

Extraction of the Λ Polarizing Fragmentation Function from Belle e^+e^- data

Marco Zaccheddu - Università degli Studi di Cagliari & INFN In collaboration with: Umberto D'Alesio, Francesco Murgia

Based on [Phys. Rev. D 102, 054001 (2020)]

EIC opportunities for SnowMass 2021

Observation of Transverse $\Lambda/\overline{\Lambda}$ Hyperon Polarization in e^+e^- Annihilation at Belle [Y. Guan et al., Phys. Rev. Lett. 122. 042001 (2019)] • $e^+e^- \rightarrow \Lambda \pi/K + X$ • $e^+e^- \rightarrow \Lambda(jet) + X$ Observation of Transverse $\Lambda/\overline{\Lambda}$ Hyperon Polarization in e^+e^- Annihilation at Belle [Y. Guan et al., Phys. Rev. Lett. 122. 042001 (2019)] • $e^+e^- \rightarrow \Lambda \pi/K + X$ • $e^+e^- \rightarrow \Lambda(jet) + X$

First extraction of the Λ pFF [D'Alesio, Murgia, Zaccheddu, Phys. Rev. D 102, 054001 (2020)]

Similar analysis:

[D. Callos, Z.B. Kang, and J. Terry, Phys. Rev. D 102, 096007 (2020)]

Observation of Transverse $\Lambda/\overline{\Lambda}$ Hyperon Polarization in e^+e^- Annihilation at Belle [Y. Guan et al., Phys. Rev. Lett. 122. 042001 (2019)] • $e^+e^- \rightarrow \Lambda \pi/K + X$ • $e^+e^- \rightarrow \Lambda(jet) + X$

 Λ TMD Polarizing FF $\Delta D^h_{S_Y/q} = \frac{k_\perp}{zM} D_{1T}^\perp$

First extraction of the Λ pFF [D'Alesio, Murgia, Zaccheddu, Phys. Rev. D 102, 054001 (2020)]

Similar analysis:

[D. Callos, Z.B. Kang, and J. Terry, Phys. Rev. D 102, 096007 (2020)]

Prediction for SiDIS: $e^-P \rightarrow e^- \Lambda + X$

$$e^+e^- \rightarrow h^{\uparrow}_1 h_2 X$$
: Hadron Frame

$$\begin{aligned} \mathcal{P}_{n}(z_{1},z_{2}) &= \sqrt{\frac{e\pi}{2}} \frac{1}{M_{\text{pol}}} \frac{\langle p_{\perp}^{2} \rangle_{\text{pol}}^{2}}{\langle p_{\perp 1}^{2} \rangle} \frac{z_{2}}{\{[z_{1}(1-m_{h_{1}}^{2}/(z_{1}^{2}s))]^{2} \langle p_{\perp 2}^{2} \rangle + z_{2}^{2} \langle p_{\perp}^{2} \rangle_{\text{pol}}\}^{1/2} \\ &\times \frac{\sum_{q} e_{q}^{2} \Delta D_{h_{1}^{\uparrow}/q}(z_{1}) D_{h_{2}/\bar{q}}(z_{2})}{\sum_{q} e_{q}^{2} D_{h_{1}/q}(z_{1}) D_{h_{2}/\bar{q}}(z_{2})} \end{aligned}$$

$$e^+e^- \rightarrow h^{\uparrow}_1 h_2 X$$
: Hadron Frame

$$e^+e^- \rightarrow h_1 + (jet) X$$
: Thrust Frame

The polarization is measured along: $\hat{n} = \hat{T} \times \hat{P}_{h_1}$

$$\begin{aligned} \mathcal{P}_{n}(z_{1},z_{2}) &= \sqrt{\frac{e\pi}{2}} \frac{1}{M_{\text{pol}}} \frac{\langle p_{\perp}^{2} \rangle_{\text{pol}}^{2}}{\langle p_{\perp 1}^{2} \rangle} \frac{z_{2}}{\left\{ [z_{1}(1-m_{h_{1}}^{2}/(z_{1}^{2}s))]^{2} \langle p_{\perp 2}^{2} \rangle + z_{2}^{2} \langle p_{\perp}^{2} \rangle_{\text{pol}} \right\}^{1/2} \\ &\times \frac{\sum_{q} e_{q}^{2} \Delta D_{h_{1}^{\uparrow}/q}(z_{1}) D_{h_{2}/\bar{q}}(z_{2})}{\sum_{q} e_{q}^{2} D_{h_{1}/q}(z_{1}) D_{h_{2}/\bar{q}}(z_{2})} \end{aligned}$$

$$\mathcal{P}_T(z_1, p_{\perp 1}) = \frac{\sum_q e_q^2 \Delta D_{h_1^{\uparrow}/q}(z_1, p_{\perp 1})}{\sum_q e_q^2 D_{h_1/q}(z_1, p_{\perp 1})}$$

Within a phenomenological approach

$$e^+e^- \rightarrow h^{\uparrow}_1 h_2 X$$
: Hadron Frame

$$e^+e^- \rightarrow h_1 + (jet) X$$
: Thrust Frame

The polarization is measured along: $\hat{n} = \hat{T} \times \hat{P}_{h_1}$

$$\begin{aligned} \mathcal{P}_{n}(z_{1},z_{2}) &= \sqrt{\frac{e\pi}{2}} \frac{1}{M_{\text{pol}}} \frac{\langle p_{\perp}^{2} \rangle_{\text{pol}}^{2}}{\langle p_{\perp 1}^{2} \rangle} \frac{z_{2}}{\{[z_{1}(1-m_{h_{1}}^{2}/(z_{1}^{2}s))]^{2} \langle p_{\perp 2}^{2} \rangle + z_{2}^{2} \langle p_{\perp}^{2} \rangle_{\text{pol}}\}^{1/2}} \\ &\times \frac{\sum_{q} e_{q}^{2} \Delta D_{h_{1}^{\uparrow}/q}(z_{1}) D_{h_{2}/\bar{q}}(z_{2})}{\sum_{q} e_{q}^{2} D_{h_{1}/q}(z_{1}) D_{h_{2}/\bar{q}}(z_{2})} \end{aligned}$$

$$\mathcal{P}_T(z_1, p_{\perp 1}) = \frac{\sum_q e_q^2 \Delta D_{h_1^{\uparrow}/q}(z_1, p_{\perp 1})}{\sum_q e_q^2 D_{h_1/q}(z_1, p_{\perp 1})}$$

Within a phenomenological approach

Introduce
$$p_{\perp}$$
 - parameterization for FFs:

$$\Delta D^{h}_{S_{Y}/q}(z, p_{\perp}) = \Delta D^{h}_{S_{Y}/q}(z)\sqrt{2e}\frac{p_{\perp}}{M_{pol}}\frac{e^{-p_{\perp}^{2}/\langle p_{\perp}^{2}\rangle_{pol}}}{\pi\langle p_{\perp}^{2}\rangle_{h}}$$

$$D_{h/q}(z, p_{\perp}) = D_{h/q}(z)\frac{e^{-p_{\perp}^{2}/\langle p_{\perp}^{2}\rangle_{h}}}{\pi\langle p_{\perp}^{2}\rangle_{h}}$$

$$e^+e^- \rightarrow h^{\uparrow}_1 h_2 X$$
: Hadron Frame

$$e^+e^- \rightarrow h_1 + (jet) X$$
: Thrust Frame

The polarization is measured along: $\hat{n} = \hat{T} \times \hat{P}_{h_1}$

$$\begin{aligned} \mathcal{P}_{n}(z_{1},z_{2}) &= \sqrt{\frac{e\pi}{2}} \frac{1}{M_{\text{pol}}} \frac{\langle p_{\perp}^{2} \rangle_{\text{pol}}^{2}}{\langle p_{\perp 1}^{2} \rangle} \frac{z_{2}}{\{[z_{1}(1-m_{h_{1}}^{2}/(z_{1}^{2}s))]^{2} \langle p_{\perp 2}^{2} \rangle + z_{2}^{2} \langle p_{\perp}^{2} \rangle_{\text{pol}}\}^{1/2}} \\ &\times \frac{\sum_{q} e_{q}^{2} \Delta D_{h_{1}^{\uparrow}/q}(z_{1}) D_{h_{2}/\bar{q}}(z_{2})}{\sum_{q} e_{q}^{2} D_{h_{1}/q}(z_{1}) D_{h_{2}/\bar{q}}(z_{2})} \end{aligned}$$

 $\mathcal{P}_T(z_1, p_{\perp 1}) = \frac{\sum_q e_q^2 \Delta D_{h_1^{\uparrow}/q}(z_1, p_{\perp 1})}{\sum_q e_q^2 D_{h_1/q}(z_1, p_{\perp 1})}$

Within a phenomenological approach

Introduce
$$p_{\perp}$$
 - parameterization for FFs:

$$\Delta D^{h}_{S_{Y}/q}(z, p_{\perp}) = \Delta D^{h}_{S_{Y}/q}(z)\sqrt{2e} \frac{p_{\perp}}{M_{pol}} \frac{e^{-p_{\perp}^{2}/\langle p_{\perp}^{2} \rangle_{pol}}}{\pi \langle p_{\perp}^{2} \rangle_{h}}$$

$$D_{h/q}(z, p_{\perp}) = D_{h/q}(z) \frac{e^{-p_{\perp}^{2}/\langle p_{\perp}^{2} \rangle_{h}}}{\pi \langle p_{\perp}^{2} \rangle_{h}}$$

The two extractions:

- Associated production: $e^+e^- \rightarrow h_1^{\uparrow}h_2 X$
- Global: $e^+e^- \rightarrow h^{\uparrow}_1 h_2 X + e^+e^- \rightarrow h_1 + (\text{jet}) X$

Lead to consistent results

Lambda-pion

Lambda-jet

Expected features:

- $P_T = 0$ when $p_{\perp} = 0$;
- $P_T(\Lambda) = P_T(\overline{\Lambda}).$

First moments

$$D_{1T}^{\perp(1)}(z) = \int d^2 \mathbf{p}_{\perp} \frac{p_{\perp}}{2zm_h} \Delta D_{h^{\uparrow}/q}(z, p_{\perp})$$

Three different valence pFF and Sea

SiDIS – Polarized Lambda Production

Prediction for the Λ polarization:

• $x_B = 0.1$

 $\mathbf{z}_{\mathbf{h}}$

Similar pattern for $x_B = 0.3$

 $\mathbf{z}_{\mathbf{h}}$

Outlook:

- EIC will allow to test the Lambda pFF universality;
- Improve flavor separation;
- Test TMD evolution

Backup Slides

Helicity density matrix

$$\begin{aligned} \rho_{\lambda_i,\lambda_i'}^{i,s_i} &= \frac{1}{2} \begin{pmatrix} 1+P_z^i & P_x^i - iP_y^i \\ P_x^i + iP_y^i & 1-P_z^i \end{pmatrix} \end{aligned}$$

$$\rho_{\lambda_h,\lambda'_h}^{h,S_h}\hat{D}_{h/q,s_q}(z,\mathbf{k}_{\perp h}) = \sum_{\lambda_q,\lambda'_q} \rho_{\lambda_q,\lambda'_q}^{q,s_q} \hat{D}_{\lambda_q,\lambda'_q}^{\lambda_h,\lambda'_h}(z,\mathbf{k}_{\perp h})$$

8 independent TMD Fragmentation Functions

		Hadron					
	Pol. States	U	L	Т			
Q	U	$\hat{D}_{h/q}$		$\Delta \hat{D}^h_{S_Y/q}$			
u a r k	L		$\Delta \hat{D}^{h/q}_{S_Z/s_L}$	$\Delta \hat{D}^{h/q}_{S_X/s_L}$			
	т	$\Delta^N D_{h/q^\uparrow}$	$\Delta \hat{D}^{h/q}_{S_Z/s_T}$	$\Delta \hat{D}^{h/q}_{S_X/s_T} \ / \ \Delta^- \hat{D}^{h/q}_{S_Y/s_T}$			

Helicity density matrix

$$\begin{split} \rho_{\lambda_i,\lambda_i'}^{i,s_i} &= \frac{1}{2} \begin{pmatrix} 1+P_z^i & P_x^i-iP_y^i \\ P_x^i+iP_y^i & 1-P_z^i \end{pmatrix} \end{split}$$

$$\rho_{\lambda_h,\lambda'_h}^{h,S_h}\hat{D}_{h/q,s_q}(z,\mathbf{k}_{\perp h}) = \sum_{\lambda_q,\lambda'_q} \rho_{\lambda_q,\lambda'_q}^{q,s_q} \hat{D}_{\lambda_q,\lambda'_q}^{\lambda_h,\lambda'_h}(z,\mathbf{k}_{\perp h})$$

8 independent TMD Fragmentation Functions

Helicity density matrix

$$\rho_{\lambda_i,\lambda_i'}^{i,s_i} = \frac{1}{2} \begin{pmatrix} 1 + P_z^i & P_x^i - iP_y^i \\ P_x^i + iP_y^i & 1 - P_z^i \end{pmatrix}$$

$$\rho_{\lambda_h,\lambda'_h}^{h,S_h}\hat{D}_{h/q,s_q}(z,\mathbf{k}_{\perp h}) = \sum_{\lambda_q,\lambda'_q} \rho_{\lambda_q,\lambda'_q}^{q,s_q} \hat{D}_{\lambda_q,\lambda'_q}^{\lambda_h,\lambda'_h}(z,\mathbf{k}_{\perp h})$$

8 independent TMD Fragmentation Functions

		Hadron					
	Pol. States	U	L	Т			
Q	U	$\hat{D}_{h/q}$		$\Delta \hat{D}^h_{S_Y/q}$			
u a r k	L		$\Delta \hat{D}^{h/q}_{S_Z/s_L}$	$\Delta \hat{D}^{h/q}_{S_X/s_L}$			
	т	$\Delta^N D_{h/q^\uparrow}$	$\Delta \hat{D}^{h/q}_{S_Z/s_T}$	$\Delta \hat{D}^{h/q}_{S_X/s_T} \ / \ \Delta^- \hat{D}^{h/q}_{S_Y/s_T}$			

Helicity density matrix

$$\rho_{\lambda_i,\lambda_i'}^{i,s_i} = \frac{1}{2} \begin{pmatrix} 1 + P_z^i & P_x^i - iP_y^i \\ P_x^i + iP_y^i & 1 - P_z^i \end{pmatrix}$$

$$\rho_{\lambda_h,\lambda'_h}^{h,S_h}\hat{D}_{h/q,s_q}(z,\mathbf{k}_{\perp h}) = \sum_{\lambda_q,\lambda'_q} \rho_{\lambda_q,\lambda'_q}^{q,s_q}\hat{D}_{\lambda_q,\lambda'_q}^{\lambda_h,\lambda'_h}(z,\mathbf{k}_{\perp h})$$

8 independent TMD Fragmentation Functions

Polarizing FF

Helicity density matrix

$$\rho_{\lambda_i,\lambda_i'}^{i,s_i} = \frac{1}{2} \begin{pmatrix} 1 + P_z^i & P_x^i - iP_y^i \\ P_x^i + iP_y^i & 1 - P_z^i \end{pmatrix}$$

$$\rho_{\lambda_h,\lambda'_h}^{h,S_h}\hat{D}_{h/q,s_q}(z,\mathbf{k}_{\perp h}) = \sum_{\lambda_q,\lambda'_q} \rho_{\lambda_q,\lambda'_q}^{q,s_q} \hat{D}_{\lambda_q,\lambda'_q}^{\lambda_h,\lambda'_h}(z,\mathbf{k}_{\perp h})$$

8 independent TMD Fragmentation Functions

Amsterdam notation:

Collins

Polarizing

$$\Delta^N D_{h/q^\uparrow} \longleftrightarrow H_q$$

$$\Delta D_{S_Y/q}^n \longleftrightarrow D_{1T}^{\pm}$$

$$\rho_{\lambda_{h_1},\lambda'_{h_1}}^{h_1}\rho_{\lambda_{h_2},\lambda'_{h_2}}^{h_2}\frac{d\sigma^{e^+e^-\to h_1h_2X}}{d\cos\theta dz_1 d^2\mathbf{p}_{\perp 1} dz_2 d^2\mathbf{p}_{\perp 2}}$$
$$=\sum_{q_c}\sum_{\{\lambda\}}\frac{1}{32\pi s}\frac{1}{4}\hat{M}_{\lambda_c\lambda_d,\lambda_a\lambda_b}\hat{M}^*_{\lambda'_c\lambda'_d,\lambda_a\lambda_b}\hat{D}^{\lambda_{h_1},\lambda'_{h_1}}_{\lambda_c,\lambda'_c}(z_1,\mathbf{p}_{\perp 1})\hat{D}^{\lambda_{h_2},\lambda'_{h_2}}_{\lambda_d,\lambda'_d}(z_2,\mathbf{p}_{\perp 2})$$

Scaling variables

- Light cone .
- Light cone zMomentum fraction $z_p = 2|\mathbf{P}_h|/\sqrt{s}$ •

• Energy fraction
$$z_h = 2E_h/\sqrt{s}$$

$$z_{h,p} \simeq z \left[1 \pm m_h^2/(z^2 s)\right]$$

z

Results consistent with [D. Boer, R. Jakob, and P.J. Mulders. Nucl. Phys. B 504 (1997)]

Results consistent with [D. Boer, R. Jakob, and P.J. Mulders. Nucl. Phys. B 504 (1997)]

Scaling variables

- Light cone
- Momentum fraction $z_p = 2|\mathbf{P}_h|/\sqrt{s}$

• Energy fraction
$$z_h = 2E_h/\sqrt{s}$$

$$z_{h,p} \simeq z \left[1 \pm m_h^2/(z^2 s)\right]$$

z

Results consistent with [D. Boer, R. Jakob, and P.J. Mulders. Nucl. Phys. B 504 (1997)]

Scaling variables

- Light cone
- Momentum fraction $z_p = 2|\mathbf{P}_h|/\sqrt{s}$

• Energy fraction
$$z_h = 2E_h/\sqrt{s}$$

 $z_{h,p} \simeq z \left[1 \pm m_h^2 / (z^2 s) \right]$

 \mathcal{Z}

Polarization vector

$$\mathcal{P}^{h_1} = P_x^{h_1} \hat{X}_1 + P_y^{h_1} \hat{Y}_1 + P_z^{h_1} \hat{Z}_1$$

Scaling variables • Light cone z• Momentum fraction $z_p = 2|\mathbf{P}_h|/\sqrt{s}$ • Energy fraction $z_h = 2E_h/\sqrt{s}$ $z_{h,p} \simeq z \left[1 \pm m_h^2/(z^2s)\right]$

Results consistent with [D. Boer, R. Jakob, and P.J. Mulders. Nucl. Phys. B 504 (1997)]

Polarization vector

$$\mathcal{P}^{h_1} = P_x^{h_1} \hat{X}_1 + P_y^{h_1} \hat{Y}_1 + P_z^{h_1} \hat{Z}_1$$

The polarization is measured along: $\hat{n} = -\hat{P}_{h_2}\times\hat{P}_{h_1}$

Results consistent with [D. Boer, R. Jakob, and P.J. Mulders. Nucl. Phys. B 504 (1997)]

Scaling variables

- Light cone
- Momentum fraction $z_p = 2|\mathbf{P}_h|/\sqrt{s}$
- Energy fraction $z_h = 2E_h/\sqrt{s}$

 $z_{h,p} \simeq z \left[1 \pm m_h^2 / (z^2 s) \right]$

 \mathcal{Z}

Polarization vector $\mathcal{P}^{h_1} = P_x^{h_1} \hat{X}_1 + P_y^{h_1} \hat{Y}_1 + P_z^{h_1} \hat{Z}_1$

The polarization is measured along: $\hat{n} = -\hat{P}_{h_2}\times\hat{P}_{h_1}$

The polarization projection along \hat{n} :

$$\mathcal{P}^{h_1} \cdot \hat{n} = P_x^{h_1} \cos \widetilde{\phi} + P_y^{h_1} \sin \widetilde{\phi}$$

Introduce p_{\perp} - parameterization for FFs: $\Delta D^{h}_{S_{Y}/q}(z, p_{\perp}) = \Delta D^{h}_{S_{Y}/q}(z)\sqrt{2e}\frac{p_{\perp}}{M_{pol}}\frac{e^{-p_{\perp}^{2}/\langle p_{\perp}^{2}\rangle_{pol}}}{\pi\langle p_{\perp}^{2}\rangle_{h}}$ $D_{h/q}(z, p_{\perp}) = D_{h/q}(z)\frac{e^{-p_{\perp}^{2}/\langle p_{\perp}^{2}\rangle_{h}}}{\pi\langle p_{\perp}^{2}\rangle_{h}}$

- Fixed energy scale $\sqrt{s} = 10.58 \text{ GeV}$
- NO Evolution
- Data depend only on energy fraction z_{Λ} $z_{\pi,K}$
- $\langle p_{\perp}^2 \rangle_h = 0.2 \ GeV^2$ width of unp. FF

Introduce p_{\perp} - parameterization for FFs: $\Delta D^{h}_{S_{Y}/q}(z, p_{\perp}) = \Delta D^{h}_{S_{Y}/q}(z) \sqrt{2e} \frac{p_{\perp}}{M_{pol}} \frac{e^{-p_{\perp}^{2}/\langle p_{\perp}^{2} \rangle_{pol}}}{\pi \langle p_{\perp}^{2} \rangle_{h}}$ z dependence $D_{h/q}(z, p_{\perp}) = D_{h/q}(z) \frac{e^{-p_{\perp}^{2}/\langle p_{\perp}^{2} \rangle_{h}}}{\pi \langle p_{\perp}^{2} \rangle_{h}}$

- Fixed energy scale $\sqrt{s} = 10.58 \text{ GeV}$
- NO Evolution
- Data depend only on energy fraction z_{Λ} $z_{\pi,K}$
- $\langle p_{\perp}^2 \rangle_h = 0.2 \ GeV^2$ width of unp. FF

- Fixed energy scale $\sqrt{s} = 10.58 \text{ GeV}$
- NO Evolution
- Data depend only on energy fraction z_{Λ} $z_{\pi,K}$
- $\langle p_{\perp}^2 \rangle_h = 0.2 \ GeV^2$ width of unp. FF

- Fixed energy scale $\sqrt{s} = 10.58 \text{ GeV}$
- NO Evolution
- Data depend only on energy fraction z_{Λ} $z_{\pi,K}$
- $\langle p_{\perp}^2 \rangle_h = 0.2 \ GeV^2$ width of unp. FF

 $d^2 \mathbf{p}_{\perp 1} \to d^2 \mathbf{P}_{T1}$

$$\int d^2 \mathbf{P}_{1T} d^2 \mathbf{p}_{\perp 2}$$

- Fixed energy scale $\sqrt{s} = 10.58 \text{ GeV}$
- NO Evolution
- Data depend only on energy fraction z_{Λ} $z_{\pi,K}$
- $\langle p_{\perp}^2 \rangle_h = 0.2 \ GeV^2$ width of unp. FF

- Fixed energy scale $\sqrt{s} = 10.58 \text{ GeV}$
- NO Evolution
- Data depend only on energy fraction z_{Λ} $z_{\pi,K}$
- $\langle p_{\perp}^2 \rangle_h = 0.2 \ GeV^2$ width of unp. FF

Consistent with [D. Callos, Z.B. Kang, and J. Terry, Phys. Rev. D 102, 096007 (2020)]

Belle data: $\sqrt{s} = 10.58 \text{ GeV}$

- 128 points $\Lambda + h$, in bins of the energy fractions $z_{\Lambda} z_{\pi,K}$
- 32 points $\Lambda(jet)$, in bins of $z_{\Lambda} p_{\perp}$

Polarizing FF parametrization:

$$\Delta D^{h}_{S_{Y}/q}(z) = \mathcal{N}^{p}_{q}(z) \overline{D_{h/q}(z)}$$

$$\mathcal{N}^{p}_{q}(z) = \mathcal{N}^{p}_{q} z^{\alpha_{q}} (1-z)^{\beta_{q}} \frac{(\alpha_{q} + \beta_{q})^{(\alpha_{q} + \beta_{q})}}{\alpha_{q}^{\alpha_{q}} \beta_{q}^{\beta_{q}}}$$

- Normalization factor: \mathcal{N}_q^p , $|\mathcal{N}_q^p| \leq 1$
- Shape for high and low z: $\alpha_q \beta_q$

Unpolarized FF set adopted:

- DSS07 for π, K
- AKK08 for $\Lambda + \overline{\Lambda}$

 $q\overline{q}$ FF separation for AKK08:

$$D_{\Lambda/\bar{q}}(z_p) = (1 - z_p) D_{\Lambda/q}(z_p)$$

Data selection:

- $\Lambda + \pi/K$: $z_{\pi,K} = [0.5 0.9]$ bin excluded \rightarrow 96 data points
- $\Lambda(jet)$: $z_{\Lambda} = [0.5 0.9]$ bin excluded \rightarrow 24 data points

Data selection:

• $\Lambda + \pi/K$: $z_{\pi.K} = [0.5 - 0.9]$ bin excluded \rightarrow 96 data points • $\Lambda(jet)$: $z_{\Lambda} = [0.5 - 0.9]$ bin excluded \rightarrow 24 data points

Fitted 8 parameters

Flav.	\mathcal{N}^p_q	$lpha_q$	eta_q	$\langle p_{\perp}^2 \rangle_{pol}$
u	\mathcal{N}_{u}^{p}		eta_u	
d	\mathcal{N}^p_d			$\langle p_{\perp}^2 \rangle_{pol}$
S	\mathcal{N}^p_s	α_s		
sea	\mathcal{N}^p_{sea}		eta_{sea}	

Data selection:

• $\Lambda + \pi/K$: $z_{\pi.K} = [0.5 - 0.9]$ bin excluded \rightarrow 96 data points • $\Lambda(jet)$: $z_{\Lambda} = [0.5 - 0.9]$ bin excluded \rightarrow 24 data points

Fitted 8 parameters

Fitted Parameters Value					
Nu	$0.47 \begin{array}{c} +0.32 \\ -0.20 \end{array}$				
Nd	$-0.32 \begin{array}{c} +0.13 \\ -0.13 \end{array}$				
Ns	$-0.57 \begin{array}{c} +0.29 \\ -0.43 \end{array}$				
Nsea	$-0.27 \begin{array}{c} +0.12 \\ -0.20 \end{array}$				
α_s	2.30 ^{+1.08} _{-0.91}				
β_{sea}	$2.60_{\ -1.74}^{\ +2.60}$				
β_u	3.50 ^{+2.33} _{-1.82}				
$< p_{\perp}^2 >_{pol}$	0.10 ^{+0.02} _{-0.02}				

Full data Fit :
$$\chi^2_{dof} = 1.94$$

Data selection:

• $\Lambda + \pi/K$: $z_{\pi.K} = [0.5 - 0.9]$ bin excluded \rightarrow 96 data points • $\Lambda(jet)$: $z_{\Lambda} = [0.5 - 0.9]$ bin excluded \rightarrow 24 data points

Fitted 8 parameters

Fitted Parameters Value					
Nu	0.47 ^{+0.32} -0.20				
Nd	$-0.32 \begin{array}{c} +0.13 \\ -0.13 \end{array}$				
Ns	$-0.57 \begin{array}{c} +0.29 \\ -0.43 \end{array}$				
Nsea	$-0.27 \begin{array}{c} +0.12 \\ -0.20 \end{array}$				
α_s	$2.30 {}^{+1.08}_{-0.91}$				
β_{sea}	$2.60_{-1.74}^{+2.60}$				
β_u	3.50 ^{+2.33} _{-1.82}				
$< p_{\perp}^2 >_{pol}$	0.10 +0.02 -0.02				

Full data Fit :
$$\chi^2_{dof} = 1.94$$

$$\Lambda + \pi/K$$
 data Fit : $\chi^2_{dof} = 1.26$

The two extractions are consistent

Lambda-kaon

SiDIS – Polarized Lambda Production

 $e^-P \rightarrow e^- \Lambda$

SiDIS – Polarized Lambda Production

 z_h

Prediction for the Λ polarization:

• $x_B = 0.3$

z_h

0.75					((************************************			
	1							
			1					
5 2								
B ^{5.0} − 2.5 −			-		1			
5.0 - B 2.5 - 2.5 -								
0.125 - 월 0.100 -								
छ 230 - ह 220 - 0.4 0.6 0.8 NUP	-0.4 -0.3 -0.2 NDO	-1.0 -0.5 NST	-0.4 -0.2 NSEA	- 2 AST		- 2 4 BSEA	- 0.08 0.10 0.12 PP	220 230 chi sq

Statistical Uncertainty Band

Multivariate Normal Distribution

MINUIT:
• Best fit parameters
$$\mu$$
: $\mathcal{N}_{q}^{p} \alpha_{q} \beta_{q} \langle p_{\perp}^{2} \rangle_{p}$ \downarrow μ , Σ
• Covariance matrix Σ
• Minimum Chi-square χ^{2}
Generate a random set of parameter Calculate their own Chi-square Keep set if
 $m(\mathcal{N}^{p} \alpha_{-} \beta_{-} \beta_{+} \beta_{+})$ \downarrow^{2} $\downarrow^{2} \subset \chi^{2} \subset \chi^{2} \subset \chi^{2} \to \chi^{2}$

Generate a random set of parameterCalculate their own Chi-squareKeep set if
$$x: (N_q^p \ \alpha_q \ \beta_q \ \langle p_{\perp}^2 \rangle_p)$$
 \longrightarrow $\chi'^2 \qquad \longrightarrow$ $\chi^2 \leq \chi'^2 \leq \chi^2 + \Delta \chi^2$

• Minimum Chi-square:
$$\chi^2$$
 = 232,8

• Confidence interval
$$2\sigma \rightarrow 95,5\%$$
: $\Delta \chi^2$ = 15,79 for 8 parameters (χ^2 -distribution)

0.75 - 0.50 - 0.25 -								
	1							
E -0.5 -								
g -0.2 - S2 -0.4 -			1					
LSP 2 -								
5.0 - 2.5 -					1			
5.0 - Eag 2.5 - Eag 2.5 -		•						
0.125 - & 0.100 -								
B 230 - E 220 - 0.4 0.6 0.8 NUP	-0.4 -0.3 -0.2 NDO	-1.0 -0.5 NST	-0.4 -0.2 NSEA	- 2 AST		- 2 4 BSEA	0.08 0.10 0.12 PP	220 230 chi sq

$$e^+e^- \rightarrow h^{\uparrow}_1 h_2 X$$

 h_1 polarized: Y , h_2 unpolarized

 h_1, h_2 unpolarized

$$\begin{split} & \frac{d\sigma^{e^+e^- \to h_1 h_2 X}}{d\cos\theta dz_1 d^2 p_{\perp 1} dz_2 d^2 p_{\perp 2}} & \\ & = \frac{6e^4 e_q^2}{64\pi \hat{s}} \begin{cases} D_{h_1/q}(z_1, p_{\perp 1}) D_{h_2/\bar{q}}(z_2, p_{\perp 2}) \left(1 + \cos^2\theta\right) \\ & \\ & Collins \ \text{FFs} \end{cases} \\ & + \frac{1}{4} \sin^2\theta \Delta^N D_{h_1/q^{\uparrow}}(z_1, p_{\perp 1}) \Delta^N D_{h_2/\bar{q}^{\uparrow}}(z_2, p_{\perp 2}) \cos(2\varphi_2 + \phi_1^{h_1}) \end{cases} \end{split}$$

 h_1 polarized: X , h_2 unpolarized

$$h_1$$
 polarized: Z , $h_2~$ unpolarized

$$\begin{split} P_{Z}^{h_{1}} & \frac{d\sigma^{e^{+}e^{-} \to h_{1}h_{2}X}}{d\cos\theta dz_{1}d^{2}p_{\perp 1}dz_{2}d^{2}p_{\perp 2}} \\ = & \frac{3e^{4}e_{q}^{2}}{64\pi\hat{s}} \Delta D_{S_{Z}/s_{T}}^{h_{1}}(z_{1},p_{\perp 1})\Delta^{N}D_{h_{2}/\bar{q}^{\uparrow}}(z_{2},p_{\perp 2})\sin^{2}\theta\sin(2\varphi_{2}+\phi_{1}^{h_{1}}) \\ & \text{ FF } h_{1} \text{ long. Pol.} \end{split}$$

Lambda-pion

Data fitted:
•
$$z_{\pi} < 0.5$$

$$\chi^2_{dof} = 1.94$$

Lambda pion

- Charge-conjugation symmetry $P_n(\Lambda \pi^+) = P_n(\overline{\Lambda}\pi^-)$
- Data give information on the pFFs for u and d
- $P_n(\Lambda \pi^+)$ negative, dominated by down pFF
- $P_n(\Lambda \pi^-)$ positive, dominated by up pFF

0

- $P_n(\Lambda\pi^-)$ strong reduction due to the large suppression of the up pFF
- Small z_a sea pFFs become important and negative,
- $P_n(\Lambda \pi^+)$ up and down cancel each other, sea pFF leads to large, and negative, values of the transverse polarization
- $P_n(\Lambda\pi^-)$ sea pFF partial reduction of the up pFF

Lambda-kaon

•
$$z_K < 0.50$$

$$\chi^2_{dof} = 1.94$$

Lambda-kaon

- Charge-conjugation symmetry $P_n(\Lambda K^+) = P_n(\overline{\Lambda}K^-)$
- Similar pattern pion
- Data give information on the pFFs for u and s
- $P_n(\Lambda K^+)$ negative, dominated by strange pFF
- $P_n(\Lambda K^-)$ positive, dominated by up pFF
- $P_n(\Lambda K^-)$ strong reduction due to the large suppression of the up pFF
- Small z_a sea pFFs become important and negative,