Simulations for inclusive diffraction

Playing with SmearMatrixDetector_0_1_FF

Version corrected after fixing a bug in FF momentum smearing in SmearMatrixDetector 0 1 FF

1 Ations for inclusive diffraction
ng with SmearMatrixDetector_0_1_FF
rected after fixing a bug in FF momentum smearing
in SmearMatrixDetector_0_1_FF
Wojtek Słomiński (Jagiellonian University)
stor Armesto, Paul Newman, with Nestor Armesto, Paul Newman, Anna Staśto Fraision corrected after fixing a bug in FF momentum smearing

in SmearMatrixDetector_0_1_FF

Wojtek Słomiński (Jagiellonian University)

Nestor Armesto, Paul Newman, Anna Stasto

• Diffractive DIS sample from RAPGAP

• Sm rsion corrected atter fixing a bug in FF momentum smearing

in SmearMatrixDetector_0_1_FF

Wojtek Słomiński (Jagiellonian University)

with

Nestor Armesto, Paul Newman, Anna Stasto

• Diffractive DIS sample from RAPGAP

•

-
-

Diffraction and Tagging WG meeting 2020-09-10

Inclusive diffractive DIS

Monte Carlo sample for diffractive DIS (onte Carlo sample for diffractive DIS

RAPGAP generator used

– 100 000 events generated

– Pomeron & Reggeon contributions included

Ginematic variables reconstructed using For diffractive DIS
 RAPGAP generator used

- 100 000 events generated

- Pomeron & Reggeon contributions included

- Flectron method — $q = p^e - p^{e'}$

- Flectron method — $q = p^e - p^{e'}$ Monte Carlo sample for diffractive DIS

• RAPGAP generator used

– 100 000 events generated

– Pomeron & Reggeon contributions included

• Kinematic variables reconstructed using

– Electron method — $q = p^e - p^{e\nu}$

– Jac Figure 1 and to the Carlo sample for diffractive DIS
 EXPGAP generator used

- 100 000 events generated

- Pomeron & Reggeon contributions included

- Electron method $-q = p^e - p^{e\prime}$

- Jacquet-Blondel method $-q = P_{out}^{had} -$ Fractive DIS
 EXAPGAP generator used

- 100 000 events generated

- Pomeron & Reggeon contributions included

- Flectron method — $q = p^e - p^{eV}$

- Jacquet-Blondel method — $q = P_{out}^{had} - P_{in}^{tot}$

- Ven for the true (unsmea

- **RAPGAP** generator used
	-
	-
- - Electron method $q = p^e p^{e}$ $e¹$
	-

 $\begin{array}{l}\n\text{had} \\
\text{out} \\
\theta_e \in [157^\circ]\n\end{array}$ $x_I > 0.6$, $y \in [0.005, 0.96]$, $\theta_e \in [157^\circ, 179^\circ]$ Kinematic bounds Example 1 = $x_L > 0.6$,
 $-t < 5 \text{ GeV}^2$,
 $Q^2 \in [4.2, 42] \text{ GeV}^2$,
 $y \in [0.005, 0.96]$,
 $\theta_e \in [157^\circ, 179^\circ]$ $-t < 5$ GeV²,
 $Q^2 \in [4.2, 42]$ GeV², Sinematic bounds
 t > 0.6,
 t < 5 GeV²,

² ∈ [4.2, 42] GeV²,

∈ [0.005, 0.96],

₂ ∈ [157°, 179°] Kinematic bounds
 $x_L > 0.6$,

−t < 5 GeV²,
 $Q^2 \in [4.2, 42]$ GeV²,
 $y \in [0.005, 0.96]$,
 $\theta_e \in [157^\circ, 179^\circ]$ matic bounds

1.6,

5 GeV²,

[4.2, 42] GeV²,

1.57°, 179°]

Tent results

Even for the true (unsmeared) sample the (e) and (JB) methods give different results

Total final momentum from RAPGAP

Smeared sample from SmearMatrixDetector_0_1_FF
• A "dead zone" between RP and B0: $\theta_2 = 5 \div 6$ mrad Smeared sample from SmearMatrixDetector_0_1_F
• A "dead zone" between RP and B0: $\theta_p = 5 \div 6$ mrad
– ca. 1.5% events with the final proton in the dead zone not accep eared sample from SmearMatrixDetector_0_1_FF

("dead zone" between RP and B0: $\theta_p = 5 \div 6$ mrad

– ca. 1.5% events with the final proton in the dead zone not accepted

Energy or momentum not provided by some detector comp

- -
-
- A "dead zone" between RP and B0: $θ_p = 5 ÷ 6$ mrad

 A "dead zone" between RP and B0: $θ_p = 5 ÷ 6$ mrad

 ca. 1.5% events with the final proton in the dead zone not accepted

 Energy or momentum not provided by some eared sample from SmearMatrixDetector_0_1_FF

"dead zone" between RP and B0: $θ_p = 5 \div 6$ mrad

— ca. 1.5% events with the final proton in the dead zone not accepted

inergy or momentum not provided by some detector compo or m_p for an identified final hadron sample from SmearMatrixDetector_0_1_FF
zone" between RP and B0: $\theta_p = 5 \div 6$ mrad
5% events with the final proton in the dead zone not accepted
r momentum not provided by some detector components
structed using measured

DIS variables: x , Q^2

DIS variable y

Tagged proton $-\eta$, x_L , t

- Additional cuts for diffraction should be
studied.
• We could also take the "dead zone" into studied.
- Additional cuts for diffraction should be
studied.
• We could also take the "dead zone" into
account in the generated data account in the generated data

Summary

- Good resolution for: *x, y, Q*², *t* and p_T
- Reasonable resolution for: M_X , β , ζ **Summary**

Good resolution for:
 x, *y*, *Q*², *t* and p_T

Reasonable resolution for:
 *M*_{*x*}, β , ξ

Further studies required...

— of course
- Final proton and $-$ of course • Further studies required…

EXTRAS

Final proton tagging $- x_L$, t range

HERA data taken at $0.08 < -t < 0.55$ GeV² and $0.9 < x_L < 1$

A better measurement of t-dependence possible

Pomeron, Reggeon, $\rm F_2$, $\rm F_L$ components of $\rm \sigma_{red}$

- \Box *R* contribution dominates at high ξ
- \Box Significant F_I component

$$
\sigma_{\text{red}} = F_2 - Y_{\text{L}}(y) F_{\text{L}}
$$

$$
Y_{\text{L}}(y) = \frac{y^2}{1 + (1 - y)^2}
$$

At fixed (x,Q^2) , $Y_L(y)$ scales stronger than $\sim 1/s^2$, e.g. $Y_L(0.9/5)/Y_L(0.9) = 0.024$

Some intermediate beam energy settings would improve F_L measurements.

Reggeon flux $\varphi_R \sim \xi^{1-2\alpha_R}$ and α_R is a free fit parameter. Hence the data can discriminate between two shapes in ξ .

THE END