High dimensional jet measurements (at the EIC)

Benjamin Nachman

Lawrence Berkeley National Laboratory
bpnachman.com bpnachman@lbl.gov

BERKELEY INSTITUTE FOR DATA SCIENCE

EIC opportunities for Snowmass Jan. 27, 2021

Measurements at the EIC

To extract the most QCD (+ more) from the EIC, we will want to make highly differential measurements.

This will be possible with the high statistics and fine detector precision.

The Unfolding Challenge

Want this
\downarrow

Measure this

The Unfolding Challenge

Want this

Usual solution:

The Unfolding Challenge

Want this

Usual solution:

The Unfolding Challenge

Want this

Usual solution:

Can we go unbinned?
Can we use many dimensions?

Unfold by iterating: OmniFold

Unfold by iterating: OmniFold

Measured

Ideal
e.g. Pythia + Geant4

Unfold by iterating: OmniFold

Measured

Ideal
e.g. Pythia, particle-level

Unfold by iterating: OmniFold

Measured

Ideal

Step 2:
Reweight Gen.

Unfold by iterating: OmniFold

Measured

Ideal

Unfold by iterating: OmniFold

Measured

Ideal

Iteration 2

Unfold by iterating: OmniFold

Measured

Ideal

Iteration 2

Unfold by iterating: OmniFold

Measured

Step 2:
Reweight Gen.
Iteration 2
Ideal

Unfold by iterating: OmniFold

Measured

Ideal

Iteration 2

Unfold by iterating: OmniFold

Unfold by iterating: OmniFold

Reweighting

How do to the reweighting?

Reweighting

How do to the reweighting?
dataset 1: sampled from $p(x)$ dataset 2: sampled from $\mathbf{q (x)}$

Create weights $\boldsymbol{w}(\boldsymbol{x})=\boldsymbol{q}(\boldsymbol{x}) / p(\boldsymbol{x})$ so that when dataset 1 is weighted by \boldsymbol{w}, it is statistically identical to dataset 2 .

What if we don't (and can't easily) know \boldsymbol{q} and \boldsymbol{p} ?
(and don't want to estimate them by binning)

Classification for reweighting

Fact: Neutral networks learn to approximate the likelihood ratio $=q(x) / p(x)$
(or something monotonically related to it in a known way)
Solution: train a neural network to distinguish the two datasets!

This turns the problem of density estimation (hard) into a problem of classification (easy)

Classification for reweighting

Neural networks are naturally unbinned and readily process highdimensional data.

For this measurement, we use simple fully connected networks with a few hidden layers.
N.B. the distribution is binned for illustration, but the reweighting is unbinned.

Classification for reweighting

All of these distributions are simultaneously reweighted!

M. Arratia and BN, work in progress

Unfold by iterating: OmniFold

Detector-level Particle-level

OmniFolding ep simulations

We see excellent closure for the full phase space!

M. Arratia and BN, work in progress

OmniFold is:

- Unbinned
- Maximum likelihood*
- Improves the resolution from correlations with detector response
*In fact, when binned, OmniFold converges to Iterative Bayesian Unfolding

In fact, OmniFold can also work on low-level inputs (e.g. energy flow particles). In that case, you can construct observables after the measurement.

This and the other properties of OmniFold will significantly increase the utility and future-proofing of EIC data.

We need to start thinking now about the computing resources needed for this approach and also how to represent and store unbinned measurements.
e.g. good GPUs have $O(10)$ GB of memory; what if you can't
load the data into memory? Need data parallel learning.

Conclusions and outlook

By using deep learning and the new OmniFold method, we are able to simultaneously unfold multiple unbinned spectra.

This will provide a wealth of information for probing QCD (including TMD, etc.)
 in great detail.

This methodology is general \& can be applied to all measurements, in both low and and high dimensions!

