

* In collaboration with Reynier Cruz-Torres, Xin Dong, Yuanjing Ji, Sooraj Radhakrishnan, Feng Yuan, Ernst Sichtermann & Nu Xu

Studies of Open Charm Hadron Reconstruction at the EIC and Implications for Charm Structure Functions

Matthew Kelsey* Wayne State University

Introduction

- Gluon density in nucleon/nucleus (previous studies in |1,2|)
- Intrinsic charm
- Gluon TMDs
- Hadronization
- Gluon polarization

Measurements of heavy-flavor hadrons at EIC span a broad range of physics interests

Goal to study charm hadron reconstruction with precision vertex detector and impact on $F_2^{c\overline{c}}$

Charm Hadron Distributions in DIS

[1] https://eic.github.io/software/pythia6.html

Electron-proton collisions generated with PYTHIA 6 with eRHIC tuning [1] Charm hadrons (and decay particles) predominately produced within $|\eta| < 3$

M. Kelsey

D^{θ} Reconstruction with Si Vertex Det.

Reduced Cross-Section

$$\sigma_r^{c\overline{c}}(x,Q^2) = \frac{dN(D^0 \cdot \mathcal{L})}{\mathcal{L} \cdot \varepsilon \cdot \mathcal{B}(D^0 \to K\pi)}$$

10+100 GeV and 5+41 GeV e+p collisions energies

- Scale yield to 10 fb⁻¹ per energy as baseline
- \sqrt{s} chosen to maximize high-x_B reach for studies of charm F_2^{cc}

Uncertainties estimated from signal significance with QCD/mis-PID/partially reco. charm backgrounds

Charm Structure Functions

Broad x-Q² coverage of charm structure functions (HERA x < 0.1)

Studies of D^0 production in PYTHIA e+p collisions with all-Si detector

Studies of nuclear modification and impact on nPDFs in progress

- Fast simulation studies verified with full GEANT simulation of all-Si detector - Project precise (stat.) and broad coverage of charm structure functions $F_2^{c\bar{c}}$

Backup Slides Follow

Fast Simulation Validation

Reliability of fast-sim. D^0 reconstruction evaluated using full **GEANT4-based PYTHIA 8** simulation in Fun4All framework [1]

M. Kelsey

- $10 \ \mu m \ge 10 \ \mu m$ pixel devices
- X/X0=0.3% per layer
- Beampipe r=3.1 cm

Fast Simulation Validation

M. Kelsey

Fast Simulation Parameters

η	σ_p/p - 3T (%)	σ_p/p - 1.5T (%)	$\sigma(DCA_{r\phi})$ (µm)	$p_{\rm max}^{\rm PID} ~({\rm GeV}/c)$
(-3.0, -2.5)	$0.1 \cdot p \oplus 2.0$	$0.2 \cdot p \oplus 5.0$	$60/p_T \oplus 15$	10
(-2.5, -2.0)	$0.02 \cdot p \oplus 1.0$	$0.04 \cdot p \oplus 2.0$	$60/p_T \oplus 15$	10
(-2.0, -1.0)	$0.02 \cdot p \oplus 1.0$	$0.04{\cdot}p \oplus 2.0$	$40/p_T \oplus 10$	10
(-1.0, 1.0)	$0.02 \cdot p \oplus 0.5$	$0.04 \cdot p \oplus 1.0$	$30/p_T \oplus 5$	6
(1.0, 2.0)	$0.02 \cdot p \oplus 1.0$	$0.04 \cdot p \oplus 2.0$	$40/p_T \oplus 10$	50
(2.0, 2.5)	$0.02 \cdot p \oplus 1.0$	$0.04{\cdot}p \oplus 2.0$	$60/p_T \oplus 15$	50
(2.5, 3.0)	$0.1 \cdot p \oplus 2.0$	$0.2 \cdot p \oplus 5.0$	$60/p_T \oplus 15$	50

M. Kelsey

11

Representative Statistical Uncertainties

EIC Opportunities for SnowMass Jan. 25-29, 2021

M. Kelsey

12