#### Deciphering QCD:

#### From PDFs to the underlying QCD characteristics

#### Fred Olness SMU

Thanks for substantial input from my friends & colleagues



xFitter



EIC opportunities for Snowmass

25 January 2021

#### **Landscape of the Physics Frontier**



F. Olness PDF uncertainties are among the leading uncertainties in the first LHC precision measurements by CMS" Jan Kretzschmar

arXiv:hep-ph/9907340

#### /9907340 "QCD is our most perfect physical theory" Frank Wilczek

**Electro-**Weak Strong Gravitation magnetism Interaction Interaction **PDFs & nPDFs Generalized PDFs Spin Structure Lattice QCD Quark-Gluon Plasma**  $\mathcal{L}_{QCD} = \overline{\psi}_q \left( i \gamma_\mu D^\mu - m_q 
ight) \psi_q$  –  $G^a_{\mu\nu}G^{\mu\nu}_a$ **QCD** is our most perfect physical theory What QCD Tells Us About Nature - and Why We Should Listen. Frank Wilczek In many respects, our most complex asymptotic freedom strong color confinement ... associated manifestations **Lessons: The Nature of Nature Combines HEP + NUC** "... alien, simple, beautiful, weird, & comprehensible" *interdisciplinary* 

#### 4 From Parameterization to a Deep Understanding ... LHC + EIC



F. Olness

... the motivation for nCTEQ



# The

# Physics

#### **nCTEQ** Wish List



F

www.ncteq.org

CTEQ

```
www.cteq.org
```

#### PDF General Issues:

• Proton PDF; nuclear corrections for interpreting heavy target DIS (Ar, Fe, Pb).

#### **Strange quark PDF:** *s*(*x*)

• Resolve tension between fixed-target ( $\nu N$ ,  $\ell N$ ) and collider expectations ( $W^{\pm}$ ,Z)

#### **Charm & Bottom:** c(x) & b(x)

- Multi-scale & resummation issues:  $Log(m_{cb}/Q)$
- "Fitted" charm:  $c(x) \neq 0$  at m<sub>c</sub>
- Intrinsic heavy flavors:  $c(x) \neq 0$  at  $Q < m_c$

#### Neutrino cross sections on heavy targets (Ar, Fe, Pb)

• Universality of Neutral Current ( $\gamma$ ) and Charged Current ( $W^{\pm}$ ) processes

#### **Expanded** {x,Q<sup>2</sup>} Kinematic Regime

- Small-x saturation, resummation: Log[1/x]
- Large-x higher twist:  $(M^2/Q^2)$
- Low Q<sup>2</sup> non-perturbative effects

Compilation by Fred Olness with helpful feedback from: Alberto Accardi, Tim Hobbs, Tomas Jezo, Thia Keppel, Michael Klasen, Karol Kovarik, Aleksander Kusina, Jorge Morfin, Pavel Nadolsky, Jeff Owens, Ingo Schienbein, Efrain Segarra, Steve Sekula, Ji-Young Yu

#### **nPDFs:** Extend Kinematic Reach in {x,Q<sup>2</sup>} **nC**

#### nCTEQ15HIX



8

#### W/Z Production at LHC and the strange PDF

#### nCTEQ15WZ

Eur.Phys.J.C 80 (2020) 10, 968

9

#### nuclear PDFs for lead (Pb)



## Challenging problems require good ideas & tools





#### **nCTEQ++** ... *modular* w/ standard interfaces

- A complete rewrite of the nCTEQ FORTRAN fitting code in C++
- Changed the code to allow for modules when building a PDF





*Strategy: use case studies to validate new nCTEQ++ framework* 

#### Grid Technology: ... to NLO and Beyond: ApplGrid, FastNLO, ...

12



#### MCFM Processes Library (v6.8)

MCFM: Vector boson pair production at the LHC, J. M.Campbell, R. K.Ellis and C.Williams, JHEP 1107, 018 (2011)

The APPLGRID Project: Tancredi Carli, Dan Clements, Amanda Cooper-Sarkar, Claire Gwenlan, Gavin P. Salam,<br/>Frank Siegert, Pavel Starovoitov, Mark Sutton.Eur.Phys.J. C66 (2010) 503-524

| nproc $f(p_1) + f(p_2) \rightarrow .$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Order                          | $\begin{array}{c} \mid H(\gamma(p_3) + \gamma(p_4)) + f(p_5) + f(p_6) [\text{in heavy top limit]} \\ \mid H(b(p_4) + \delta(p_4)) + f(p_5) + f(p_6) [\text{in heavy top limit]} \\ \mid H(\gamma^-(p_4) + \tau^+(p_6)) + f(p_5) + f(p_6) [\text{in heavy top limit]} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NLO<br>NLO<br>NLO  | $\begin{array}{l} 540 & H(b(p_1) + b(p_1)) + t(p_5) + q(p_6) \\ 541 & H(b(p_1) + \overline{b}(p_1)) + \overline{t}(p_5) + q(p_6) \\ \end{array} \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\frac{1}{1} \qquad W^+ (\rightarrow \nu(n_0) + e^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $+(n_{1}))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NLO                            | $ = I  H(\rightarrow W^+(\nu(p_k), e^+(p_k))W^-(e^-(p_k), \bar{\nu}(p_k))) + f(p_l) + \bar{f}(p_k) $ $ = I  H(\rightarrow Z(e^-(p_k), e^+(p_k))Z(\mu^-(p_k), \mu^+(p_k))) + f(p_l) + f(p_k) $ $ = I  H(0, p_l) + \bar{h}(p_k) + \bar{h}(p_$ | NLO<br>NLO         | 544 $H(b(p_3) + \tilde{b}(p_4)) + t(\nu(p_5) + e^+(p_6) + b(p_7)) + q(p_9)$ NLO<br>547 $H(b(p_3) + \tilde{b}(p_4)) + \tilde{t}(e^-(p_5) + \tilde{\nu}(p_6) + b(p_7)) + q(p_9)$ NLO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\begin{array}{c c} 1 & W & (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - (7 \nu (p_3) + c) \\ 0 & W - ($ | $(P_4))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NLO                            | $ \begin{array}{c} & H(r_{1}(p_{3}) + g_{4}(p_{1}) + f(p_{3}) + f(p_{4}) + f(p_{7}) + f(p_{7}) + g_{7}(p_{1}) + g_{7}(p_{1}) \\ & H(r_{1}(p_{3}) + g_{7}^{+}(p_{4})) + f(p_{3}) + f(p_{3}) + f(p_{7}) + f(p_{7}) \\ & H(r_{1}(p_{3}) + g_{7}(p_{3})) W^{-}(e^{-}(p_{3}), p(p_{3}))) + f(p_{7}) + f(p_{5}) + f(p_{5}) \\ & H(r_{1}(p_{3}) + g_{7}(p_{3})) W^{-}(e^{-}(p_{3}), p(p_{3}))) + f(p_{7}) + f(p_{5}) + f(p_{5}) \\ & H(r_{1}(p_{3}) + g_{7}(p_{3})) W^{-}(e^{-}(p_{3}), p(p_{3}))) + f(p_{7}) + f(p_{5}) \\ & H(r_{1}(p_{3}) + g_{7}(p_{3})) W^{-}(e^{-}(p_{3}), p(p_{3}))) + f(p_{7}) + f(p_{5}) \\ & H(r_{1}(p_{3}) + g_{7}(p_{3})) W^{-}(e^{-}(p_{3}), p(p_{3}))) + f(p_{7}) \\ & H(r_{1}(p_{3}) + g_{7}(p_{3})) W^{-}(e^{-}(p_{3}), p(p_{3})) \\ & H(r_{1}(p_{3}) + g_{7}(p_{3})) W^{-}(p_{3}) \\ & H(r_{1}(p_{3}) + g_{7}(p_{3})) \\ & H(r_{1}(p_{3}) + g_{7}(p_{3})) W^{-}(p_{3}) \\ & H(r_{1}(p_{3}) + g_{7}(p_{3})) \\ & H(r_{1}(p_{3}) +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                | $\frac{550}{551} \frac{H(\gamma(p_3) + \gamma(p_4)) + t(p_5) + q(p_6)}{H(\gamma(p_3) + \gamma(p_4)) + t(p_5) + q(p_6)} \frac{NLO}{NLO}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $0 \qquad W (\rightarrow e (p_3) + i)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\nu(p_4))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NLO                            | $\frac{1}{p_1} \frac{H(-Z(e^-(p_5), e^+(p_4))Z(\mu^-(p_5), \mu^+(p_6))] + f(p_7) + f(p_6) + f(p_6)}{1}$ $\frac{1}{p_1} \frac{f(p_3) + f(p_3)}{p_2} + f(p_3) +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NLO+F              | 554 $H(\gamma(p_3) + \gamma(p_4)) + t(\nu(p_5) + e^+(p_5) + b(p_7)) + q(p_3)$ NLO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 11 $W^+(\rightarrow \nu(p_2) + e^-)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $(p_{4}) + f(p_{5})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NLO                            | $ \begin{array}{c} : & f(p_1) + f(p_2) \rightarrow \gamma(p_3) + f(p_4) + f(p_5) \\ \downarrow & f(p_1) + f(p_2) \rightarrow \gamma(p_3) + b(p_4) \\ \downarrow & f(p_1) + f(p_2) \rightarrow \gamma(p_3) + b(p_4) \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .0                 | $\frac{1557}{560} \frac{H(\gamma(p_3) + \gamma(p_4)) + t(e^-(p_5) + \bar{\nu}(p_6) + b(p_7)) + q(p_9)}{1560} \frac{NLO}{2(e^-(p_3) + e^+(p_4)) + t(p_5) + q(p_6)} \frac{NLO}{NLO}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $10 \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (P4) + $J(P3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NLO                            | $f(p_1) + f(p_2) \rightarrow \gamma(p_3) + \gamma(p_4)$<br>$f(p_1) + f(p_2) \rightarrow \gamma(p_5) + \gamma(p_4)$<br>$f(p_6) + f(p_2) \rightarrow \gamma(p_5) + \gamma(p_4) + f(p_5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NLO+F<br>NLO+F     | 561 $Z[e - (p_3] + e + (p_1)] + \overline{\ell}(p_5) + q(p_6)$ NLO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $  12   W (\rightarrow \nu(p_3) + e)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $(p_4)) + b(p_5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NLO                            | $\frac{\gamma}{F(p_1) + f(p_2) \rightarrow \gamma(p_3) + \gamma(p_4) + \gamma(p_5)}$ $\frac{\gamma}{F(p_1) + f(p_2) \rightarrow \gamma(p_3) + e^+(p_4)) + \gamma(p_5)}$ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NLO+F<br>NLO+F     | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 13 $W^+(\rightarrow \nu(n_2) + e^-)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $(p_{4}) + \bar{c}(p_{5})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NLO                            | $\begin{array}{l} : & W^+(\rightarrow\nu(p_3)+e^+(p_4))+\gamma(p_5)+f(p_6)\\ \\ : & W^-(\rightarrow e^-(p_3)+\bar{\nu}(p_4))+\gamma(p_5) \end{array} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .0<br>NLO+F        | $\begin{array}{l} 564 \\ S66 \\$ |
| 10 $11$ $11$ $11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $(P_4)$ + $(P_5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LO                             | $\frac{f}{P} \frac{W^-(\rightarrow e^-(p_3) + \bar{\nu}(p_4)) + \gamma(p_5) + f(p_6)}{2^0(\rightarrow e^-(p_3) + e^+(p_4)) + \gamma(p_5)} = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NLO+F              | $\begin{array}{ll} 500 & \mathcal{L}(e - (p_3) + e + (p_4)) + i( \rightarrow v(p_5) + e^-(p_6) + 4(p_7)) + q(p_8) + f(p_9) & \text{IA} \\ 567 & \mathcal{Z}(e - (p_3) + e + (p_4)) + \bar{t}( \rightarrow e^-(p_5) + \bar{v}(p_9) + \bar{t}(p_7)) + q(p_8) & \text{NLO} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $  14   W^{+}(\rightarrow \nu(p_3) + e^{-}) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $(p_4) + c(p_5)$ [massless]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LO                             | $Z^{\nu}(\rightarrow e^{-}(p_{5}) + e^{-}(p_{4})) + \gamma(p_{5}) + \gamma(p_{6})$ $Z^{0}(\rightarrow e^{-}(p_{5}) + e^{+}(p_{4})) + \gamma(p_{5}) + f(p_{6})$ $Z^{0}(\rightarrow e^{-}(p_{1}) + e^{+}(p_{1})) + \gamma(p_{5}) + f(p_{6})$ $Z^{0}(\rightarrow e^{-}(p_{1}) + e^{+}(p_{1})) + \gamma(p_{5}) + f(p_{6})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NLO + F<br>NLO + F | $\frac{569}{601} \frac{Z(e - (p_3) + e + (p_4)) + \bar{\ell}(\rightarrow e^-(p_5) + \bar{\nu}(p_6) + \bar{\ell}(p_7)) + q(p_6) + f(p_6)}{LO} = \frac{LO}{1001} \frac{LO}{LO}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $16 \qquad W^{-}(\rightarrow e^{-}(n_2) + i)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\bar{\nu}(n_{4})) + f(n_{E})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NLO                            | $\begin{array}{c} 1 & Z & (\rightarrow e^{-}(p_{3}) + e^{-}(p_{4})) + \gamma(p_{5}) + \gamma(p_{6}) + f(p_{7}) \\ 1 & Z^{0}(\rightarrow e^{-}(p_{4}) + e^{+}(p_{4})) + \gamma(p_{5}) + f(p_{6}) + f(p_{7}) \\ 1 & Z^{0}(\rightarrow 3(\nu(p_{6}) + \bar{\nu}(p_{7}))) + \gamma(p_{5}) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .0<br>NLO + F      | $\begin{array}{l} 001 & H(q_{B_{1}}) + b(p_{1})) + H(\gamma(p_{5}) + \gamma(p_{6})) \\ 002 & H(b(p_{1}) + \bar{b}(p_{1})) + H(\gamma(p_{5}) + \gamma(p_{6})) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 10 $11$ $117$ $117$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -(P4) + J(P5) - (P4) + J(P5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NLO                            | $i  Z^{0}(\rightarrow 3(\nu(p_{3}) + \bar{\nu}(p_{4}))) + \gamma(p_{5}) + \gamma(p_{6})$ $\cdot  Z^{0}(\rightarrow 3(\nu(p_{3}) + \bar{\nu}(p_{4}))) + \gamma(p_{3}) + f(p_{6})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NLO + F<br>NLO + F | $\begin{array}{c} 640 & t(p_3) + \bar{t}(p_4) + H(p_5) \\ 641 & t(\rightarrow \nu(n_c) + e^+(n_c) + \bar{t}(n_c)) + \bar{t}(\rightarrow \bar{\nu}(n_c) + e^-(n_c) + \bar{\bar{\lambda}}(n_c)) + H(\bar{h}(n_c) + \bar{\bar{\lambda}}(n_c)) \end{array} \\ \begin{array}{c} LO \\ IO \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $  17 \qquad   W (\rightarrow e^{-}(p_3) + i)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\nu(p_4)) + b(p_5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NLO                            | $ \begin{array}{l} :  Z^{0}(\rightarrow 3(\nu(p_{3}) + \bar{\nu}(p_{4}))) + \gamma(p_{5}) + \gamma(p_{6}) + f(p_{7}) \\ +  Z^{0}(\rightarrow 3(\nu(p_{3}) + \bar{\nu}(p_{4}))) + \gamma(p_{5}) + f(p_{6}) + f(p_{7}) \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .0                 | $ \begin{array}{c} 644 \\ t(\rightarrow \nu(p_5) + e^+(p_4) + b(p_5)) + t(\rightarrow \bar{q}(p_1) + q(p_5) + \bar{b}(p_6)) + H(b(p_9) + \bar{b}(p_10)) \\ \end{array} \\ \begin{array}{c} LO \\ LO \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $18 \qquad W^{-}(\rightarrow e^{-}(p_2) + i)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\bar{\nu}(n_{4})) + c(n_{5})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NLO                            | $\begin{array}{c} f(p_1) + b(p_2) \rightarrow W^+(\rightarrow \nu(p_3) + e^+(p_3)) + b(p_5) + f(p_6) \\ i - f(p_1) + b(p_3) \rightarrow W^-(\rightarrow e^-(p_3) + \bar{\nu}(p_3)) + b(p_5) + f(p_6) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                | $\begin{array}{c} 647 & t(\rightarrow q(p_3) + \bar{q}(p_4) + b(p_5)) + t(\rightarrow \bar{\nu}(p_7) + e^-(p_8) + b(p_6)) + H(b(p_9) + b(p_{10})) \\ 651 & t(\rightarrow \nu(p_4) + e^+(p_4) + b(p_5)) + \bar{t}(\rightarrow \bar{\nu}(p_7) + e^-(p_8) + \bar{b}(p_6)) + H(\gamma(p_9) + \gamma(p_{10})) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $10 \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $=(p_4)) + c(p_5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TO                             | $f(p_1) + c(p_2) \rightarrow W^-(\rightarrow v(p_3) + e^-(p_4)) + c(p_5) + f(p_6)$<br>$i - f(p_1) + c(p_2) \rightarrow W^-(\rightarrow e^-(p_3) + v(p_3)) + c(p_5) + f(p_6)$ 1<br>$f(p_1) - c(p_2) \rightarrow W^-(\rightarrow e^-(p_3) + v(p_3)) + c(p_5) + f(p_6)$ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .0                 | $ \begin{array}{c} 654 \\ t(\rightarrow v(p_{5})+e^{+}(p_{1})+b(p_{5}))+\bar{t}(\rightarrow \bar{q}(p_{7})+q(p_{8})+\bar{b}(p_{5}))+H(\gamma(p_{0})+\gamma(p_{10})) \end{array} \\ \end{array} \\ \begin{array}{c} \text{LO} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $  19   W^-(\rightarrow e^-(p_3) + i)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\overline{\nu}(p_4)) + c(p_5)[\text{massless}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LO                             | $W^{-}(\rightarrow \nu(p_3) + e^{-}(p_4)) + c(p_5) + f(p_6)[cs interaction]$ $W^{-}(\rightarrow e^{-}(p_3) + \bar{\nu}(p_4)) + c(p_5) + f(p_6)[cs interaction]$ $I^{-}(p_6) + f(p_6) - 2^{O_6}(p_6) + c^{O_6}(p_6) + c^{O_6}(p_6) + f(p_6)) + f(p_6) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0                | $\begin{array}{l} 657 & t(\rightarrow q p_3  + \bar{q} p_4) + b(p_3)) + t(\rightarrow \bar{\nu} p_7  + e^-(p_8  + b p_6 ) + H(\gamma(p_8  + \gamma(p_{10})) \\ 661 & t(\rightarrow \nu(p_8)e^+(p_4)b(p_8)) + \bar{t}(\rightarrow \bar{\nu} p_7)e^-(p_8)\bar{b}(p_8)) + H(W^+(p_8, p_{20})W^-(p_{11}, p_{12})) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $ \begin{array}{ccc} 12 & W^+(\rightarrow \nu(p_3) \stackrel{+}{+} e^+(p_4)) + b(p_3) \\ 13 & W^+(\rightarrow \nu(p_3) + e^+(p_4)) + \bar{v}(p_3) \end{array} \end{array} $ NLO NLO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 107 \\ 107 \\ 2^{0}(\neg 3 \times (\nu(p_{3}) + \bar{\nu}(q_{4})) + H(\neg W^{+}(\nu(p_{5}), e^{+}(p_{6}))W^{-}(e^{-}(p_{7}), \bar{\nu}(p_{6}))) \\ 108 \\ 2^{0}(\neg 3 \times (\nu(p_{3}) + \bar{\nu}(p_{3})) + H(\neg W^{+}(\nu(p_{5}), e^{+}(p_{6}))W^{-}(e^{-}(p_{7}), \bar{\nu}(p_{6}))) \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 129 $H(\rightarrow Z^*(e^+(p0) + e^+(p0)) + Z^*(e^-(p6) + \mu^-(p6)))$ [only H, gg $\rightarrow ZZ$<br>130 $H(\rightarrow Z^*(e^-(p1) + e^+(p1)) + Z^*(e^-(p5) + \mu^+(p6)))$ $  H ^2$ and H gg $\rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ZZ inf. LO                     | $\begin{array}{c} 1 & - [\gamma_{P_1}) + \gamma_{P_2} = 2 & (-e^{-1}(q_1) + e^{-1}(p_1)) + b(p_2) + \gamma_{P_2} + \gamma_{P_2} + \gamma_{P_2} + (p_1) \\ 342 & f(p_1) + b(p_2) = 2^{0} (-e^{-1}(p_1) + e^{+1}(p_1)) + b(p_2) + f(p_2) + \bar{b}(p_1) \\ 345 & f(p_1) + b(p_2) = Z^0 (-e^{-1}(p_1) + e^{+1}(p_2)) + b(p_2) + f(p_2) + \bar{b}(p_2) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | REAL]              | $\begin{array}{c} 664 \\ t(\rightarrow \nu(p_3)e^+(p_4)b(p_3)) + \bar{t}(\rightarrow \bar{q}(p_1)q(p_3)\bar{b}(p_3)) + H(W^+(p_3,p_{10})W^-(p_{11},p_{12})) \\ \end{array}  \text{LO} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 14 $W^+(\rightarrow \nu(p_3) + e^+(p_4)) + \bar{c}(p_4)[massless]$ LO<br>16 $W^-(\rightarrow e^-(p_4) + \bar{\nu}(p_4)) + f(p_5)$ NLO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{109}{2^{0}} \frac{Z^{0} - (-p_{0}) + \gamma(q_{1}) + R(-r)}{Z^{0} - e^{-}(p_{1}) + R(q_{2}) + R(-r)} \frac{(-p_{1}) + (-p_{1}) + R(-r)}{(-p_{2}) + (-p_{1}) + (-p_{2}) + R(q_{2}) + (-p_{2}) + (-p_{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 151 $Z = (c_0(q)) + c_0(q)) + Z = (p_0(p_0) + p_0(p_0)) (g_0 - g_0 - g_0)$<br>152 $Z^{(0)}(c^{-1}(q)) + c^{(0)}(q) + Z^{(0)}(c^{-1}(q)) + \mu^{+}(q)) [(g_0 - g_0) - g_0 - g_0)]$<br>1281 $H(\rightarrow e^{-1}(q)) + e^{+1}(q) + c_0(q) (q) = h^{+1}(q)$ [top, horizon longe, exact]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LO<br>LO                       | $347  f(p_1) + b(p_2) \rightarrow Z^0(\rightarrow e^-(p_3) \; 84e^+(p_4)) + b(p_5) + f(p_6) + b(p_7) \qquad 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .0                 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 17 $W^-(\rightarrow e^-(p_5) + \theta(p_4)) + b(p_5)$ NLO<br>18 $W^-(\rightarrow e^-(p_5) + \theta(p_4)) + c(p_5)$ NLO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 1311 & e^{-}(p3) + e^{+}(p4) + v_{e}(p5) + \bar{\nu}_{e}(p6) & [gg \ only, \ [H + gg - ZZ] \ squared] \\ 1321 & e^{-}(p3) + e^{+}(p4) + v_{e}(p5) + e_{+}(p6) & [gg - ZZ] \ squared] \\ 1331 & e^{-}(p3) + e^{+}(p4) + v_{e}(p5) + e^{-}(p4) & [gg - ZZ] & [gg - ZZ] \\ 1331 & e^{-}(p3) + e^{-}(p4) + e^{-}(p4) & [gg - ZZ] & [gg - ZZ] \\ 1331 & e^{-}(p3) + e^{-}(p4) + e^{-}(p4) & [gg - ZZ] & [gg - ZZ] \\ 1331 & e^{-}(p3) + e^{-}(p4) + e^{-}(p4) & [gg - ZZ] & [gg - ZZ] \\ 1331 & e^{-}(p4) + e^{-}(p4) + e^{-}(p4) & [gg - ZZ] & [gg - ZZ] \\ 1331 & e^{-}(p4) + e^{-}(p4) + e^{-}(p4) & [gg - ZZ] & [gg - ZZ] & [gg - ZZ] \\ 1331 & e^{-}(p4) + e^{-}(p4) + e^{-}(p4) & [gg - ZZ] & [gg - ZZ] & [gg - ZZ] \\ 1331 & e^{-}(p4) + e^{-}(p4) + e^{-}(p4) & [gg - ZZ] & [gg - ZZ] & [gg - ZZ] & [gg - ZZ] \\ 1331 & e^{-}(p4) + e^{-}(p4) + e^{-}(p4) & [gg - ZZ] &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LO 3<br>LO 3                   | $\frac{351}{52} \left[ \frac{f(p_1  + c(p_2  \rightarrow Z^0(\rightarrow e^-(p_1) + e^+(p_2)) + c(p_1  + f(p_2)  + f(p_2))}{522} \right] \frac{f(p_1  + c(p_2  \rightarrow Z^0(\rightarrow e^-(p_1) + e^+(p_1)) + c(p_1  + f(p_2)  + f(p_2))}{522} \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (REAL)             | 800 $V \rightarrow (\chi(p_3) + \tilde{\chi}(p_4)) + f(p_5)$ [Vector Mediator] NLO<br>801 $A \rightarrow (\chi(p_3) + \tilde{\chi}(p_5)) + f(p_5)$ [Avial Vector Mediator] NLO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 114 $H(\rightarrow W^+(\nu(p_3) + e^+(p_4)) + W^-(q(p_5) + \tilde{q}(p_6)))$ NLO<br>115 $H(\rightarrow W^+(\nu(p_3) + e^+(p_4)) + W^-(q(p_5) + \tilde{q}(p_6)))[rad.in.dk]$ NLO<br>NLO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1312 $ \mathbf{n}(\rightarrow e_{-} \mathbf{p}\mathbf{a}) + e_{-} \mathbf{p}\mathbf{a}\rangle + e_{+} \mathbf{p}\mathbf{a}\rangle + e_{+} \mathbf{p}\mathbf{a}\rangle + e_{+} \mathbf{p}\mathbf{a}\rangle$ [1312 $ \mathbf{e}^{-}  \mathbf{p}\mathbf{a}\rangle + e_{-} \mathbf{p}\mathbf{a}  + e_{+} \mathbf{p}\mathbf{a}\rangle + e_{+} \mathbf{p}\mathbf{a}\rangle$ [322 $ \mathbf{e}^{-}  \mathbf{p}\mathbf{a}\rangle$ squared]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LO<br>LO                       | $\frac{356}{f(p_1) + c(p_2)} \rightarrow Z^0 (\rightarrow e^-(p_1) + e^+(p_1)) + c(p_1) + f(p_1) + f(p_1)$ $\frac{357}{f(p_1) + c(p_2)} \rightarrow Z^0 (\rightarrow e^-(p_1) + e^+(p_1)) + c(p_2) + f(p_1) + \bar{c}(p_7)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LO                 | 802 $S \rightarrow (\chi(p_3) + \bar{\chi}(p_4)) + f(p_5)$ [Scalar Mediator] NLO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 21 $W^+(-\nu(p_3) + e^+(p_4)) + f(p_5) + b(p_6)$ NLO<br>22 $W^+(-\nu(p_3) + e^+(p_4)) + f(p_5) + f(p_6)$ NLO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{ccc} 116 & H(\rightarrow Z^0(c^-(p_1) + c^+(p_4)) + Z^0(\mu^-(p_5) + \mu^+(p_6)) \\ 117 & H(\rightarrow Z^0(3 \times \{\nu(p_3) + \bar{\nu}(p_4)\}) + Z^0(\mu^-(p_3) + \mu^+(p_6)) \\ 118 & H(\rightarrow Z^0(c^-(p_3) + \mu^+(p_3)) + Z^0(\mu^-(p_3) + \mu^+(p_6)) \\ \end{array} \end{array}$ NLO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{ccc} 133 & H(\rightarrow Z^{0}(e^{-}(p3)+e^{+}(p4))+Z^{0}(e^{-}(p5)+\mu^{+}(p6)+f(p7)) \mbox{ [intf,no ]} \\ 136 & H(\rightarrow b(p_{3})+b(p_{3}))+b(p_{3})(+g(p_{6})) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | v cut LO 3<br>NLO 5            | $361$ $ c(p_1) + \bar{v}(p_2) \rightarrow W^+(\rightarrow v(p_2) + e^+(p_2)) mc=0 \text{ in NLO} $<br>$362$ $ c(p_1) + \bar{v}(p_2) \rightarrow W^+(\rightarrow v(p_1) + e^+(p_1)) massless corrections only $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NLO<br>NLO         | $\begin{array}{l} 803  PS \rightarrow (\chi(p_1) + \chi(p_4)) + f(p_5) \ [Pseudo Scalar Meinator] \\ 804  GG \rightarrow (\chi(p_1) + \bar{\chi}(p_4)) + f(p_5) \ [Ghuonic DM operator] \\ \end{array}$ NLO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 25 $W' (\rightarrow \nu(p_3) + e^{-(p_4)}) + b(p_3) + f(p_7) + D(p_1) + D(p_1) + D(p_2) + D(p_3) + D(p_1) + D(p_2) + D(p_3) + D(p_3$                                                                                                                                                                                                                                           | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (REAL) 3                       | $363  c(p_1) + \delta(p_2) \rightarrow W^+(\rightarrow \nu(p_1) + e^+(p_1))$ (massive charm in real)<br>$370  W^+(\rightarrow \delta(p_1) + e^+(p_1)) + \gamma(p_2) + \gamma(p_1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NLO<br>LO          | $\frac{805}{890} \frac{S(\chi(p_3) + \bar{\chi}(p_4)) + f(p_5)}{Scalar Mediator, mt loops} \frac{NLO}{NLO + F}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 26 $W^-(\rightarrow e^-(p_1) + b(p_2)) + b(p_3) + b(p_4)   \text{Indexival}$<br>26 $W^-(\rightarrow e^-(p_3) + b(p_4)) + b(p_3) + b(p_4)$ NLO<br>27 $W^-(\rightarrow e^-(p_3) + b(p_3)) + b(p_3) + b(p_4) + b(p_4)$ NLO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 121 $H \rightarrow Z^0(3 \times (\nu(p_3) + \nu(p_4))) + \gamma(p_5))$ NLO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{ccc} 141 & t(\rightarrow \nu(p_3) + e^+(p_3) + b(p_5)) + \bar{t}(\rightarrow b \ (p_5) + e^-(p_7) + \bar{v}(p_5)) \\ 142 & t(\rightarrow \nu(p_3) + e^+(p_3) + b(p_5)) + \bar{t}(\rightarrow b \ (p_5) + e^-(p_7) + \bar{v}(p_5)) \ (\text{rad}. \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | in.dk] NLO 3                   | $\frac{871}{10} \frac{W^{-1}(\rightarrow a^{-1}(p_{1}) + b(p_{1})) + \gamma(p_{3}) + \gamma(p_{4})}{101} \frac{W^{-1}(\rightarrow a(p_{1}) + b(p_{1})) + \gamma(p_{3}) + \gamma(p_{4})}{12 \text{ ar } 3 \text{ yets } 4FNS}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.0                | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 28 $W^-(\rightarrow e^-(p_1) + \bar{\nu}(p_1)) + f(p_2) + f(p_3) + f(p_7)$ LO<br>29 $W^-(\rightarrow e^-(p_3) + \bar{\nu}(p_4)) + f(p_3) + f(p_3) + f(p_7)$ LO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\frac{56}{61} \frac{Z^9(\rightarrow e^-(p_3) + e^+(p_4)) + e(p_5) + \bar{e}(p_4)}{W^+(\rightarrow \nu(p_3) + e^+(p_4)) + W^-(\rightarrow e^-(p_5) + \bar{\nu}(p_6))} \qquad \text{NLO}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 143 $t(\rightarrow \nu(p_3) + e^+(p_3) + b(p_5)) + \bar{t}(\rightarrow b(p_5) + e^-(p_7) + \bar{v}(p_8)) + f(-144)$<br>144 $t(\rightarrow \nu(p_3) + e^+(p_3) + b(p_5)) + \bar{t}(\rightarrow b(p_6) + e^-(p_7) + \bar{v}(p_8))$ (unc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | pg) LO<br>orr) NLO             | 402 $W^+(\rightarrow p_1) + e^+(p_1)) + (b + b)(p_2) [1 or 2 jets, 4FNS]$<br>403 $W^+(\rightarrow p_1) + e^+(p_1)) + (b + b)(p_2) [2 or 2 jets, 4FNS]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NLO<br>NLO         | $ \begin{array}{ll} 822 & S \rightarrow (\chi(p_3) + \bar{\chi}(p_4)) + \gamma(p_5) [\text{Scalar Mediator}] & \text{NLO} + F \\ 823 & PS \rightarrow (\chi(p_3) + \bar{\chi}(p_4)) + \gamma(p_5) [\text{Pseudo Scalar Mediator}] & \text{NLO} + F \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\frac{20}{31} = \frac{20}{2} (- e^{-(p_1) + v(p_1) + v(p_2) + v(p_1) + v(p_2) + v(p_1) + v(p_2)}) = \frac{20}{31} = \frac{20}{2} (-e^{-(p_1) + e^{+(p_2)} + v(p_1) + v(p_2) + v(p_2) + v(p_1) + v(p_2) + v(p_2$                                                                                                                                                                                                                                       | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | in.dk],uncorr NLO<br>NLO       | $\begin{array}{l} w_{-}(-e^{-}\rho_{0}) + e^{-}(p_{0}) + e^{-}(p_{0}) + e^{-}(p_{0}) \\ w_{-}(-e^{-}(p_{0}) + \bar{\nu}(p_{0})) + b(\rho_{0}) \\ \end{array} \\ \left[ 1, 2 \text{ or } 3 \text{ jets. 4FNS} \right] \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NLO                | 840 $V \rightarrow \langle \chi(p_3) + \bar{\chi}(p_3) \rangle + f(p_3) + f(p_4)$ [Vector Mediator] LO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\begin{array}{cccc} 3z & Z^{(-)} \rightarrow S \land (r_{0}(y_{1}) + \bar{v}(y_{1}))) \\ 33 & Z^{(0)} \rightarrow (p_{3}) + \bar{b}(p_{3})) \\ 24 & Z^{(0)} \rightarrow (y_{2}) \land (\bar{d}(y_{1}))) \\ \end{array}$ NLO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{l} 64 & W^{-}(\rightarrow e^{-}(p_{3}) + \bar{\nu}(p_{4}))W^{+}(\rightarrow q(p_{5}) + \bar{q}(p_{6})) \\ 65 & W^{-}(\rightarrow e^{-}(p_{3}) + \bar{\nu}(p_{4}))W^{+}(\rightarrow q(p_{5}) + \bar{q}(p_{6}))[rad \operatorname{in} dk] \end{array} $ NLO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 147 $t(\rightarrow \nu(p_3) + e^+(p_3) + b(p_5)) + \tilde{t}(\rightarrow b(p_5) + q(p_7) + \tilde{q}(p_5))$ [rad in<br>148 $t(\rightarrow \nu(p_3) + e^+(p_3) + b(p_5)) + \tilde{t}(\rightarrow b(p_5) + q(p_7) + \tilde{q}(p_5))$ ] [rad in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ltop.dk] NLO 4<br>LW.dk] NLO 4 | $\frac{407}{W} = \frac{e^{-}(p_1) + v(p_1)) + (b + b)(p_2)}{1 \text{ or } 2 \text{ pes. 4FNS}}$ $\frac{408}{W} = \frac{W^-(\rightarrow e^-(p_1) + \tilde{v}(p_1)) + b(p_1) + b(p_2)}{1 \text{ or } 3 \text{ jets. 4FNS}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NLO                | 811 $A \rightarrow (\chi(p_3) + \chi(p_4)) + f(p_3) + f(p_6)$ [AXIA Vector Jaconator] LO<br>842 $S \rightarrow (\chi(p_3) + \bar{\chi}(p_4)) + f(p_8) + f(p_6)$ [Scalar Mediator] LO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\begin{array}{cccc} 37 & Z & (-3 \times (u(p_0) + \bar{u}(p_0))) \\ 35 & Z^0 (-2 \times (u(p_0) + \bar{u}(p_0))) \\ 26 & Z & (u(p_0) + \bar{u}(p_0)) + \bar{v}(-1) + \bar{v}(-1) + \bar{v}(-1) + \bar{v}(-1) \\ \end{array}$ NLO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{ccc} 66 & W^+(\rightarrow \nu(p_3) + e^+(p_4)) + W^-(\rightarrow e^-(p_5) + \bar{\nu}(p_5)) + f(p_7) & \text{LO} \\ 69 & W^+(\rightarrow \nu(p_3) + e^+(p_4)) + W^-(\rightarrow e^-(p_3) + \bar{\nu}(p_6)) [\text{no pol}] & \text{LO} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 149 $t \mapsto q(p_3) + q(p_4) + b(p_5) + t \mapsto b(p_5) + e^-(p_7) + b(p_8)$<br>150 $t \mapsto q(p_4) + \tilde{q}(p_4) + b(p_5) + \tilde{t} \mapsto b(p_5) + e^-(p_7) + b(p_8)$ [rad in<br>151 $t \mapsto q(p_4) + \tilde{q}(p_4) + \tilde{q}(p_4) + \tilde{t} \mapsto b(p_5) + e^-(p_7) + b(p_8)$ ] [rad in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | top.dk] NLO                    | $\begin{array}{l} 411 & f(p_1) + b(p_2) \rightarrow W^+(\rightarrow \nu(p_1) + e^+(p_4)) + b(p_5) + f(p_6) & [5FNS] \\ 416 & f(p_1) + b(p_2) \rightarrow W^-(\rightarrow e^-(p_6) + \bar{\nu}(p_6)) + b(p_5) + f(p_6) & [5FNS] \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NLO<br>NLO         | 843 $PS \rightarrow (\chi(p_i) + \bar{\chi}(p_i)) + f(p_i) + f(p_i)$ [Pseudo Scalar Modiator] LO<br>844 $GG \rightarrow (\chi(p_i) + \bar{\chi}(p_i)) + f(p_i) + f(p_i)$ [Chaonic DM operator] LO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\begin{array}{cccc} 0 & Z & = (-z_1 - z_1) + (-z_1 - z_2) + ($                                                                                                                                                                                                                                           | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 157 [f[for total Xseet]<br>158 [a][for total Xseet]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NLO 4                          | 421 $W^+(\rightarrow \phi(p_3) + e^+(p_4)) + b(p_5)$ [1,2 or 3 jets, 4FNS+5FNS]<br>426 $W^-(\rightarrow e^-(p_3) + \bar{\nu}(p_5)) + b(p_5)$ [1,2 or 3 jets, 4FNS+5FNS]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NLO<br>NLO         | 845 $V \rightarrow (\chi(p_3) + \bar{\chi}(p_1)) + \gamma(p_5) + f(p_6)$ [Vector Mediator] LO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 43 $Z^0(\rightarrow b(p_1) + b(p_2)) + f(p_3)$ NLO<br>44 $Z^0(\rightarrow b(p_1) + b(p_1)) + f(p_3)$ NLO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{l} 73 & W^+(\rightarrow \nu(p_3) + \mu^+(p_4)) + Z^0(\rightarrow b(p_5) + \bar{b}(p_6)) \\ 74 & W^+(\rightarrow \nu(p_3) + \mu^+(p_4)) + Z^0(\rightarrow 3 \times (d(p_3) + \bar{d}(p_6))) \end{array} \end{array} \qquad $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 159 $c^2$ [for total Xsect]<br>160 ff + g[for total Xsect]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NLO 4<br>LO 4                  | $\frac{131}{W^+(\rightarrow s(p_i) + e^+(p_i)) + b(p_i) + b(p_i) + f(p_i)} \max interve$ $\frac{136}{W^-(\rightarrow e^+(p_i) + b(p_i)) + b(p_i) + b(p_i) + f(p_i)} \max interve$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                 | 846 $A \rightarrow (\chi(p_3) + \chi(p_4)) + \gamma(p_5) + f(p_6)$ [Axial Vector Mediator] LO<br>847 $S \rightarrow (\chi(p_3) + \bar{\chi}(p_4)) + \gamma(p_5) + f(p_6)$ [Scalar Mediator] LO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 45 $Z^{(-)} \rightarrow c^{-}(p_{3}) + c^{-}(p_{4}) + f(p_{5}) + f(p_{6}) + f(p_{7})$<br>46 $Z^{(0)} \rightarrow c^{-}(p_{3}) + c^{+}(p_{4}) + f(p_{5}) + f(p_{5}) + f(p_{7})$<br>46 $Z^{(0)} \rightarrow 3 \times (q(p_{3}) + \tilde{q}(p_{3})) + f(p_{5}) + f(p_{7})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{ccc} 75 & W^+(\rightarrow \nu(p_3) + \mu^+(p_4)) + Z^0(\rightarrow 2 \times (u(p_5) + \bar{u}(p_6))) & \text{NLO} \\ \hline 76 & W^-(\rightarrow \mu^-(p_5) + \bar{\nu}(p_4)) + Z^0(\rightarrow e^-(p_5) + e^+(p_6)) & \text{NLO} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{ccc} 161 & t(\rightarrow \nu \langle p_3 \rangle + e^+ \langle p_4 \rangle + b \langle p_5 \rangle \rangle + q \langle p_4 \rangle [t-channel] \\ 162 & t(\rightarrow \nu \langle p_3 \rangle + e^+ \langle p_4 \rangle + b \langle p_5 \rangle \rangle + q \langle p_6 \rangle [decay] \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NLO<br>NLO                     | 500 $W^+(\rightarrow u[p_1] + v[p_1]) + t[p_2] + t[p_3] + t[p_3] + t[p_3]$ (massive)<br>+ $t^{-1}(p_1) + t^{-1}(p_1) + t^{-1}(p_2) + t^{-1}(p_3) + t^{-1}($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NLO<br>NLO         | 848 $PS \rightarrow (\chi(p_3) + \bar{\chi}(p_4)) + \gamma(p_5) + f(p_6)$ [Pseudo Scalar Mediator] LO<br>1002 Check of Vidence of 2 norticle where space                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 47 $Z^{(-)} \rightarrow S \times (\nu(p_3) + \nu(p_4)) + f(p_3) + f(p_6) + f(p_7)$ LO<br>50 $Z^{(0)} \rightarrow S \times (\nu(p_3) + \nu(p_4)) + f(p_6) + f(p_6) + f(p_7)$ LO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{l} 77  W^-(\rightarrow e^-(p_3) + \bar{\nu}(p_4)) + Z^0(\rightarrow 3 \times (\nu_e(p_3) + \bar{\nu}_e(p_6))) \\ 78  W^-(\rightarrow e^-(p_3) + \bar{\nu}(p_4)) + Z^0(\rightarrow b(p_3) + \bar{b}(p_6)) \\ & \text{NLO} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 163 & t(\rightarrow \nu(p_3) + e^+(p_3) + b(p_3)) + q(p_3)[e-channel]wb > 0\\ 166 & t(\rightarrow e^-(p_3) + b(p_3) + b(p_3)) + q(p_3)[e-channel] \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NLO<br>NLO                     | $\frac{1}{1(-\nu)p_0} + e^{-(p_0)} + a(p_0) + u(-\nu)p_0 + e^{-(p_0)} + e^{-(p_0)} + u^{-(p_0)}p_0), \mu^{-(p_0)}$ (some as process 501 but with radiation in decay)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NLO                | 903 Check of Volume of 3 particle phase space                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\begin{array}{cccc} 50 & Z^{*}(\rightarrow e^{-}(y_{4}) + e^{+}(y_{4})) + b(y_{5}) + b(y_{6}) (\text{massive}) & \text{LO} \\ 51 & Z^{0}(\rightarrow e^{-}(y_{5}) + e^{+}(y_{4})) + b(y_{5}) + b(y_{6}) & \text{NLO} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{ll} 79 & W^-(\rightarrow e^-(p_5) + \bar{\nu}(p_4)) + Z^0(\rightarrow 3 \times (d(p_5) + d(p_6))) & \text{NLO} \\ 80 & W^-(\rightarrow e^-(p_3) + \bar{\nu}(p_4)) + Z^0(\rightarrow 2 \times (u(p_5) + \bar{u}(p_6))) & \text{NLO} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 167 $[(-e^{-}(p_1) + \delta(p_3) + \delta(p_5)) + q(p_5)]$ rad.in.dk]<br>168 $[(-e^{-}(p_3) + \delta(p_3) + \delta(p_5)) + q(p_5)]$ (e-channel] $mb > 0$<br>171 $[(-e^{-}(p_3) + \delta(p_3) + \delta(p_5)) + q(p_5)]$ (e-channel] $mb > 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NLO<br>NLO                     | $\begin{array}{l} 503 & t(\rightarrow \nu(p_{3}) + e^{+}(p_{4}) + 0(p_{3})) + t(\rightarrow b^{-}(p_{6}) + q^{-}(p_{7}) + q^{-}(p_{6})) + W^{+}(\nu(p_{3}), \mu^{+}(p_{10})) \\ 506 & 1(\rightarrow q(p_{2}) + q^{-}(p_{4}) + b(p_{5})) + b^{-} \rightarrow b^{-}(p_{7}) + e^{-}(p_{7}) + \nu^{-}(\nu(p_{3}), \mu^{+}(p_{10})) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NLO<br>NLO         | 904 Check of Volume of 4 particle phase space<br>905 Check of Volume of 5 particle phase space                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{lll} \$1 & \mathbb{Z}^{9}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + \mathbb{Z}^{0}(\rightarrow \mu^{-}(p_{5}) + \mu^{+}(p_{6})) & \text{NLO} \\ \$2 & \mathbb{Z}^{9}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + \mathbb{Z}^{0}(\rightarrow 3 \times (\nu(p_{5}) + \bar{\nu}(p_{6}))) & \text{NLO} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 171 $t(\rightarrow \nu(p_3) + e^+(p_4) + o(p_5)) + o(p_6))$ [s-manne]<br>172 $t(\rightarrow \nu(p_3) + e^+(p_3) + b(p_5)) + \bar{b}(p_6))$ [decay]<br>176 $(\bar{t}(\rightarrow \nu(p_3) + b(p_3) + b(p_5)) + \bar{b}(p_5))$ [decay]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NLO NLO                        | 510 $W^-(\rightarrow e^-(p_1) + \bar{\nu}(p_1)) + t(p_2) + t(p_3)$  massive <br>511 $t(\rightarrow \nu  p_1) + e^+(p_3) + t(p_3)  + \bar{v}(\rightarrow b  p_4) + e^-(p_2) + \bar{\nu}(p_3)) + W^-(\mu^-(p_4), \bar{\nu}(p_3))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NLO<br>NLO         | 906 Check of Volume of 6 particle phase space                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $04$ $Z (\rightarrow v (03) + v (04)) + v(03) + v(04) + f(05)$<br>$\pi c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{116}{110} = \frac{1}{10} \left[ -\epsilon - \left( p_0 \right) + \phi(p_0) + \phi(p_0) \right] + b(p_0) \right] = \min[k] = \frac{1}{100} \left[ 177 - \left[ \left( -\epsilon - \left( p_0 \right) + \phi(p_0) + b(p_0) \right) + b(p_0) \right] \right] = \frac{1}{100} \left[ 180 - W^- (p_0) + \phi(p_0) + b(p_0) \right] = \frac{1}{100} \left[ 180 - W^- (p_0) + \phi(p_0) + b(p_0) \right] = \frac{1}{100} \left[ 180 - W^- (p_0) + \phi(p_0) + b(p_0) \right] = \frac{1}{100} \left[ 180 - W^- (p_0) + \phi(p_0) + b(p_0) \right] = \frac{1}{100} \left[ 180 - W^- (p_0) + \phi(p_0) + b(p_0) \right] = \frac{1}{100} \left[ 180 - W^- (p_0) + \phi(p_0) + b(p_0) \right] = \frac{1}{100} \left[ 180 - W^- (p_0) + \phi(p_0) + b(p_0) \right] = \frac{1}{100} \left[ 180 - W^- (p_0) + \phi(p_0) + b(p_0) \right] = \frac{1}{100} \left[ 180 - W^- (p_0) + \phi(p_0) + b(p_0) \right] = \frac{1}{100} \left[ 180 - W^- (p_0) + \phi(p_0) + b(p_0) \right] = \frac{1}{100} \left[ 180 - W^- (p_0) + \phi(p_0) + b(p_0) \right] = \frac{1}{100} \left[ 180 - W^- (p_0) + \phi(p_0) + b(p_0) \right] = \frac{1}{100} \left[ 180 - W^- (p_0) + \phi(p_0) + b(p_0) \right] = \frac{1}{100} \left[ 180 - W^- (p_0) + \phi(p_0) + b(p_0) \right] = \frac{1}{100} \left[ 180 - W^- (p_0) + \phi(p_0) + b(p_0) \right] = \frac{1}{100} \left[ 180 - W^- (p_0) + b(p_0) + b(p_0) \right] = \frac{1}{100} \left[ 180 - W^- (p_0) + \phi(p_0) + b(p_0) \right] = \frac{1}{100} \left[ 180 - W^- (p_0) + b(p_0) + b(p_0) \right] = \frac{1}{100} \left[ 180 - W^- (p_0) + b(p_0) + b(p_0) \right] = \frac{1}{100} \left[ 180 - W^- (p_0) + b(p_0) + b(p_0) \right] = \frac{1}{100} \left[ 180 - W^- (p_0) + b(p_0) + b(p_0) \right] = \frac{1}{100} \left[ 180 - W^- (p_0) + b(p_0) + b(p_0) \right] = \frac{1}{100} \left[ 180 - W^- (p_0) + b(p_0) + b(p_0) \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NLO                            | 512 (same as process 511 but with radiation in decay)<br>513 $t(\rightarrow \nu(p_1) + e^+(p_2) + b(p_2)) + t(\rightarrow b(p_1) + \rho(p_2) + a(p_2)) + W^-(\mu^-(p_1), \rho(p_2))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NLO<br>NLO         | 908 Check of Volume of 8 particle massive phase space<br>909 Check of Volume of 4 particle massive phase space                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 181 $W^-(\rightarrow e^-(p_3) + \bar{\nu}(p_4)) + t(\nu(p_5) + e^+(p_6) + b(p_7))$<br>182 $W^-(\rightarrow e^-(p_3) + \bar{\nu}(p_4)) + t(\nu(p_5) + e^+(p_6) + b(p_7))$ [rad.in.db]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NLO<br>NLO                     | 516<br>$1(\rightarrow q(p_1) + q(p_1) + b(p_1)) + \hat{1}(\rightarrow b(p_k) + e^-(p_1) + b(p_k)) + W^-(\mu^-(p_2), b(p_{1k}))$ (29)<br>$2^{Q_{1,2}} = (-m_1 + e^-(m_1)) + b(p_1) + \hat{1}(m_1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NLO                | 910 Check of Volume of 3 particle (2 massive) phase space<br>911 Check of Volume of 5 particle W14 (with durin) marries absorber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 87 $Z^{q}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + Z^{0}(\rightarrow 3 \times (\nu(p_{5}) + \bar{\nu}(p_{6})))[\text{no gamma}^{*}]$ NLO<br>88 $Z^{q}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + Z^{0}(\rightarrow b(p_{5}) + \bar{b}(p_{6}))[\text{no gamma}^{*}]$ NLO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 183 & W^-(\rightarrow e^-(p_3) + \bar{\nu}(p_4)) + t(\nu(p_b) + e^+(p_b) + b(p_7)) + b(p_8) \\ 184 & W^-(\rightarrow e^-(p_3) + \bar{\nu}(p_4)) + t(p_5) + b(p_6) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LO<br>LO                       | $\begin{array}{l} z_{1} \rightarrow z_{1} (p_{1}) + c_{1} p_{2} (p_{1}) + c_{1} p_{3} (p_{1}) + c_{1} p_{3} (p_{1}) \\ z_{1} = z_{1} (p_{2}) + c_{1} (p_{1}) + c_{1} (p_{2}) + c_{1} (p_{2}) + s_{1} (p_{2}) + s_{1} (p_{3}) + b_{1} (p_{3}) + 2(c_{1} (p_{3}), c_{1} (p_{3})) \\ z_{1} = z_{1} (p_{2}) + c_{2} (p_{3}) + c_{1} (p_{3}) + c_{2} (p_{3}) + c_{3} (p_{3}) + c_{3} (p_{3}) + c_{3} (p_{3}) + c_{3} (p_{3}) \\ z_{1} = z_{1} (p_{3}) + c_{3} (p_{3}) \\ z_{2} = z_{1} (p_{3}) + c_{3} (p_{3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LO                 | 911 Check of Volume of 5 particle W+4 (no decay) massive phase space<br>912 Check of Volume of 5 particle W+4 (no decay) massive phase space                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 89 $Z^{\gamma}(\rightarrow b(p_{h}) + b(p_{1})) + Z^{\nu}(\rightarrow 3 \times (\nu(p_{5}) + b(p_{6}))) [\text{no gamma}^{*}]$ NLO<br>90 $Z^{0}(\rightarrow e^{-}(p_{3}) + e^{-}(p_{4})) + Z^{0}(\rightarrow e^{-}(p_{5}) + e^{+}(p_{5}))$ NLO<br>91 $Z^{0}(\rightarrow e^{-}(p_{3}) + e^{-}(p_{4})) + Z^{0}(\rightarrow e^{-}(p_{5}) + e^{+}(p_{5}))$ NLO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{ccc} 185 & W^+(\rightarrow \nu(p_3) + e^+(p_4)) + \bar{\nu}(p_b) \\ 186 & W^+(\rightarrow \nu(p_3) + e^+(p_4)) + \bar{\ell}(e^-(p_3) + \bar{\nu}(p_6) + \bar{b}(p_7) \\ \dots & \dots \\ \mu^+(e^+,e^+) + e^+(p_4)) + \bar{\mu}(e^-(p_3) + e^+(p_6)) + \bar{\nu}(e^-(p_7)) \\ \dots & \dots \\ \mu^+(e^+,e^+) + e^+(p_4) + e^+(p_4) + e^+(p_6) \\ \dots & \dots \\ \mu^+(e^+,e^+) + e^+(p_4) + e^+(p_6) \\ \dots & \dots \\ \mu^+(e^+,e^+) + e^+(p_6) + e^+(p_6) \\ \dots & \dots \\ \mu^+(e^+,e^+) + e^+(p_6) + e^+(p_6) \\ \dots & \dots \\ \mu^+(e^+,e^+) + e^+(p_6) + e^+(p_6) \\ \dots & \dots \\ \mu^+(e^+,e^+) + e^+(p_6) + e^+(p_6) \\ \dots & \dots \\ \mu^+(e^+,e^+) \\ \dots & \mu^+($ | NLO<br>NLO                     | $\begin{array}{l} \sin i & (-v_1p_1) + v_2p_2) + a(p_2) + a(p_2) + b(-v_1p_2) + b(p_2) + b(p_2) + 2(o(p_1), k(p_2)) \\ \sin 2 & (-v_1p_2) + c^+(p_1) + b(p_2)) + b(-v_1p_2) + b(p_2) + b(p_3)) + 2(c^-(p_2), c^+(p_1)) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.0                | 913 Check of Volume of 5 particle W+t+g (in decay) massive phase space<br>914 Check of Volume of 5 particle W+t+g (in production) massive phase space                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 91 $W^+(\rightarrow \nu(p_3) + e^+(p_4)) + H(\rightarrow b(p_5) + b(p_6))$ NLO<br>92 $W^+(\rightarrow \nu(p_3) + e^+(p_4)) + H(\rightarrow W^+(\nu(p_5), e^+(p_6))W^-(e^-(p_7), \theta(p_5)))$ NLO<br>93 $W^+(\rightarrow \nu(p_3) + e^+(p_4)) + H(\rightarrow W^+(\nu(p_5), e^+(p_6)))W^-(e^-(p_7), \theta(p_5)))$ NLO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $[187]$ $W^{-}(\rightarrow \nu(p_3) + e^{-}(p_4)) + t(e^{-}(p_5) + \theta(p_7) + \theta(p_7)]$ rad.in.dk]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NLO                            | $333   1( \rightarrow q(p_1) + q(p_1) + b(p_2)) + t( \rightarrow e^-(p_1) + b(p_2) + b^-(p_3)) + Z(e^-(p_3), e^+(p_{10}))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1/0                | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{ll} 93 & W^+(\rightarrow\nu\mu_3) + e^+(p_1)) + H(\rightarrow Z(e^-(p_5), e^+(p_6)) + Z(\mu^-(p_7), \mu(p_5))) \\ 94 & W^+(\rightarrow\nu(p_3) + e^+(p_1)) + H(\rightarrow\gamma(p_5) + \gamma(p_6) \\ 0e^+ W^+(\rightarrow\nu(p_3) + e^+(p_1)) + H(\rightarrow\gamma(p_5) + \gamma(p_6) \\ W^+(\rightarrow\nu(p_3) + e^+(p_1)) + H(\rightarrow\nu(p_5) + \gamma(p_6) \\ W^+(\rightarrow\nu(p_3) + e^+(p_1)) + H(\rightarrow\nu(p_3) + \gamma(p_6) \\ W^+(\rightarrow\nu(p_3) + e^+(p_1)) + H(\rightarrow\nu(p_5) + \gamma(p_6) \\ W^+(\rightarrow\nu(p_3) + e^+(p_1)) + H(\rightarrow\nu(p_3) + \varphi(p_3) \\ W^+(\rightarrow\nu(p_3) + e^+(p_1)) + H(\rightarrow\nu(p_3) + \varphi(p_3) \\ W^+(\rightarrow\nu(p_3) + e^+(p_1)) + H(\rightarrow\nu(p_3) + \varphi(p_3) \\ W^+(\rightarrow\nu(p_3) + e^+(p_3) \\ W^+(\rightarrow\nu(p_3) + e^+(p_$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| F. Olness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{l} 96\\ 97\\ W^-(\rightarrow e^-(p_3) + \bar{v}(p_4)) + H(\rightarrow b(p_5) + u(p_6))\\ 97\\ W^-(\rightarrow e^-(p_5) + v(p_4)) + H(\rightarrow W^+(\nu(p_5), e^+(p_6))W^-(e^-(p_7), \bar{\nu}(p_5)))\\ n_0\\ W^-(\rightarrow e^-(p_5) + v(p_4)) + H(\rightarrow W^+(\nu(p_5), e^+(p_5))) + 2(-e^-(p_5) + v(p_5))\\ NLO\\ n_0\\ W^-(\rho_5) + (\rho_5) + (\rho_5) + (\rho_5) + 2(-e^-(p_5)) + 2(-e^-(p_5)) + 2(-e^-(p_5)) \\ NLO\\ NLO\\ NLO\\ NLO\\ NLO\\ NLO\\ NLO\\ NL$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



#### www.xFitter.org

Sample data files: LHC: ATLAS, CMS, LHCb Tevatron: CDF, D0 HERA: H1, ZEUS, Combined Fixed Target: ... User Supplied: ...

Theoretical costs sections
 Comparisons to other PDFs (LHAPDF)

#### **Features & Recent Updates:**

Photon PDF & QED Pole & MS-bar masses Profiling and Re-Weighting Heavy Quark Variable Treshold Improvements in  $\chi^2$  and correlations TMD PDFs (uPDFs) ... and many other

xFitter 2.0.1 Old Fashioned

14

-itter

#### **Charged Current Charm Production Constrains** Strange PDF<sub>15</sub>



### New Tools

### PDFSense & & ... borrowing from AI

#### **TensorFlow Embedding Projector**

https://metapdf.hepforge.org/PDFSense/

Reads 2 .tsv files with vectors and metadata (descriptions of data points)



Principal Component Analysis (PCA) visualizes the 56-dim. manifold by reducing it to 10 dimensions (à la META PDFs)

http://projector.tensorflow.org

t-distributed stochastic neighbor embedding (t-SNE) sorts vectors according to their similarity

$$r_i(\vec{a}) = \frac{1}{s_i} \left( T_i(\vec{a}) - D_{i,sh}(\vec{a}) \right)$$

### Conclusion

#### One accurate measurement is worth monomous a thousand expert opinions



RrainyQuote

