J / Ψ and $\Psi(2 s)$ production as a probe of low x evolution

Martin Hentschinski

Universidad de las Americas Puebla
Ex-Hacienda Santa Catarina Martir S/N
San Andrés Cholula
72820 Puebla, Mexico
martin.hentschinski@gmail.com
based on:

- I. Bautista, Fernandez Tellez, MH, PRD 94 (2016) 5, 054002, arXiv:1607.05203
- A. Arroyo Garcia, MH, K.Kutak, PLB 795 (2019) 569-575, arXiv:1904.04394
- MH, E. Padron Molina, arXiv:2011.02640

EIC opportunities for Snowmass, Januar 25-29, 2021, Online

This talk: photo induced processes at the LHC \rightarrow prospects for EIC: Process: exclusive photo-production of J / Ψ s and $\Psi(2 s)$

technical details: see appendix

- hard scale: charm
maSS (small, but perturbative)
- reach up to $x \geq .5 \cdot 10^{-6}$
- perturbative crosscheck: Υ (b-mass)
- measured at LHC (LHCb, ALICE, CMS) \& HERA (H1, ZEUS)

details:

BK evolution for dipole amplitude $N(x, r) \in[0,1]$ [related to gluon distribution]

```
kernel calculated
```

 in PQCD
 $$
\left.\frac{d N(x, r)}{d \ln \frac{1}{x}}=\int d^{2} \boldsymbol{r}_{1} K\left(\boldsymbol{r}, \boldsymbol{r}_{1}\right)\left[N\left(x, r_{1}\right)+N\left(x, r_{2}\right)-N(x, r)\right) N\left(x, r_{1}\right) N\left(x, r_{2}\right)\right]
$$

non-linear term relevant for $\mathrm{N} \sim 1$ (=high density)
linear low x evolution as benchmark \rightarrow requires precision
(updated version desirable, work has started; not expected too soon)

use: HSS NLO BFKL fit [mH, Salas, Sabio Vera; 1209. 1335; 1301.5883]

- uses NLO BFKL kernel
[Fadin, Lipatov; PLB 429 (1998) 127]
+ resummation of collinear logarithms
- initial kT distribution from fit to combined HERA data
[H1 \& ZEUS collab. 0911.0884]

gluon with non-linear terms: KS gluon
- based on unified (leading order) DGLAP+BFKL framework ${ }_{\text {kween }}$. Martin, Stasto, PRD 56(1997) 3991]
- combined with leading order BK evolution [Kutak, Kwiecinski;hep-ph/0303209][Kutak, Stasto; hep-ph/0408117]
- initial conditions: fit to combined HERA data [H1 \& zeus collab. 0911.0884]
- both non-linear and linear version available (= non-linearity switched off)

uses conventional Gaussian VM wave function \& LC $\gamma \rightarrow \mathrm{VM}$
transition + dipole cross-sections calculated from gluon distribution
$\Im m \mathcal{A}_{T}^{\gamma p \rightarrow V p}(W, t=0)=\int d^{2} \boldsymbol{r} \int_{0}^{1} \frac{d z}{4 \pi}\left(\Psi_{V}^{*} \Psi\right)_{T} \sigma_{q \bar{q}}(x, r)$

At first sight ..

[Arroyo, MH, Kutak;1904.04394]

- with standard scale choice for NLO BFKL gluon, both distribution describe energy dependence with

equal quality

but find:

 energies

$$
\hat{\sigma}_{q \bar{q}}^{(\text {HSS })}(x, r)=\hat{\sigma}_{q \bar{q}}^{\text {(dom.) }}(x, r)+\hat{\sigma}_{q \bar{q}}^{\text {(corr.) }}(x, r):
$$

- fix this through dipole size dependent renormalization scale

$$
M^{2}=\frac{4}{r^{2}}+\mu_{0}^{2} \text { with } \mu_{0}^{2}=1.51 \mathrm{GeV}^{2}
$$

\rightarrow stabilize perturbative expansion through resummation

stabilizes perturbative expansion \rightarrow stable NLO BFKL evolution at highest W

BUT:

- resulting growth too strong for J / Ψ production
- classical sign for onset of high density effects/transition towards saturated regime?

- still describe Υ
production
\rightarrow perturbative crosscheck
- not true for high precision HERA data

Next study: improved transition amplitude $\gamma \rightarrow \mathrm{VM}+$ include $\Psi(2 s)$

includes relativistic spin rotation effects + (more) realistic $c \bar{c}$ potential both for J / Ψ and $\Psi(2 s)$
[Hufner, Y. Ivanov, B. Kopeliovich, A. Tarasov; hep-ph/0007111],
[M. Krelina, J. Nemchik, R. Pasechnik, J. Cepila; 1812.03001; 1901.02664]

$$
\Im m \mathcal{A}_{T}\left(W^{2}, t=0\right)=\int d^{2} \boldsymbol{r}\left[\sigma_{q \bar{q}}\left(\frac{M_{V}^{2}}{W^{2}}, r\right) \bar{\Sigma}_{T}^{(1)}(r)+\frac{d \sigma_{q \bar{q}}\left(\frac{M_{V}^{2}}{W^{2}}, r\right)}{d r} \bar{\Sigma}_{T}^{(2)}(r)\right]
$$

- depends both on dipole cross-section and its derivative
- wave functions have been obtained in [M. Krelina, J. Nemchik, R. Pasechnik, J. Cepila; 1812.03001; 1901.02664] through numerical solution to corresponding Schrödinger equation
- transition function factorizes for real photon $(Q=0)$

$$
\bar{\Sigma}_{T}^{(i)}(r)=\hat{e}_{f} \sqrt{\frac{\alpha_{e . m .} N_{c}}{2 \pi^{2}}} K_{0}\left(m_{f} r\right) \Xi^{(i)}(r), \quad i=1,2
$$

$$
\begin{aligned}
& \Xi^{(1)}(r)=\int_{0}^{1} d z \int \frac{d^{2} \boldsymbol{p}}{2 \pi} e^{i \boldsymbol{p} \cdot \boldsymbol{r}} \frac{m_{T}^{2}+m_{T} m_{L}-2 p_{T}^{2} z(1-z)}{m_{T}+m_{L}} \Psi_{V}(z,|\boldsymbol{p}|), \\
& \Xi^{(2)}(r)=\int_{0}^{1} d z \int \frac{d^{2} \boldsymbol{p}}{2 \pi} e^{i \boldsymbol{p} \cdot \boldsymbol{r}}|\boldsymbol{p}| \frac{m_{T}^{2}+m_{T} m_{L}-2 \boldsymbol{p}^{2} z(1-z)}{2 m_{T}\left(m_{T}+m_{L}\right)} \Psi_{V}(z,|\boldsymbol{p}|),
\end{aligned}
$$

- $\Psi_{V}(z, \mathbf{p})$ provided as table by authors of [1812.03001; 1901.02664]
- $m_{T}^{2}=m_{f}^{2}+\boldsymbol{p}^{2} \quad m_{L}^{2}=4 m_{f}^{2} z(1-z)$,

$\Psi(2 s)$

More interesting: the ratio $\sigma[\Psi(2 s)] / \sigma[J / \Psi]$

problem: no data at high energies
(J / Ψ and $\Psi(2 s)$ LHCb data in different W-bins)

- rise of non-linear gluon also observed in [M. Krelina, J. Nemchik, R. Pasechnik, J. Cepila; 1812.03001; 1901.02664] \rightarrow KST dipole X-section [Kopeliovich, Schäfer, Tarasov, hep-ph/9908245]
- here: confirmed for $\mathrm{KS}(\mathrm{BK})$ gluon
- rise is not present for HSS (NLO BFKL) gluon (stabilized version)
- both slope \& curvature differ
- general feature of perturbative QCD evolution?

The ratio within the GBW model

general feeling: it would be good to understand the observed behavior a bit better how? use a simple model \& see what it tells us

GBW model: [Golec-Biernat, Wusthoff, hep-ph/9807513]
$\sigma_{q \bar{q}}(x, r)=\sigma_{0}\left(1-\exp \left(-\frac{r^{2} Q_{s}^{2}(x)}{4}\right)\right.$ with saturation scale $Q_{s}^{2}(x)=Q_{0}^{2}\left(\frac{x}{x_{0}}\right)^{\lambda}$
linearized version: $\quad \sigma_{q \bar{q}}^{l i n}(x, r)=\sigma_{0} \frac{r^{2} Q_{s}^{2}(x)}{4}$
use most recent fit [Golec-Biernat, Sapeta, 1711.11360] to combined HERA data with
$Q^{2} \leq 10 \mathrm{GeV}^{2}$ and $\chi^{2} / N_{d o f}=352 / 219=1.61$

$\sigma_{0}[\mathrm{mb}]$	λ	$x_{0} / 10^{-4}$
27.43 ± 0.35	0.248 ± 0.002	0.40 ± 0.04

The ratio for the GBW model

- saturation scale/x-dependence does not depend on the size of the vector meson \rightarrow cancels in the ratio
- BFKL/realistic HERA fit: $x^{-\lambda\left(Q^{2}\right)}$, but ratio is still almost constant
- $Q_{x, p}^{2}(x) \rightarrow Q_{s, A}^{2}=A^{\frac{1}{3}} Q_{s, p}^{2}(x)$: expect similar effect at the EIC
- similar behavior as in HSS vs KS study
- complete non-linear GBW is growing
- linearized GBW is constant (no energy dependence \rightarrow easy explanation)

$$
\mathfrak{I m} \mathscr{A}^{\text {lin. }}(x) \sim Q_{s}^{2}(x) \cdot \int d r \ldots
$$

Conclusion (short)

- despite of all of its challenges: VM production remains a useful observable to quantify presence of non-linear effects in low x evolution equations
- probes different aspects (\& suffers different uncertainties) than e.g. angular decorrelation dihadron or dijet \rightarrow complementary observables
- BFKL vs. BK at LHC:
- Nuclear enhancement within GBW model: a similar effect should be expected for photon-nucleus at e.g. the EIC
- central point: if $\mathfrak{J m} \mathscr{A}_{\text {lin. }} \sim x^{-\lambda}$ with \rightarrow energy dependence cancels \rightarrow approximately constant ratio
- non-linear $\lambda^{J / \Psi} \simeq \lambda^{\Psi(2 s)}$ r model/evolution: with $\sigma_{q \bar{q}}(x, r) \sim x^{-\lambda(x, r)}$, slope λ-very sensitive to dipole size
- more complete study in progress

Appendix

potentials for wave functions:

as implemented in [M. Krelina, J. Nemchik, R. Pasechnik, J. Cepila; 1812.03001; 1901.02664]

Note:

- plots show transition function $\gamma \rightarrow V M$, not wave function
- $\Psi(2 s)$: node structure of wave function absent in transition after integration over photon momentum fraction z
- $\bar{\Sigma}^{(2)}(r)$ enhanced for $\Psi(2 s)$, but still considerable smaller
$\rightarrow \Psi(2 s)$ gives access to a (slightly) different region in r than J / Ψ
\rightarrow requires separate diffractive slopes $B_{D}(W)$ as obtained in
[M. Krelina, J. Nemchik, R. Pasechnik, J. Cepila; 1812.03001; 1901.02664]
$\omega=0.3 \mathrm{GeV} \rightarrow$ Gaussian shape

Buchmüller-Tye Potential: Coulomb-like behavior at small r and a string-like behavior at large r [Buchmüller, Tye; PRD24, 132 (1981)]

how to compare to experiment?

(sort of standard procedure for comparing inclusive gluon to exclusive data)
a) analytic properties of scattering amplitude \rightarrow real part

$$
\begin{array}{cc}
\mathcal{A}^{\gamma p \rightarrow V p}(x, t=0)=\left(i+\tan \frac{\lambda(x) \pi}{2}\right) \cdot \Im \mathrm{m} \mathcal{A}^{\gamma p \rightarrow V p}(x, t=0) & \\
\text { with intercept } & \lambda(x)=\frac{d \ln \Im \mathrm{~m} \mathcal{A}(x, t)}{d \ln 1 / x}
\end{array}
$$

b) differential Xsection at $\mathrm{t}=0$:

$$
\left.\frac{d \sigma}{d t}(\gamma p \rightarrow V p)\right|_{t=0}=\frac{1}{16 \pi}\left|\mathcal{A}^{\gamma p \rightarrow V p}\left(W^{2}, t=0\right)\right|^{2}
$$

c) from experiment:

$$
\frac{d \sigma}{d t}(\gamma p \rightarrow V p)=\left.e^{-B_{D}(W) \cdot|t|} \cdot \frac{d \sigma}{d t}(\gamma p \rightarrow V p)\right|_{t=0}
$$

$$
\sigma^{\gamma p \rightarrow V p}\left(W^{2}\right)=\left.\frac{1}{B_{D}(W)} \frac{d \sigma}{d t}(\gamma p \rightarrow V p)\right|_{t=0} \quad \text { extracted from data }
$$

weak energy dependence from slope parameter

$$
B_{D}(W)=\left[b_{0}+4 \alpha^{\prime} \ln \frac{W}{W_{0}}\right] \mathrm{GeV}^{-2}
$$

- as expected linear and complete GBW model agree for small dipole sizes
- for large dipole sizes linearized version breaks overshoots complete saturation model

First study (BFKL only, also for Υ)

NLO BFKL describes energy dependence,
but
[Bautista, MH, Fernandez-Tellez;1607.05203]

error band: variation of renormalization scale
\rightarrow in general pretty small = stability

does it mean something?

