New Physical Phenomena Associated with Vorticity and Spin in Heavy-Ion Collisions

Enrico Speranza

RHIC & AGS Annual Users’ Meeting 2020

October 22, 2020
Outline

- Vorticity and spin physics in heavy-ion collisions
- Quantum kinetic theory
- Spin hydrodynamics
- Polarization observable in heavy-ion collisions
Rotation and polarization

- Condensed matter: **Barnett effect**

Ferromagnet gets magnetized when it rotates

Polarization effects through rotation in heavy-ion collisions? **Yes!**
Noncentral heavy-ion collisions

Noncentral nuclear collisions ⇒ Large global angular momentum
⇒ Vorticity of hot and dense matter ⇒ particle polarization along vorticity
Experimental observation - Global Λ polarization

- Polarization along global angular momentum

![Graph showing polarization vs. $\sqrt{s_{NN}}$ (GeV)]

- Weak decay: $\Lambda \rightarrow p + \pi^-$ angular distr.: $dN/d\cos \theta = \frac{1}{2}(1 + \alpha |\vec{P}_H| \cos \theta)$

- Quark-gluon plasma is the "most vortical fluid ever observed"

\[\omega = (P_\Lambda + P_{\bar{\Lambda}})k_B T/\hbar \approx (9 + 1) \times 10^{21} \text{s}^{-1} \]

Great Red Spot of Jupiter 10^{-4}s^{-1}, Turbulent flow superfluid He-II 150s^{-1}, Superfluid nanodroplets 10^7s^{-1}

L. Adamczyk et al. (STAR), Nature 548 62-65 (2017)
Experiments vs theory: Λ polarization

Global - along J

![Graph showing global polarization](image1)

- PRC 76, 024915 (2007)
- This analysis

Longitudinal - along beam axis

![Graph showing longitudinal polarization](image2)

- STAR Au+Au $\sqrt{s_{NN}} = 200$ GeV 20%-60%
- Fit: $p_0 + 2p_1 \sin(2\phi)$

- $p_0 = 0.016 \pm 0.003$ [%]
- $p_1 = 0.015 \pm 0.003$ [%]

Formulas

\[\Pi^\mu(x, p) \propto (1-n_F)\epsilon^{\mu\nu\rho\tau}p_\nu\omega_{\rho\tau}\]

\[\omega_{\rho\tau} = -\frac{1}{2}(\partial_\rho \beta_\tau - \partial_\tau \beta_\rho)\]

- Theory assumes **local equilibrium** of spin degrees of freedom
- “Sign problem” between theory and experiments for longitudinal polarization!
Does spin play a dynamical role in hydro?

- Relativistic hydrodynamics is a good effective theory: $\partial_\mu T^{\mu\nu} = 0$

Goal: Relativistic hydrodynamics (classical) with spin (quantum) as dynamical variable

Starting point: Kinetic theory from quantum field theory

- Alternative approaches: Lagrangian formulation, entropy current

 K. Hattori, M. Hongo, X.-G. Huang, M. Matsuo, and H. Taya, PLB795, 100 (2019)
 K. Fukushima, S. Pu, 2010.01608 (2020)
Our results:

- How do we describe the orbital-to-spin angular momentum conversion in kinetic theory?
 - Nonlocal particle scatterings (finite impact parameter)

- And in hydrodynamics?
 - Antisymmetric part of energy-momentum tensor
nonrelativistic kinetic theory

Kinetic Theory for a Dilute Gas of Particles with Spin
S. Hess and L. Waldmann

Institut für Theoretische Physik der Universität Erlangen-Nürnberg, Erlangen

(Z. Naturforsch. 21 a, 1529—1546 [1966]; received 6 April 1966)

The kinetic theory of particles with spin previously developed for a Lorentzian gas is extended to the case of a pure gas. In part A the transport (Boltzmann) equation for the one particle distribution operator is stated and discussed (conservation laws, H-theorem). A magnetic field acting on the magnetic moment of the particles is incorporated throughout. In part B the pertaining linearized collision operator and certain bracket expressions linked with this operator are considered. Part C deals with the expansion of the distribution operator and of the linearized transport equation with respect to a complete set of composite irreducible tensors built from the components of particle velocity and spin. Thus, the distribution operator is replaced by a set of tensors depending only on time and space-coordinates. The physical meaning of these tensors (expansion coefficients) is invoked. They obey a set of coupled first-order differential equations (transport-relaxation equations). The reciprocity relations for the relaxation matrices are stated. Finally a detailed discussion of angular momentum conservation is given.

- "There is another effect which we cannot describe with a local collision operator: the orientation of the spin by a local or uniform rotation of the system (Barnett effect)"

- **Caveat**: Nonrelativistic Barnett effect \Rightarrow Magnetization
 Heavy-ion collisions \Rightarrow Spin polarization without magnetization
 (Spin particles + Spin antiparticles)
Wigner function

\[W(x, p) = \int \frac{d^4 y}{(2\pi \hbar)^4} e^{-\frac{i}{\hbar} p \cdot y} \langle \bar{\Psi}(x + \frac{y}{2})\psi(x - \frac{y}{2}) : \rangle \]

▶ Dirac equation ➞ Equation of motion for Wigner function

de Groot, van Leeuwen, van Weert, Relativistic Kinetic Theory. Principles and Applications

\[\left[\gamma \cdot \left(p + \frac{i}{2} \frac{\hbar}{\partial} \right) - m \right] W(x, p) = \hbar \int \frac{d^4 y}{(2\pi \hbar)^4} e^{-\frac{i}{\hbar} p \cdot y} \langle \rho(x - \frac{y}{2})\bar{\psi}(x + \frac{y}{2}) : \rangle = \hbar C \]

\[\rho = -(1/\hbar)\partial L_I/\partial \bar{\psi}, \ L_I = \text{interaction Lagrangian} \]

▶ ➞ Boltzmann equation and on-shell modification

\[p \cdot \partial W(x, p) = C \quad \left(p^2 - m^2 - \frac{\hbar^2}{4} \partial^2 \right) W(x, p) = \hbar \delta M \]

▶ Idea: Find approximate solution by expanding in powers of \(\hbar \)

and truncate at first order, e.g.

\[W = W^{(0)} + \hbar W^{(1)} + \mathcal{O}(\hbar^2) \]
Calculating the Wigner function

- Clifford decomposition

\[\mathcal{W} = \frac{1}{4} \left(\mathcal{F} + i \gamma^5 \mathcal{P} + \gamma^\mu \mathcal{V}_\mu + \gamma^5 \gamma^\mu \mathcal{A}_\mu + \frac{1}{2} \sigma^\mu{}^\nu \mathcal{S}_{\mu\nu} \right) \]

- Determine \(\mathcal{V}^\mu \) and \(\mathcal{A}^\mu \) from equations of motion

- Assumption: polarization effects at least \(\mathcal{O}(\hbar) \)

\[\mathcal{V}^\mu = \frac{1}{m} p^\mu \bar{\mathcal{F}} + \mathcal{O}(\hbar^2) , \quad \bar{\mathcal{F}} \equiv \mathcal{F} - \frac{\hbar}{m^2} p^\mu \text{ReTr}(\gamma_\mu \mathcal{C}) \]

- Transport equations:

\[p \cdot \partial \bar{\mathcal{F}} = m \mathcal{V}_F , \quad p \cdot \partial \mathcal{A}^\mu = m \mathcal{C}^\mu_A \]

with \(\mathcal{V}_F = 2 \text{Im Tr} (\mathcal{C}) \), \(\mathcal{C}^\mu_A \equiv -\frac{1}{m} \epsilon^{\mu\nu\alpha\beta} p_\nu \text{Im Tr} (\sigma^\alpha_\beta \mathcal{C}) \)
Spin in phase space

- In order to account for spin dynamics, enlarge phase space.

 J. Zamanian, M. Marklund, and G. Brodin, NJP 12, 043019 (2010)

- Introduce new phase-space variable s^μ

 $f(x, p, s) \equiv \frac{1}{2} [\bar{F}(x, p) - s \cdot A(x, p)]$

- Obtain \bar{F} and A^μ via

 $\bar{F} = \int dS(p) f(x, p, s) \quad A^\mu = \int dS(p) s^\mu f(x, p, s)$

 with $dS(p) \equiv \frac{\sqrt{p^2}}{\sqrt{3\pi}} d^4 s \delta(s^2 + 3) \delta(p \cdot s)$

- Boltzmann equation

 $p \cdot \partial f(x, p, s) = m \mathcal{C}[f]$}

 $\mathcal{C}[f] \equiv \frac{1}{2} (C_F - s \cdot C_A)$

- All dynamics in one scalar equation!
Nonlocal collisions

- Expand collision term up to **first order in** \hbar-gradients

$$\mathcal{C}[f] = \mathcal{C}_l[f] + \hbar \mathcal{C}_{nl}[f].$$

Local contribution + **Nonlocal** contribution

- Long calculation \implies Intuitive result in low-density approximation:

$$\mathcal{C}[f] = \int d\Gamma_1 d\Gamma_2 d\Gamma' \mathcal{W}[f(x + \Delta_1, p_1, s_1)$$

$$\times f(x + \Delta_2, p_2, s_2) - f(x + \Delta, p, s)f(x + \Delta', p', s')]$$

$$+ \int d\Gamma_2 dS_1(p) \mathcal{W} f(x + \Delta_1, p, s_1)f(x + \Delta_2, p_2, s_2)$$

$$d\Gamma \equiv d^4 p\, dS(p)$$

- **Structure:** Momentum and spin exchange + Spin exchange only
- **Nonlocal** Collisions \implies Displacement Δ
- \mathcal{W}, \mathcal{W} vacuum transition probabilities, depend on phase-space spins

Condition for $\mathcal{C}[f] = 0 \implies$ **Global equilibrium**
Equilibrium distribution function

- **Equilibrium condition:** Collision term has to vanish
- **Ansatz for distribution function**

 \[f_{\text{eq}}(x, p, s) = \frac{m}{(2\pi\hbar)^3} \exp \left[-\beta(x) \cdot p + \frac{\hbar}{4} \Omega_{\mu\nu}(x) \Sigma_{\mu\nu}^s \right] \delta(p^2 - M^2) \]

- \(\beta^\mu = \frac{u^\mu}{T} \) - Lagrange multiplier for 4-momentum conservation
- **Spin potential** \(\Omega^{\mu\nu} \) - Lagrange multiplier for **total** angular momentum conservation
- \(M \) - mass possibly modified by interactions
- **Spin-dipole-moment tensor**

 \[\Sigma_{\mu\nu}^s \equiv -\frac{1}{m} \epsilon^{\mu\nu\alpha\beta} p_\alpha s_\beta \]

- Insert into \(\mathcal{E}[f] \) and expand up to first order in \(\hbar \)
Equilibrium conditions

\[\mathcal{C}[\mathcal{f}_{eq}] = - \int d\Gamma' d\Gamma_1 d\Gamma_2 \tilde{\mathcal{W}} e^{-\beta \cdot (p_1 + p_2)} \times \left[\partial_{\mu} \beta_{\nu} \left(\Delta^\mu_1 p^\nu_1 + \Delta^\mu_2 p^\nu_2 - \Delta^\mu p^\nu - \Delta'^\mu p'^\nu \right) - \frac{1}{2} \Omega_{\mu\nu} \frac{\hbar}{2} \left(\Sigma_{s_1}^{\mu\nu} + \Sigma_{s_2}^{\mu\nu} - \Sigma^{\mu\nu} - \Sigma'_{s_1}^{\mu\nu} \right) \right] \]

\[- \int d\Gamma_2 dS_1(p) dS'_1(p_2) \tilde{\mathcal{W}} e^{-\beta \cdot (p + p_2)} \times \left\{ \partial_{\mu} \beta_{\nu} \left[(\Delta^\mu_1 - \Delta^\mu) p^\nu_1 + (\Delta^\mu_2 - \Delta'^\mu) p^\nu_2 \right] - \frac{1}{2} \Omega_{\mu\nu} \frac{\hbar}{2} \left(\Sigma_{s_1}^{\mu\nu} + \Sigma_{s_2}^{\mu\nu} - \Sigma^{\mu\nu} - \Sigma'_{s_1}^{\mu\nu} \right) \right\} . \]

- Conservation of total angular momentum (orbital+spin) in a collision

\[j^{\mu\nu} = \Delta^\mu p^\nu - \Delta^\nu p^\mu + \frac{\hbar}{2} \Sigma^{\mu\nu} \]

- Conditions for vanishing collision term

\[\partial_{\mu} \beta_{\nu} + \partial_{\nu} \beta_{\mu} = 0 \]

\[\Omega_{\mu\nu} = \omega_{\mu\nu} \equiv - \frac{1}{2} (\partial_{\mu} \beta_{\nu} - \partial_{\nu} \beta_{\mu}) = \text{const.} \]

Global equilibrium!
Spin hydrodynamics

- **Hydrodynamic densities:**
 - Energy-momentum tensor $T^{\lambda\nu}$
 - Total angular momentum tensor
 \[J^{\lambda,\mu\nu} \equiv x^{\mu} T^{\lambda\nu} - x^{\nu} T^{\lambda\mu} + \hbar S^{\lambda,\mu\nu} \]
 - Additional dynamical tensor: Spin tensor $S^{\lambda,\mu\nu}$

- **10 equations of motion:** 4 usual hydro + 6 due to total angular momentum conservation
 \[\partial_\mu T^{\mu\nu} = 0 \quad \hbar \partial_\lambda S^{\lambda,\mu\nu} = T^{[\nu\mu]} \]
 \[T^{[\nu\mu]} = T^{\nu\mu} - T^{\mu\nu} \]

- **10 unknowns:** 4 + 6 additional independent fields (spin potential)
 \[\beta^\mu = \frac{u^\mu}{T} \quad \Omega^{\mu\nu} \]

- Plus dissipative quantities

W. Florkowski, B. Friman, A. Jaiswal, and E. S., PRC 97, no. 4, 041901 (2018)
W. Florkowski, F. Becattini, and E. S., APB 49, 1409 (2018)
W. Florkowski, F. Becattini, and E. S., PLB 789, 419 (2019)
K. Hattori, M. Hongo, X.-G. Huang, M. Matsuo, and H. Taya, PLB795, 100 (2019)
Pseudo-gauge transformations

Densities are NOT uniquely defined \implies Relocalization

\[
T'_{\mu\nu}(x) = T_{\mu\nu}(x) + \frac{1}{2} \partial_\lambda \left[\Phi^{\lambda,\mu\nu}(x) + \Phi^{\mu,\nu\lambda}(x) + \Phi^{\nu,\mu\lambda}(x) \right]
\]

\[
S'_{\lambda,\mu\nu} = S_{\lambda,\mu\nu}(x) - \Phi_{\lambda,\mu\nu}(x) + \partial_\rho Z^{\mu\nu,\lambda\rho}(x)
\]

\[
\Phi_{\lambda,\mu\nu} = -\Phi_{\lambda,\nu\mu}, \; Z^{\mu\nu,\lambda\rho} = -Z^{\nu\mu,\lambda\rho} = -Z^{\mu\nu,\rho\lambda}
\]

- Leave global charges invariant

\[
P^\mu = \int d^3 \Sigma_\lambda T^{\lambda\mu}(x) \quad J^{\mu\nu} = \int d^3 \Sigma_\lambda J^{\lambda,\mu\nu}(x)
\]

Σ_λ - Hypersurface

- Conservation laws: $\partial_\mu T'_{\mu\nu} = 0$, $\partial_\lambda S'_{\lambda,\mu\nu} = T'[^{\nu\mu}]$

- **Canonical choice**: apply Noether’s theorem to Dirac Lagrangian
 \implies **Problem**: does not lead to a covariant description of spin

- **Solution**: apply Noether’s theorem to Klein-Gordon Lagrangian for spinors

 J. Hilgevoord, S. Wouthuysen, NP 40 (1963) 1
Spin hydrodynamics with HW currents

From kinetic theory

\[
T_{\text{HW}}^{\mu\nu} = \int dP dS(p) \, p^\mu p^\nu f(x, p, s) + \mathcal{O}(\hbar^2)
\]

\[
S_{\text{HW}}^{\lambda, \mu\nu} = \int dP dS(p) \, p^\lambda \left(\frac{1}{2} \sum_5 \Sigma_5^{\mu\nu} - \frac{\hbar}{4m^2} p^{[\mu} \partial^{\nu]} \right) f(x, p, s) + \mathcal{O}(\hbar^2)
\]

Equations of motion

\[
\partial_\mu T_{\text{HW}}^{\mu\nu} = \int d\Gamma \, p_\nu \, \mathcal{C}[f] = 0
\]

\[
\hbar \partial_\lambda S_{\text{HW}}^{\lambda, \mu\nu} = \int d\Gamma \, \frac{\hbar}{2} \sum_5 \Sigma_5^{\mu\nu} \, \mathcal{C}[f] = T_{\text{HW}}^{[\nu\mu]}
\]

Energy-momentum conserved in a collision

Spin not conserved in nonlocal collisions \(\implies T_{\text{HW}}^{[\nu\mu]} \neq 0 \)

\(\implies \) Conversion between spin and orbital angular momentum

\(T_{\text{HW}}^{[\nu\mu]} = 0 \): (i) for local collisions (spin is collisional invariant)

(ii) in global equilibrium \(\mathcal{C}[f] = 0 \)

Nonlocal collisions away from global equilibrium \(\implies \) Dissipative dynamics

Correct nonrelativistic limit

Fluid gets polarized through rotation!
Polarization observable in heavy-ion collisions

Polarization vector for particle with momentum p^μ (e.g. Λ-hyperon)

\[
\Pi_\mu(p) = -\frac{\hbar}{2m} \epsilon_{\mu\nu\alpha\beta} p^\nu \int d\Sigma_\lambda s^{\lambda,\alpha\beta}_{\text{HW}}(x, p) \frac{1}{\int d\Sigma_\lambda p^\lambda F}
\]

\[
S^{\lambda,\alpha\beta}_{\text{HW}}(x) = \int d^4 p s^{\lambda,\alpha\beta}_{\text{HW}}(x, p) = \int d^4 p p^\lambda S^{\alpha\beta}(x, p)
\]

Σ_λ - Hypersurface

Equilibrium

\[
\Pi_\mu(p) = -\frac{\hbar}{4m} \epsilon_{\mu\nu\alpha\beta} p^\nu \int d\Sigma_\lambda p^\lambda f(1 - f) \om^{\alpha\beta}
\]

\[
\om^{\alpha\beta} = -\frac{1}{2} (\partial^\alpha \beta^\beta - \partial^\beta \beta^\alpha)
\]

- Thermal vorticity

\[
f - \text{Distribution function}
\]

What are nonequilibrium effects on $\Pi_\mu(p)$?
Conclusions

Summary

- Derivation of **nonlocal** collisions from quantum field theory
 - Vanishing collision term \Rightarrow **global** equilibrium

- Spin hydrodynamics with Hilgevoord-Wouthuysen pseudo-gauge
 - **Antisymmetric** part of energy-momentum tensor
 \Rightarrow Orbital-to-spin angular momentum conversion
 \Rightarrow **Vanishes** with **local collisions** or in **global equilibrium**
 - Local collisions \Rightarrow Ideal spin hydrodynamics possible
 Nonlocal collisions \Rightarrow Always **dissipative** dynamics

Outlook

- Derive second-order dissipative spin hydrodynamics
- Study nonequilibrium and spin hydrodynamic effects on polarization vector
- Possible explanation to "sign problem"?