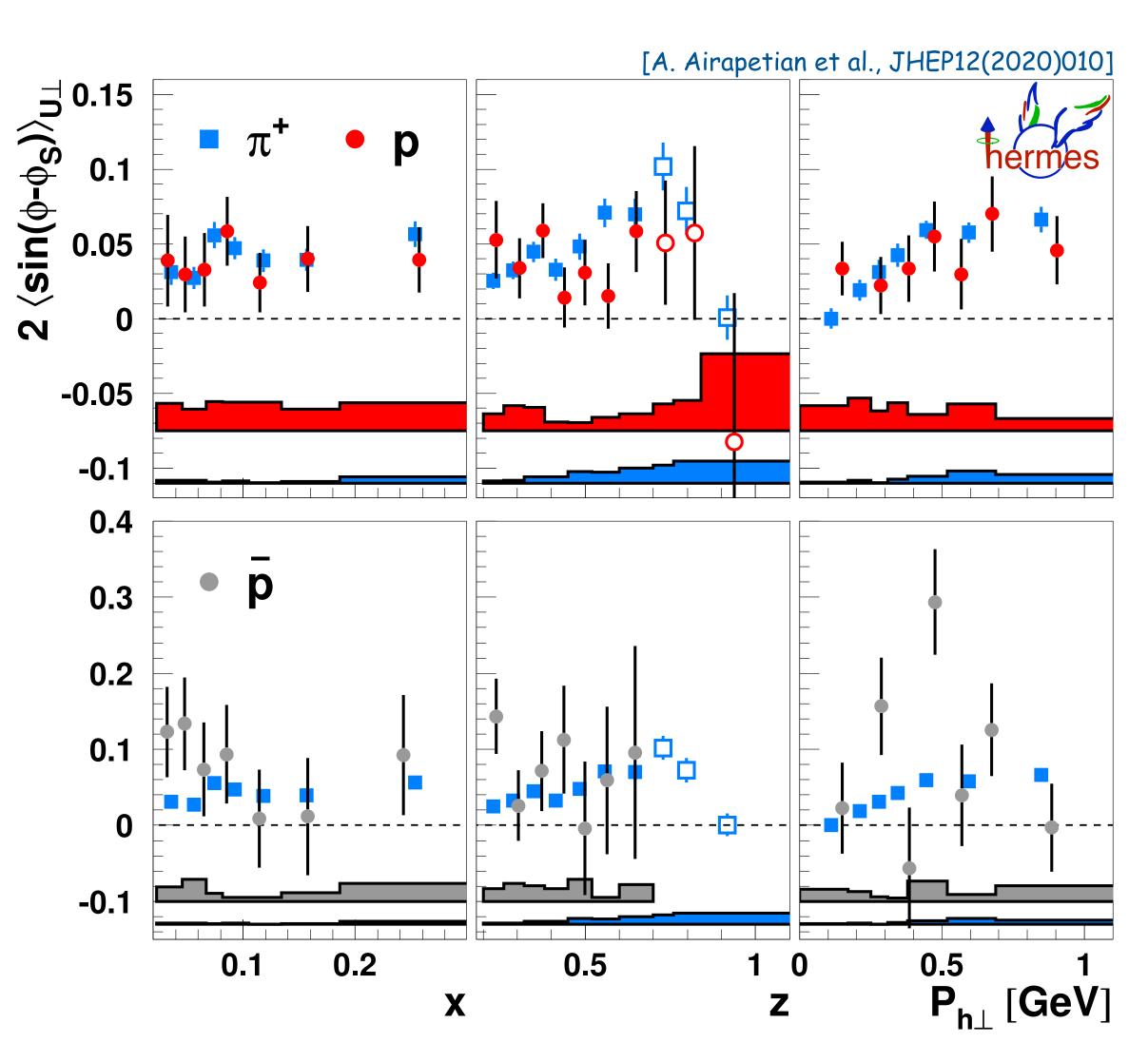


$$- - - Q^2 = P^2_{h\perp}/z^2$$

all other x-bins included in the Supplemental Material of JHEP12(2020)010

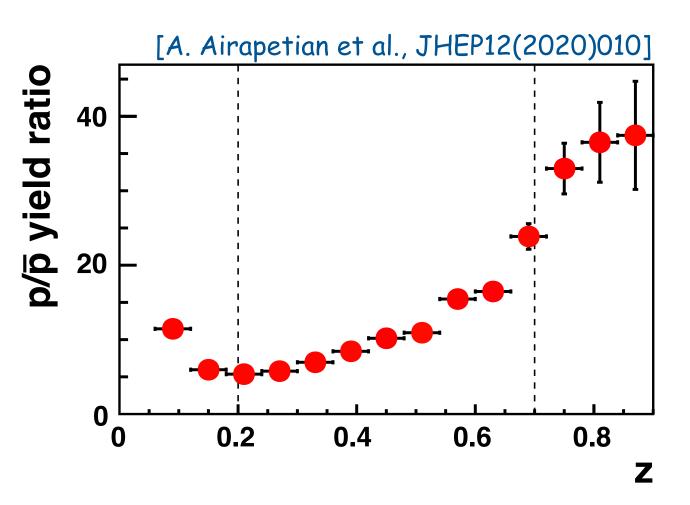
	U	${ m L}$	${ m T}$
U	f_1		h_1^{\perp}
$oxed{L}$		g_{1L}	h_{1L}^{\perp}
T	f_{1T}^{\perp}	g_{1T}	$igg h_1, h_{1T}^\perp$

Sivers amplitudes pions vs. (anti)protons



similar-magnitude asymmetries for (anti)protons and pions

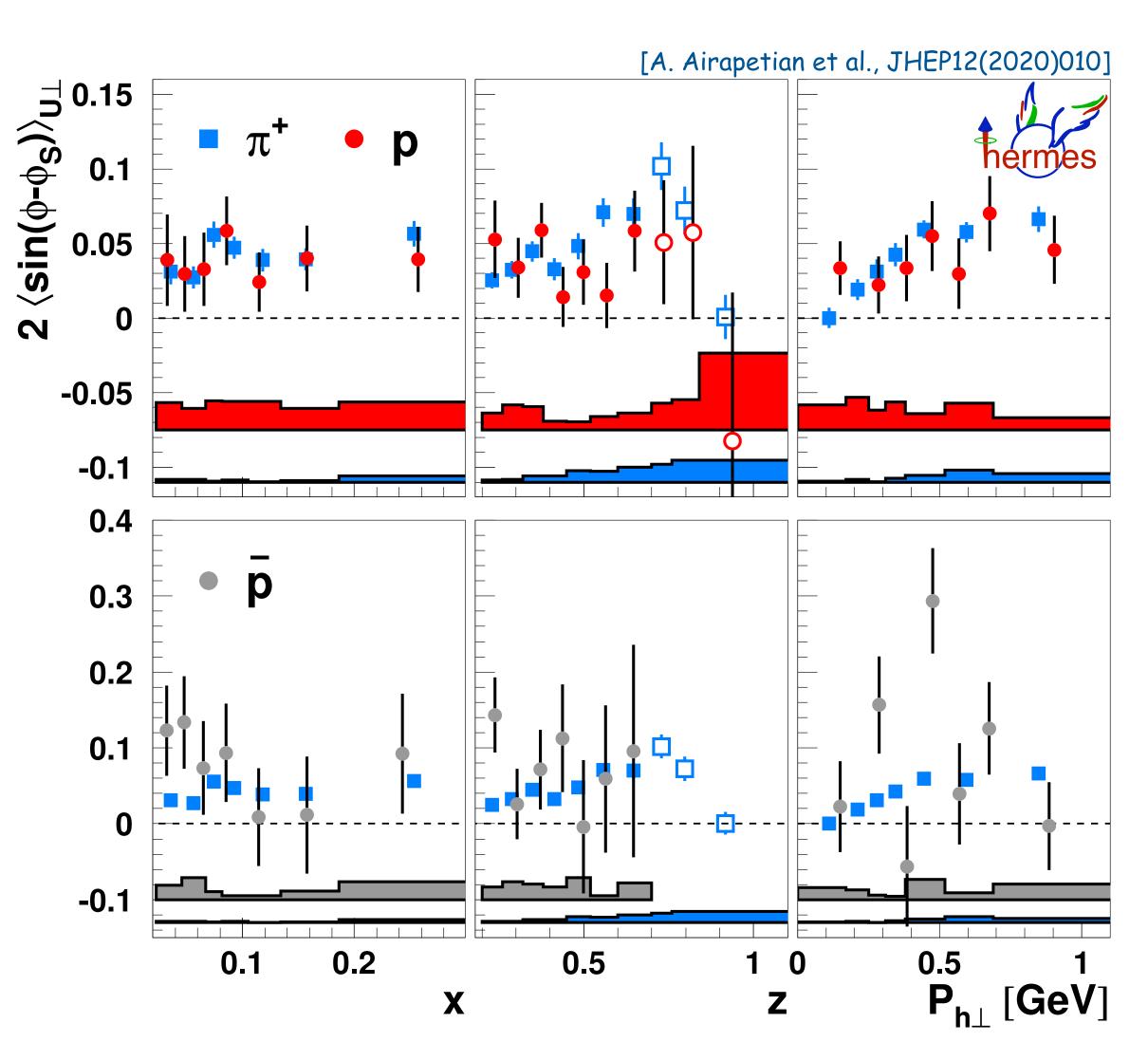
⇒consequence of u-quark dominance in both cases?



possibly, onset of target fragmentation only at lower z

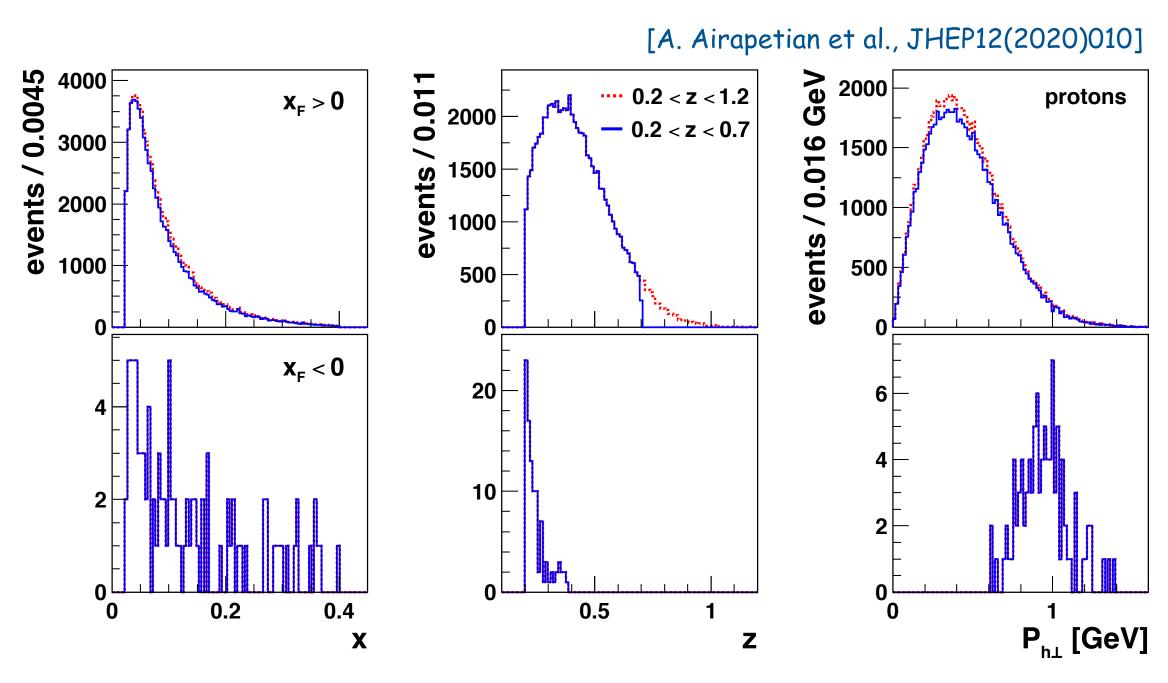
	U	${ m L}$	$oxed{T}$
U	f_1		h_1^{\perp}
$oxed{L}$		g_{1L}	h_{1L}^{\perp}
Γ	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^{\perp}

Sivers amplitudes pions vs. (anti)protons



similar-magnitude asymmetries for (anti)protons and pions

⇒consequence of u-quark dominance in both cases?



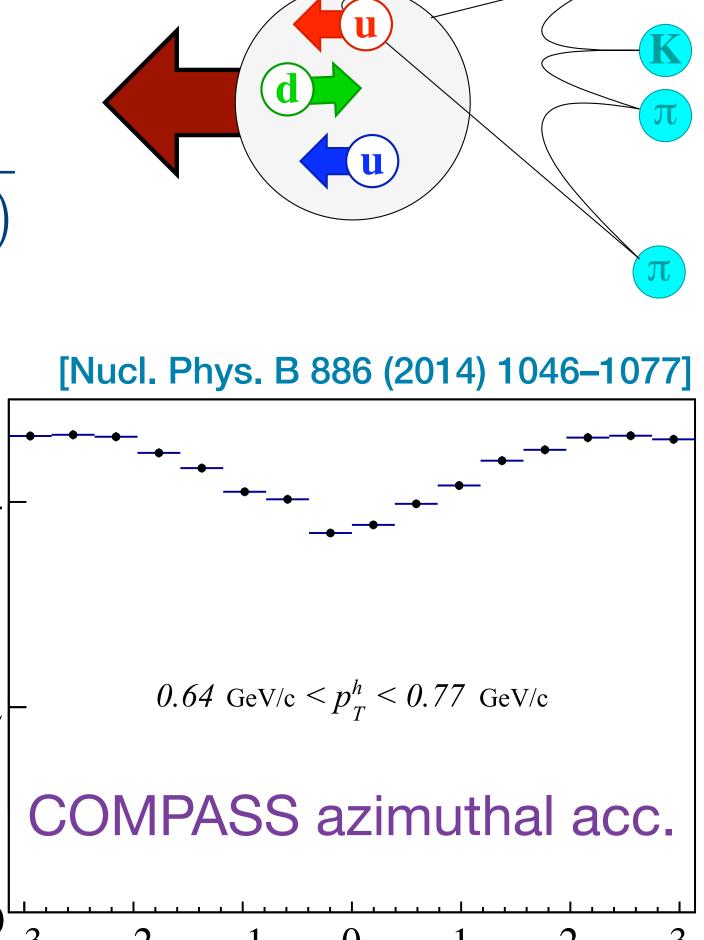
possibly, onset of target fragmentation only at lower z

detector effects in SIDIS

- one example of "collinear case": $A_{11}(x,z,Q^2)$
 - involves integration over typical TMD variables

$$\tilde{A}_{\parallel}^{h}(x,Q^{2},z) = \frac{\int dP_{h\perp} d\phi \, \sigma_{\parallel}^{h} \left(x,Q^{2},z,P_{h\perp},\phi\right) \, \xi(\phi,P_{h\perp})}{\int dP_{h\perp} d\phi \, \sigma_{UU}^{h} \left(x,Q^{2},z,P_{h\perp},\phi\right) \, \xi(\phi,P_{h\perp})}$$

- both cross sections depend on TMD variables, and this correlated with kinematics
 - couples to acceptance dependence on those variables
 - → can easily reduce/increase observed asymmetry [same is true for hadron multiplicities]
- ideally, fully differential analysis
 - in practice, resort to more approximate methods with reliable systematics



(rad)

HERA-4-EIC - June 8-10, 2022

(E, p)

Gunar Schnell 77