Λ_c simulation in the future EIC

Yuanjing Ji (LBNL)

In collaboration with Xin Dong (LBNL), Matthew Kelsey (WSU),

Sooraj Radhakrishnan (KSU/LBNL), Nu Xu (LBNL)

CFNS workshop: EIC opportunities for Snowmass2021 Jan 29, 2021

Motivation

- Charm hadronization
 - Fragmentation failed to describe Λ_c^+/D^0 in p+p and A+A collisions
 - A+A collisions quark coalescence
 - p+p collisions color reconnection (CR) J. Christiansen JHEP (2015) 8:003
 - new CR mode, junction reconnection -> enhance baryon production

Λ_c in e+p/A collisions

• Better understand and controlled initial state condition

 Λ_c reconstruction in future EIC

ep 18x275 GeV from PYTHIA6 with EIC tune Fast simulation Detector response on single tracks

https://eic.github.io/software/pythia6.html

All-Silicon Tracker detector for the Electron Ion Collider

detailed introduction in Reynier's talk

Detector set up parameters same as Matthew's talk

- Pointing resolution
- Momentum resolution based on B = 3 T
- Primary vertex resolution from full Geant4
- Tracking efficiency from full Geant4
- PID scenario <u>https://physdiv.jlab.org/DetectorMatrix/</u>

Reconstruction

$$\Lambda_c^+ \to p K^- \pi^+ \text{ (B.R.=6.28\%)}$$
$$\Lambda_c^+ \ c\tau \sim 60 \ \mu m$$

Acceptance and selected topology performance

Normalized Pair-DCA distribution in different η regions

Physics projections

• Precise Λ_c^{\pm} measurements over board momentum and η range

Summary

- Λ_c^+/D^0 measurements charm hadronization
 - p+p: current knowledge color reconnection with baryon junction
 - e+p and e+A ?
- Simulation on Λ_c reconstruction in e+p 18+275 GeV collisions
 - Precise measurements of charm baryon over board momentum and η range in the future EIC

•Back ups

Λ_c reconstruction in future EIC

ep 18x275 GeV from PYTHIA6 with EIC tune

https://eic.github.io/software/pythia6.html

Detector set up

- Pointing resolution (DCA resolution)
- Momentum resolution based on B = 3 T
- Primary vertex resolution from full Geant4
- Tracking efficiency from full Geant4
- PID scenario

Assumed 3σ separation between $\pi/K/p$

η	Momentum
-3 <η<-1.0	p < 10 GeV/c
-1.0< <i>η</i> <1.0	p < 6 GeV/c
1.0<η<3.0	p < 50 GeV/c

Fast simulation Detector response on single tracks

Pointing resolution (Transverse)

	Resolution (XY) (μ m)
η <1	$5 \oplus 20/p_T$
1< <i>η</i> <2	$20 \oplus 30/p_T$
2< <i>η</i> <3	$40 \oplus 30/p_T$

Momentum resolution

η	Resolution %
-3.5<η<-2.0	$0.1 \cdot p \oplus 0.5$
-2.0< <i>η</i> <1.0	$0.05 \cdot p \oplus 0.5$
1.0<η<2.5	$0.05 \cdot p \oplus 1.0$
2.5<η<3.5	$0.1 \cdot p \oplus 2.0$

Full Geant4 simulation from Matthew

https://indico.bnl.gov/event/9398/contributions/41400/attachments/30474/47775/Kelsey_EICJetsHF_21Sep2020.pdf

 Λ_c reconstruction in future EIC

ep 18x275 GeV from PYTHIA6 with EIC tune

Detector response

Reconstruction

 Reconstruction channel Signal: Other channels: $\Lambda_c^+ \rightarrow p K_s^0$ (1.58%)

 $\begin{array}{ll} \Lambda_c^+ \mbox{ decay in PYTHIA} & \mbox{ Scale to total B.R.=6.28\%} \\ \Lambda_c^+ \rightarrow p K^- \pi^+ \mbox{ non-resonant 2.96\% (PDG 3.4\%)} \\ \rightarrow p \overline{K^{*0}} & \mbox{ ~0.5\% (PDG 1.94\% x66.7\%)} \\ \rightarrow \Delta^{++} K^- & \mbox{ ~0.65\% (PDG 1.07\% x99.4\%)} \\ \rightarrow \Lambda \pi^+ \mbox{ missing } \Lambda \rightarrow p K^- \mbox{ (PDG 2.2\% x22.5\%)} \end{array}$

Combinatorial background

- Combinations of $pK^-\pi^+$ triplets with right-sign (mis-PID if particles cannot separated)
- Reject Λ_c^+ resonance channel signals

