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Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  
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Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.
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2Measurements at the EIC
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Sorry this is pp … I will soon make an ep version !

To extract the most QCD  
(+ more) from the EIC, we 
will want to make highly 

differential measurements.

This will be possible with 
the high statistics and 
fine detector precision.



3The Unfolding Challenge1 1
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Usual solution:

dN
/d

x
x

We pick O(1) 
observables 
and bin them 

into O(10) bins
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How do to the reweighting?  



19Reweighting

How do to the reweighting?  

dataset 1: sampled from p(x) 
dataset 2: sampled from q(x)

Create weights w(x) = q(x)/p(x) so that when dataset 1 
is weighted by w, it is statistically identical to dataset 2.

What if we don’t (and can’t easily) know q and p?

(and don’t want to estimate them by binning)



20Classification for reweighting

Solution: train a neural network to 
distinguish the two datasets!

Fact: Neutral networks learn to 
approximate the likelihood ratio = q(x)/p(x)

This turns the problem of density estimation 
(hard) into a problem of classification (easy)

(or something monotonically related to it in a known way)

This is a well-known fact, but you can read about how this can be used for many tasks in HEP in this paper called DCTR: 
A. Andreassen, BPN, PRD RC 101 (2020) 091901, 1907.08209



21Classification for reweighting
Neural networks are 

naturally unbinned and 
readily process high-

dimensional data. 

For this measurement, 
we use simple fully 

connected networks with 
a few hidden layers.

N.B. the distribution is 
binned for illustration, but the 

reweighting is unbinned. 

M. Arratia and BN, 
work in progress

p
s = 319 GeV

<latexit sha1_base64="6oZa+gRYnrmADg8aE1LHQznmIqo=">AAAB+3icbVBNS8NAEN34WetXrEcvi63gqSTtQT0IRQ96rGA/oA1ls922SzebuDsRS8hf8eJBEa/+EW/+G7dtDtr6YODx3gwz8/xIcA2O822trK6tb2zmtvLbO7t7+/ZBoanDWFHWoKEIVdsnmgkuWQM4CNaOFCOBL1jLH19P/dYjU5qH8h4mEfMCMpR8wCkBI/XsQqmrHxQkOr2suhclfMOaPbvolJ0Z8DJxM1JEGeo9+6vbD2kcMAlUEK07rhOBlxAFnAqW5ruxZhGhYzJkHUMlCZj2ktntKT4xSh8PQmVKAp6pvycSEmg9CXzTGRAY6UVvKv7ndWIYnHsJl1EMTNL5okEsMIR4GgTuc8UoiIkhhCpubsV0RBShYOLKmxDcxZeXSbNSdqvlyl2lWLvK4sihI3SMTpGLzlAN3aI6aiCKntAzekVvVmq9WO/Wx7x1xcpmDtEfWJ8/Kr2TNg==</latexit>

e→←p
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All of these distributions are simultaneously reweighted!

M. Arratia and BN, 
work in progress p

s = 319 GeV
<latexit sha1_base64="6oZa+gRYnrmADg8aE1LHQznmIqo=">AAAB+3icbVBNS8NAEN34WetXrEcvi63gqSTtQT0IRQ96rGA/oA1ls922SzebuDsRS8hf8eJBEa/+EW/+G7dtDtr6YODx3gwz8/xIcA2O822trK6tb2zmtvLbO7t7+/ZBoanDWFHWoKEIVdsnmgkuWQM4CNaOFCOBL1jLH19P/dYjU5qH8h4mEfMCMpR8wCkBI/XsQqmrHxQkOr2suhclfMOaPbvolJ0Z8DJxM1JEGeo9+6vbD2kcMAlUEK07rhOBlxAFnAqW5ruxZhGhYzJkHUMlCZj2ktntKT4xSh8PQmVKAp6pvycSEmg9CXzTGRAY6UVvKv7ndWIYnHsJl1EMTNL5okEsMIR4GgTuc8UoiIkhhCpubsV0RBShYOLKmxDcxZeXSbNSdqvlyl2lWLvK4sihI3SMTpGLzlAN3aI6aiCKntAzekVvVmq9WO/Wx7x1xcpmDtEfWJ8/Kr2TNg==</latexit>

e→←p



23Unfold by iterating: OmniFold

Detector-level MC

Si
m

ul
at

io
n

N
at

ur
e

Detector-level

Data

Particle-level

Particle-level MC

Truth

Pull 
Weights

Push 
Weights

Step 1: 
Reweight Sim. to Data

Step 2: 
Reweight Gen.

RAPGAP
DJANGOH

PYTHIA

GEANT



24OmniFolding ep simulations
We see excellent closure for the full phase space!

M. Arratia and BN, 
work in progress p

s = 319 GeV
<latexit sha1_base64="6oZa+gRYnrmADg8aE1LHQznmIqo=">AAAB+3icbVBNS8NAEN34WetXrEcvi63gqSTtQT0IRQ96rGA/oA1ls922SzebuDsRS8hf8eJBEa/+EW/+G7dtDtr6YODx3gwz8/xIcA2O822trK6tb2zmtvLbO7t7+/ZBoanDWFHWoKEIVdsnmgkuWQM4CNaOFCOBL1jLH19P/dYjU5qH8h4mEfMCMpR8wCkBI/XsQqmrHxQkOr2suhclfMOaPbvolJ0Z8DJxM1JEGeo9+6vbD2kcMAlUEK07rhOBlxAFnAqW5ruxZhGhYzJkHUMlCZj2ktntKT4xSh8PQmVKAp6pvycSEmg9CXzTGRAY6UVvKv7ndWIYnHsJl1EMTNL5okEsMIR4GgTuc8UoiIkhhCpubsV0RBShYOLKmxDcxZeXSbNSdqvlyl2lWLvK4sihI3SMTpGLzlAN3aI6aiCKntAzekVvVmq9WO/Wx7x1xcpmDtEfWJ8/Kr2TNg==</latexit>

e→←p



OmniFolding H1 Data

→Physics details in Miguel’s talk

We see excellent closure for the full phase space!OmniFold is:
- Unbinned
- Maximum likelihood*
- Improves the resolution from correlations with 

detector response

*In fact, when binned, OmniFold converges to 
Iterative Bayesian Unfolding

25



OmniFolding H1 Data

→Physics details in Miguel’s talk

We see excellent closure for the full phase space!

26

We need to start thinking now about the computing 
resources needed for this approach and also how to 
represent and store unbinned measurements.

In fact, OmniFold can also work on low-level inputs 
(e.g. energy flow particles).  In that case, you can 
construct observables after the measurement. 

This and the other properties of OmniFold will significantly 
increase the utility and future-proofing of EIC data.  

See an example in e+e- and pp in PRL 124 (2020) 182001

e.g. good GPUs have O(10) GB of memory; what if you can’t 
load the data into memory?  Need data parallel learning.



By using deep learning 
and the new OmniFold 
method, we are able to 
simultaneously unfold 

multiple unbinned spectra. 

This methodology is general & can be applied to all 
measurements, in both low and and high dimensions!

27Conclusions and outlook
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This will provide a wealth 
of information for probing 

QCD (including TMD, etc.) 
in great detail.
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