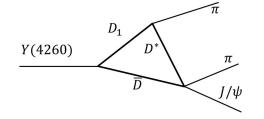
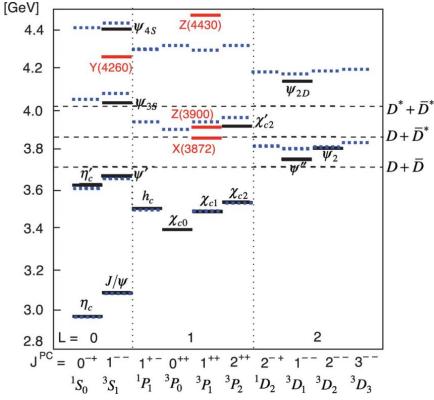

Exotic Spectroscopy (in Photoproduction) @ EIC

Daniel Winney

29 January 2021


Exotic Hadrons

• Plethora of quarkonium-like states observed since 2003 which do not fit into conventional qqbar models.

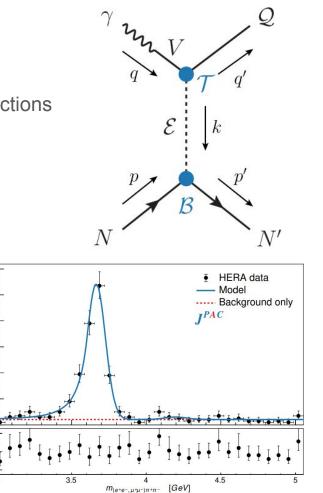

X(3872) - large isospin violation Y(4260) - no observed open charm decays Z(3900) - charged, charmonium-like state

• Ambiguous interpretation of signals:

Multi-quark resonances, hadronic molecules, hadrocharmonia, kinematic singularity, hybrid

For reviews of XYZs see e.g.: A. Hosaka et al. [arXiv:1603.09229] N. Brambilla et al. [arXiv:1907.07583] F-K. Guo et al. [arXiv:1912.07030]

Exclusive photoproduction


None of the XYZ's have been observed in photon-induced reactions

Constrained kinematics means precise determination of production mechanism

No additional particles in the final-state eliminate possibility of triangle singularities.

 $2 \rightarrow 2$ reactions very well understood with effective Lagrangian techniques and Regge phenomenology

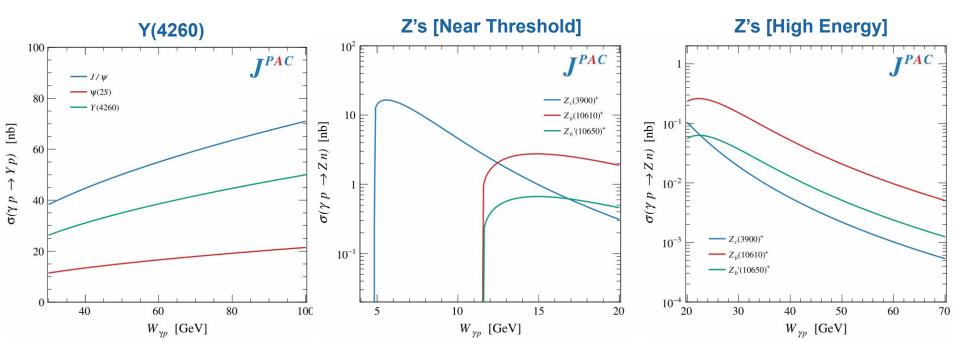
Couplings for all the main exotic candidates fixed with available experimental data: decay widths, VMD, etc.

120

100

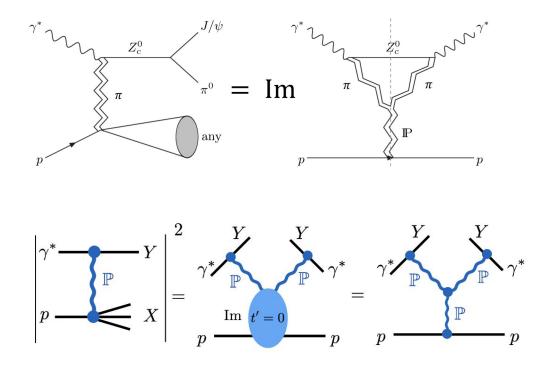
60

40


20

Inc

Events / 67 MeV 80


Exclusive photoproduction

Most relevant for EIC energies include the Y and Z states.

JPAC [arXiv:2008.01001]

Semi-inclusive production

Inclusive production at high energies known from Regge phenomenology.

Less constrained kinematics, but much larger cross-sections compared to the exclusive reaction.

Follow-up JPAC publication in preparation.

Spectroscopy @ EIC Working Group

See SNOWMASS 2021 LOI's:

- RF7_RF0-090 Hadron Spectroscopy at the EIC
- RF7_RF0-120 XYZP spectroscopy at a charm photoproduction factory

As well as talks by:

Justin Stevens (convener) and Alessandro Pilloni

Letter of Interest: Hadron Spectroscopy at the Electron Ion Collider

Miguel Albaladejo¹², Alexander Austregesilo¹³, Marco Battaglieri^{7,13}, Raffaella De Vita⁷, Sean Dobbs⁶, J. Matthew Durham¹⁰, Cristiano Fanelli^{9,11}, Derek Glazier¹⁵, Feng-Kun Guo^{8,14}, Astrid N. Hiller Blin¹², Xuan Li¹⁰, Vincent Mathieu², Bryan McKinnon¹⁵, Zisis Papandreou⁴, Alessandro Pilloni^{5,7}, Elena Santopinto⁷, Matthew R. Shepherd³, Justin R. Stevens *¹⁶, Adam P. Szczepaniak^{1,3,12}, Ivan Vitev¹⁰, and Daniel Winney^{1,3}

¹Center for Exploration of Energy and Matter, Indiana University, Bloomington, IN 47403, USA ²Departamento de Física Teórica, Universidad Complutense de Madrid and IPARCOS, 28040 Madrid, Spain ³Department of Physics, Indiana University, Bloomington, IN 47405, USA ⁴Department of Physics, University of Regina, Regina, Saskatchewan, Canada S4S 0A2 ⁵European Centre for Theoretical Studies in Nuclear Physics and related Areas (ECT^{*}) and Fondazione Bruno Kessler, Villazzano (Trento), I-38123, Italy ⁶Florida State University, Tallahassee, Florida 32306, USA ⁷ INFN Sezione di Genova, Genova, I-16146, Italy ⁸Institute of Theoretical Physics, CAS, Beijing, China ⁹ Jefferson Lab, EIC Center, Newport News, VA 23606, USA ¹⁰Los Alamos National Laboratory, Los Alamos, New Mexico 87545. USA ¹¹Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA ¹² Theory Center, Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA ¹³ Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA ¹⁴University of Chinese Academy of Sciences, Beijing, China ¹⁵ University of Glasgow, Glasgow, G12 800, United Kingdom ¹⁶ William & Mary, Williamsburg, Virginia 23185, USA

Thank you!