Simulations for inclusive diffraction

Playing with SmearMatrixDetector_0_1_FF

Version corrected after fixing a bug in FF momentum smearing in SmearMatrixDetector_0_1_FF

> Wojtek Słomiński (Jagiellonian University) with Nestor Armesto, Paul Newman, Anna Staśto

- Diffractive DIS sample from RAPGAP
- Smearing including the far forward region

Diffraction and Tagging WG meeting 2020-09-10

Inclusive diffractive DIS

2020-09-10

Wojtek Slominski - Diffraction and Tagging WG meeting

Monte Carlo sample for diffractive DIS

- **RAPGAP** generator used
 - 100 000 events generated
 - Pomeron & Reggeon contributions included
- Kinematic variables reconstructed using
 - Electron method $q = p^e p^{e'}$
 - Jacquet-Blondel method $q = P_{out}^{had} P_{in}^{tot}$

 Kinematic bounds

 $x_L > 0.6$,

 $-t < 5 \text{ GeV}^2$,

 $Q^2 \in [4.2, 42] \text{ GeV}^2$,

 $y \in [0.005, 0.96]$,

 $\theta_e \in [157^\circ, 179^\circ]$

Even for the true (unsmeared) sample the (e) and (JB) methods give different results because of some nonconservation of the total 4-momentum.

Total final momentum from RAPGAP

Smeared sample from SmearMatrixDetector_0_1_FF

- A "dead zone" between RP and B0: $\theta_p = 5 \div 6 \text{ mrad}$
 - ca. 1.5% events with the final proton in the dead zone not accepted
- Energy or momentum not provided by some detector components
 - Reconstructed using measured θ and φ values and assuming mass = 0 or m_{ρ} for an identified final hadron

DIS variables: x, Q^2

DIS variable *y*

Tagged proton – η , x_{L} , t

Tagged proton – t, pT

Diffraction specific variables: M_{X} , β , $\xi \equiv x_{IP}$

Discussion & Summary

- Additional cuts for diffraction should be studied.
- We could also take the "dead zone" into account in the generated data

Summary

- Good resolution for: x, y, Q^2, t and p_T
- Reasonable resolution for: $M_{X'}$, β , ξ
- Further studies required...
 of course

EXTRAS

Final proton tagging $-x_L$, *t* range

HERA data taken at $0.08 < -t < 0.55 \text{ GeV}^2$ and $0.9 < x_{\text{L}} < 1$

A better measurement of *t*-dependence possible

Pomeron, Reggeon, F_2 , F_L components of σ_{red}

- \square *R* contribution dominates at high ξ
- \Box Significant $F_{\rm L}$ component

$$\sigma_{\rm red} = F_2 - Y_{\rm L}(y) F_{\rm L}$$

 $Y_{\rm L}(y) = \frac{y^2}{1 + (1 - y)^2}$

At fixed (x, Q^2) , $Y_L(y)$ scales stronger than ~ $1/s^2$, e.g. $Y_L(0.9/5)/Y_L(0.9) = 0.024$

Some intermediate beam energy settings would improve $F_{\rm L}$ measurements.

Sensitivity to the Reggeon contribution to σ_{red}

Reggeon flux $\varphi_R \sim \xi^{1-2\alpha_R}$ and α_R is a free fit parameter. Hence the data can discriminate between two shapes in ξ .

THE END