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Measurements at the EIC

0 extract the most QCD
(+ more) from the EIC, we
will want to make highly
a1 differential measurements.

This will be possible with
the high statistics and
fine detector precision.

Sorry this is pp ... | will soon make an ep version !



The Unfolding Challenge

Want this Measure this




The Unfolding Challenge

Usual solution:

A
We pick O(1)
observables
and bin them
into O(10) bins

dN/dx




The Unfolding Challenge
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The Unfolding Challenge

Can we go unbinned?
Can we use many
dimensions?



Unfold by iterating: OmniFold
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Unfold by iterating: OmniFold

Measured Ideal ]
f S
©O
5 &
_ Data = =
SR LL| cs
5 £
2 c
@)
X
O O
cC o
ST
o=
Step 1: O
Reweight Sim. to Data _8 Z“
5%
(A
<‘ M

Simulation

/),\‘\: e.g. Pythia + Geant4

Synthetic




Unfold by iterating: OmniFold
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Unfold by iterating: OmniFold
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Unfold by iterating: OmniFold
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Unfold by iterating: OmniFold
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Unfold by iterating: OmniFold
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Unfold by iterating: OmniFold
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Unfold by iterating: OmniFold
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Unfold by iterating: OmniFold
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Unfold by iterating: OmniFold
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Reweighting

How do to the reweighting”?



Reweighting

How do to the reweighting”?

dataset 1: sampled from p(x)
dataset 2: sampled from q(x)

Create weights w(x) = g(x)/p(x) so that when dataset 1
IS weighted by w, it Is statistically identical to dataset 2.

What if we don't (and can't easily) know g and p?

(and don’t want to estimate them by binning)



Classification for reweighting

Fact: Neutral networks learn to
approximate the likelihood ratio

Solution: train a neural network to
distinguish the two datasets!

This turns the problem of density estimation
(hard) into a problem of classification (easy)

This is a well-known fact, but you can read about how this can be used for many tasks in HEP in this paper called DCTR:
A. Andreassen, BPN, PRD RC 101 (2020) 091901, 1907.08209



Classification for reweighting

Neural networks are
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Classification for reweighting

imultaneously reweighted!
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Unfold by iterating: OmniFold
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OmniFolding ep simulations

r
We see excellent closure for the full phase space!
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OmniFold is:

- Unbinned

- Maximum likelihood”

- Improves the resolution from correlations with
detector response

*In fact, when binned, OmniFold converges to
lterative Bayesian Unfolding



In fact, OmniFold can also work on low-level inputs
(e.g. energy flow particles). In that case, you can
construct observables after the measurement.

See an example in ete-and pp in PRL 124 (2020) 182001

This and the other properties of OmniFold will significantly
Increase the utility and future-proofing of EIC data.

We need to start thinking now about the computing
resources needed for this approach and also how to
represent and store unbinned measurements.

e.g. good GPUs have O(10) GB of memory; what if you can't
load the data into memory? Need data parallel learning.




Conclusions and outlook

By using deep learning
and the new OmniFold
method, we are able to

multiple unbinned spectra.
This will provide a wealth

of information for probing
QCD (including TMD, etc.)
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