Probing the Structure of Exotic Hadrons at the EIC

Matt Durham

EIC opportunities for Snowmass

25-29 January 2021 Online

Heavy Quark Conventional Hadrons

Solve Schrodinger equation with the potential

$$V_0^{(c\bar{c})}(r) = -\frac{4}{3}\frac{\alpha_s}{r} + br + \frac{32\pi\alpha_s}{9m_c^2}\tilde{\delta}_{\sigma}(r)\vec{S}_c\cdot\vec{S}_{\bar{c}}$$

Phys. Rev. D 72, 054026 (2005)

Heavy Quark Exotic Hadrons

Dozens of charmonium-like states have been discovered that are not predicted by any $Q\overline{Q}$ potential model

Many competing interpretations:

Tetraquark? Hadronic molecule?

Glueball?

Mixtures of conventional + exotic states?

- Exact solutions to many-body Schrodinger are difficult
- Exploring large multi-quark structure on lattice is difficult
- Study of exotics is primarily driven by experiment

Filtering States with the Nucleus

- At the EIC, hadronization inside the nucleus becomes an important effect (Vitev, 1912. 10965)
- Quarkonia is subject to breakup as it crosses the nucleus suppression due to disruption of the $Q\bar{Q}$ pair

- Larger (weakly bound) states sample a larger volume of the nucleus while passing through larger absorption cross section Arleo, Gossiaux, Gousset, Aichelin PRC 61 (2000) 054906
- Explains trends observed in fixed target data at FNAL, SPS
- As expected, fails at RHIC (hadronization occurs outside nucleus) PHENIX PRL 111 202301 (2013)

Filtering States with the Nucleus – X(3872) States Alamos

Apply the same idea to exotic state X(3872):

Tightly bound compact tetraquark has small radius, could more easily escape nucleus unscathed

The well-known conventional $\psi(2S)$ and exotic X(3872) are both accessible through $J/\psi\pi^+\pi^-$ decays:

Propagation through Nuclei

¹⁹⁷Au

- In Monte Carlo simulation, populate a Glauber nucleus, using parameters from PHOBOS model: arXiv:1408.2549
- Randomly select starting point for $Q \overline{Q}$ pair
- Propagate $Q\overline{Q}$ along z axis
- Following model of Arleo *et al.* in Phys Rev C, 61 054906 (2000), expand $Q\bar{Q}$ radius as a function of time:

 $r_{c\bar{c}}(\tau) = \begin{cases} r_0 + v_{c\bar{c}} & \tau & \text{if } r_{c\bar{c}}(\tau) \leq r_i \\ r_i & \text{otherwise} \end{cases}$

- Calculate radius-dependent cross section: $\sigma_{(c\bar{c})_1N} = \sigma_{\psi N}(s) \cdot (r_{c\bar{c}}/r_{\psi})^2$
- If the state comes within a distance of $\sqrt{\sigma_{c\bar{c}}/\pi}$ to a nucleon, consider it disrupted.
- Three cases: $\psi(2S)$ with radius 0.87 fm, compact X(3872) with radius 1 fm, molecular X(3872) with radius 7 fm

Relative modification of X(3872)/ $\psi(2S)$ at EIC \bigotimes Los Alamos

$$\frac{R_{eA}^{X(3872)}}{R_{eA}^{\psi(2S)}} = \frac{\sigma_{eA}^X}{\sigma_{eA}^\psi} / \frac{\sigma_{ep}^X}{\sigma_{ep}^\psi}$$

- Little difference in suppression between model of compact X(3872) and $\psi(2S)$, as expected.
- Large difference between model of molecular X(3872) and $\psi(2S)$.

Relative modification of X(3872)/ $\psi(2S)$ at EIC \bigotimes Los Alamos

$$\frac{R_{eA}^{X(3872)}}{R_{eA}^{\psi(2S)}} = \frac{\sigma_{eA}^X}{\sigma_{eA}^\psi} / \frac{\sigma_{ep}^X}{\sigma_{ep}^\psi}$$

- Little difference in suppression between model of compact X(3872) and $\psi(2S)$, as expected.
- Large difference between model of molecular X(3872) and $\psi(2S)$.
- What uncertainties do we expect on this data from EIC?
- Need to know X(3872) production rate in eA collisions at ~100 GeV
- Current data is from:
 - B factories (via decays, not so relevant for prompt production)
 - Tevatron and LHC (~TeV to ~10 TeV)

Constraining EIC projections: LHCb SMOG 🗞 Los Alamos

- Fixed target collisions at LHCb enabled by injecting gas into storage cell in front of spectrometer
 - p+gas, Pb+gas, O+gas (?)
- Operates in kinematic range similar to EIC: $\sqrt{s} \approx 70$ to 115 GeV
- Very large heavy flavor samples expected: Example SMOG2 pAr at 115 GeV for one year

Int. Lumi.		80 pb-1
Sys.error of J/Ψ xsection		~3%
]/Ψ	yield	28 M
D^0	yield	280 M
Λ_c	yield	2.8 M
Ψ̈́	yield	280 k
$\Upsilon(1S)$	yield	24 k
$DY \mu^+ \mu$	- yield	24 k

https://cds.cern.ch/record/2673690/files/LHCB-TDR-020.pdf

Unique access to heavy quark exotic states in unexplored regime near EIC energies

Summary

- The EIC has the potential to provide decisive discrimination between exotic structure models.
- Projections can be constrained by LHCb fixed-target data to come in near future.
- X(3872) is only one example, technique can be applied to other exotics.
 - Matt's opinion: it is likely many more exotics will be discovered before EIC turns on

BACKUP

Interactions of exotics with QCD medium

