

High dimensio measurements (at

	Convolution	Max-Pool
Jet Image		

Benjamin Nachman

Lawrence Berkeley National Laboratory

bpnachman.com bpnachman@lbl.gov

vs for an image-

EIC opportunities for Snowmass Jan. 27, 2021

Measurements at the EIC

To extract the most QCD (+ more) from the EIC, we will want to make highly differential measurements.

2

This will be possible with the high statistics and fine detector precision.

Sorry this is pp ... I will soon make an ep version !

Want this

Measure this

8

Ideal

e.g. Pythia, particle-level

Ideal

A. Andreassen, P. Komiske, E. Metodiev, BPN, J. Thaler, PRL 124 (2020) 182001

Ideal

How do to the reweighting?

How do to the reweighting?

dataset 1: sampled from p(x)dataset 2: sampled from q(x)

Create weights w(x) = q(x)/p(x) so that when dataset 1 is weighted by w, it is statistically identical to dataset 2.

What if we don't (and can't easily) know *q* and *p*? (and don't want to estimate them by binning)

Fact: Neutral networks learn to approximate the likelihood ratio = q(x)/p(x)

(or something monotonically related to it in a known way)

Solution: train a neural network to distinguish the two datasets!

This turns the problem of **density estimation** (hard) into a problem of **classification** (easy)

This is a well-known fact, but you can read about how this can be used for many tasks in HEP in this paper called DCTR: A. Andreassen, BPN, PRD RC 101 (2020) 091901, 1907.08209

Classification for reweighting

Neural networks are naturally unbinned and readily process highdimensional data.

For this measurement, we use simple fully connected networks with a few hidden layers.

N.B. the distribution is binned for illustration, but the reweighting is unbinned.

Classification for reweighting

All of these distributions are simultaneously reweighted!

OmniFolding ep simulations

We see excellent closure for the full phase space!

We see excellent closure for the full phase space! Unbinned Maximum likelihood* Improves the resolution from correlations with detector response *In fact, when binned, OmniFold converges to Iterative Bayesian Unfolding

→Physics details in Miguel's talk

Conclusions and outlook

By using deep learning and the new OmniFold method, we are able to simultaneously unfold multiple unbinned spectra.

This will provide a wealth of information for probing QCD (including TMD, etc.) in great detail.

This methodology is general & can be applied to all measurements, in both low and and high dimensions!

