Recent Results on Open Heavy Flavor from STAR

Matthew Kelsey
(for the STAR collaboration)

RHIC+AGS AUM Oct. 22-23, 2020
The Role of Heavy Flavor

Heavy quark production via the initial hard partonic scatterings in heavy-ion (HI) collisions \(\Rightarrow \) "External" probe of de-confined medium

Elementary collisions
\(\Rightarrow \) pQCD

Initial conditions
- Directed Flow
\(\Rightarrow \) B field
\(\Rightarrow \) Longitudinal profile

Heavy quark diffusion
- Elliptic Flow
\(\Rightarrow \) Thermalization
\(\Rightarrow \) 2\(\pi\)TDs

Energy loss
- \(R_{AA} + R_{CP}\)
\(\Rightarrow \) Collisional + radiative
\(\Rightarrow \Delta E(m)\)

Hadronization
- \(\Lambda_c + D_s\) production
\(\Rightarrow \) Coalescence vs. vacuum fragmentation
Outline of Measurements

Spectra of D^\pm and D_s^\pm mesons in Au+Au collisions

$b/c \rightarrow e$ R_{AA} and R_{AA}/CP double-ratios

Elliptic flow of non-photonics electrons in 54.4 and 27 GeV Au+Au collisions

$c \rightarrow e$ directed and $b/c \rightarrow e$ elliptic flow
The STAR Detector

Time Projection Chamber (TPC)
- Full 2π azimuthal coverage at mid-rapidity

Heavy Flavor Tracker (HFT)
- First application of thin MAPS detector in collider experiment (2014+2016)
- Excellent pointing resolution for secondary vertex and displaced daughter reconstruction

PID achieved with TPC, Time-of-Flight (TOF), and Barrel Electromagnetic Calorimeter (BEMC)
D\(\pm\) Production in \(\sqrt{s_{NN}} = 200\) GeV Au+Au

D\(+\rightarrow K^{+}\pi^{+}\pi^{-}\) reconstructed topologically using HF decay vertex

- TMVA optimized selection
- Low p\(_{T}\) reach extended to 1 GeV/c
- Up to 3x improvement in signal significance at low p\(_{T}\)
D^\pm Production in $\sqrt{s_{NN}} = 200$ GeV Au+Au

- Measured D^+ R_{AA} comparable to D^0 within uncertainties
- Significant suppression in central Au+Au at high p_T

Measured D^+/D^0 yield ratio are consistent with PYTHIA 8 predictions across all collision centralities
D_s^\pm Production in $\sqrt{s_{\text{NN}}} = 200$ GeV Au+Au

Good probe of strangeness enhancement + coalescence hadronization

Boosted decision tree optimized to select $D_s^+ \rightarrow \phi (K^+ K^-) \pi^+$ decays

- Improved signal significance by 30% compared to traditional cut-based approach
- Measured down to $p_T = 1$ GeV/c
D$_s^{\pm}$ Production in $\sqrt{s_{\text{NN}}} = 200$ GeV Au+Au

Significant enhancement in D_{s^+}/D^0 ratio compared to PYTHIA 6
- No strong centrality dependence
- Comparable to ALICE Pb+Pb data @ $\sqrt{s_{\text{NN}}} = 5.02$ TeV
- Larger ratio than ALICE p+p @ $\sqrt{s} = 7$ TeV

Models including coalescence hadronization also show enhancement

Single Electrons from Bottom Hadrons

Log(3D DCA) distribution provides excellent separation between $c \rightarrow e$, $b \rightarrow e$, and BKG

Electron PID improved with likelihood MVA classifier; Hadron contamination reduced by factor of two

Photonic electron (π^0, η, and γ) background veto; Reduction by 60%
Fraction of $b \to e/c+c+b \to e$ significantly enhanced in central and min. bias $\sqrt{s_{NN}} = 200$ GeV Au+Au collisions

Peripheral $b \to e/c+c+b \to e$ fraction consistent with $\sqrt{s} = 200$ GeV $p+p$ and FONLL

Bottom vs. Charm Energy Loss

\[R_{AA}^{b\rightarrow e} = \frac{f_{AA}^b}{f_{pp}^b} R_{AA}^{NPE} \]

\[R_{AA}^{c\rightarrow e} = \frac{1 - f_{AA}^b}{1 - f_{pp}^b} R_{AA}^{NPE} \]

Significant improvement in experimental uncertainties since QM17!
Bottom vs. Charm Energy Loss

\[\frac{R_{CP}^{b\rightarrow e}}{R_{CP}^{c\rightarrow e}} = \frac{f_{central} b}{1 - f_{central}} \frac{1 - f_{peripheral}}{f_{peripheral}} \]

\(R_{AA} \) double ratios deviate from unity by \(3\sigma \); null hyp. (assumption of same \(R_{AA} \) for bottom/charm) by \(2\sigma \)

- Fixed electron \(p_T \) probes roughly same charm and bottom hadron average \(p_T \) (within relative 12%)

\[R_{CP}[0-20%/40-80%(20-40%)] \] double ratios deviate from unity by \(4.4(3.5)\sigma \)

- \(R_{CP} \) null hyp. consistent with unity (not shown)

Data consistent with Duke Langevin model prediction

Provide a conclusive picture of \(c \) and \(b \) quark energy loss consistent with \(\Delta E(b) < \Delta E(c) \)
Low Energy Electron Elliptic Flow

\(D^0 \) \(v_2 \) well described by models including \(c \) quark diffusion

Low energy non-photonic electron (NPE) \(v_2 \) good probe of temperature dependence

RHIC Run17+18: Au+Au collisions at \(\sqrt{s_{NN}} = 54.4 \pm 27 \) GeV; 10x increase in statistics compared to previous STAR low energy measurements
Low Energy Electron Elliptic Flow

Significant NPE v_2 at 54.4 GeV; comparable to those at $\sqrt{s_{NN}} = 200$ data

NPE v_2 at 27 GeV consistent with zero within experimental uncertainties

Above $p_T=1$ GeV/c model comparisons consistent considering non-flow and all uncertainties; disagreement at $p_T<1$ GeV/c

TAMU: M. He et al. PRC 91, 024904 (2015)
PHSD: T. Song et al. PRC 92, 014910 (2015)
T. Song et al. PRC 96, 014905 (2017)
Charm Quark Directed Flow

Electrons from charm hadron semileptonic decays excellent proxy for parent hadron v_1
- Beneficial channel due to improved statistics; requires good single track pointing resolution to isolate signal

Average $c \rightarrow e$ v_1 comparable to measured D^0 v_1 from STAR in $\sqrt{s_{NN}} = 200$ GeV $Au+Au$ collisions
- Similar hadron p_T probed: $\langle p_T(D) \rangle = 2.5$ GeV/c in $c \rightarrow e$ vs. 2.2 GeV/c for D^0 measurement
- Improved precision offers improved constraint to initial tilt of QGP bulk
Charm Quark Directed Flow

Initial EM field predicted to affect c and anti-c quarks differently

Electron charge tags initial heavy quark flavor in semileptonic decays

Electron v_1 difference trend same as D^0 measurement; consistent with zero at 1σ level

$D^0 \rightarrow K^- e^+ \nu_e$

$\bar{D}^0 \rightarrow K^+ e^- \bar{\nu}_e$

Hydo+EM: Chatterjee, Bojek: arXiv1804.04893v1
Bottom-decayed Electron Elliptic Flow

$\bar{c} \rightarrow e v_2$ consistent with STAR D^0 measurement folded to decay electron

Non-zero $b \rightarrow e v_2$ with significance $>3\sigma$ (first significant bottom v_2 at RHIC)

Consistency with Duke model considering non-flow

STAR D^0 PRL 118 (2017) 212301

FMS = Forward (2.5 < η < 4) Meson Spectrometer
Summary

✓ Significant suppression of D^+ in central HI collisions; Similar D^+/D^0 yield to PYTHIA 8
✓ Significant enhancement of D_{s}^+/D^0 ratios in HI collisions w.r.t. $p+p$
✓ Separation of $b/c\rightarrow e$ R_{AA} and significant R_{AA}/CP double ratios > unity
✓ Elliptic flow of NPE: Non-zero in 54.4 GeV collisions; Consistent with zero in 27 GeV collisions
✓ $c\rightarrow e$ v_1 and v_2 consistent with previous STAR measurement
✓ First significant non-zero $b\rightarrow e$ v_2 @ RHIC