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I.  Motivation



➤ The strongly interacting matter present in heavy-ion collisions carries a multitude of 
conserved quantum numbers: baryon number, strangeness and electric charge


➤ This effects thermodynamics since each charge has an associated chemical potential

QCD Phase Diagram
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are expected to approach the ideal gas limit. On the other hand, in the low-temperature

phase they are expected to be small since quarks are confined and the only states with

nonzero quark number have large masses. Agreement with the Hadron Resonance Gas

(HRG) model predictions is expected in this phase [8]. Non-diagonal susceptibilities give

us information about the correlation between different flavors. They are supposed to van-

ish in a non-interacting quark-gluon plasma (QGP). In the approximately self-consistent

resummation scheme of hard thermal and dense loops Ref. [9] shows nonzero correlations

between different flavors at large temperatures due to the presence of flavor-mixing dia-

grams. A quantitative analysis of this observable allows one to draw conclusions about

the presence of bound states in the QGP [10]. Another observable which was proposed to

this purpose, and which can be obtained from a combination of diagonal and non-diagonal

quark number susceptibilities, is the baryon-strangeness correlator [11].

Several results exist in the literature about the study of quark number susceptibilities

on the lattice both for 2 [12] and 2+1 [13] quark flavors. However, for the first time

in this paper the susceptibilities are calculated for physical values of the quark masses

and a continuum extrapolation is performed not only for strange quark susceptibilities

[14] but also for the light quark and the non-diagonal ones. We present full results of

our collaboration for several of these observables, with 2+1 staggered quark flavors, in a

temperature range between 125 and 400 MeV. The light and strange quark masses are

set to their physical values. Lattices with Nt = 6, 8, 10, 12, 16 are used. Continuum

extrapolations are performed for all observables under study. We compare our results to the

predictions of the HRG model with resonances up to 2.5 GeV mass at small temperatures,

and of the Hard Thermal Loop (HTL) resummation scheme at large temperatures, when

available.

2 Observables under study

The baryon number B, strangeness S and electric charge Q fluctuations can be obtained, at

vanishing chemical potentials, from the QCD partition function. The relationships between

the quark chemical potentials and those of the conserved charges are as follows:

µu =
1

3
µB +

2

3
µQ;

µd =
1

3
µB −

1

3
µQ;

µs =
1

3
µB −

1

3
µQ − µS. (2.1)

Here the small indices u, d and s refer to up, down and strange quark numbers, which,

too, are conserved charges in QCD. The negativ sign between µs and µS reflects the −1

strangeness quantum number of the strange quark.

Starting from the QCD pressure,

p

T 4
=

1

V T 3
lnZ(V, T, µB , µS , µQ) (2.2)

– 2 –



➤ The equation of state (EoS) for QCD has been calculated on the lattice under 
strangeness neutrality and fixed ratio of baryon number to electric charge, matching 
the heavy-ion situation

Lattice QCD Predictions
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Theory: Lattice QCD “at finite µB”

I Equation of State of QCD at finite µB is a Taylor expansion around µB = 0:

PQCD(T, µB) = T 4
X

n

c2n(T )

⇣µB

T

⌘
2n

, cn(T ) =
1

n!
@(P/T 4

)

@(µB/T )

����
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J. Günther et al., EPJ Web Conf. 137 (2017) 07008

11 / 44
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⟨nQ⟩ = 0.4⟨nB⟩
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model parameters. The posterior distribution over possible equations of states turned

out to be consistent with results from lattice QCD simulations, as shown in Fig. 2. This

analysis has also been successfully applied to infer the behavior of other quantities, such

as the shear viscosity of the QGP at zero [30] and finite density [31].

It is worth pointing out that results exist for the equation of state of QCD

in background magnetic fields [32, 33]: in Ref. [33] the equation of state for a

system of 2+1 flavors at physical quark masses has been obtained, together with the

magnetic susceptibility and permeability, which show that strongly interacting matter

is paramagnetic around and above the transition temperature.

3.2. Equation of state at µB 6= 0

The equation of state of strongly interacting matter at finite density is a very relevant

quantity, among other things, for the low energy runs of heavy ion collisions and for

neutron star physics. It is worth mentioning that recently, results from perturbative

QCD at very large density have been obtained and used to constrain neutron star

matter [34]. Extracting the equation of state (and other properties) of QCD at finite

chemical potential from regular Monte Carlo simulations is not possible at the moment.

Indeed, ab initio calculations in the baryon dense regime of QCD are hindered by the

fermion sign problem, a fundamental technical obstacle of exponential complexity [35]

inherent to any path integral representation of Fermi systems at finite density.

Over the last few years, alternative methods have been proposed to extract

the properties of QCD matter at small chemical potential. These include Taylor

expansion around µB = 0 [36, 37, 38, 39, 40], analytic continuation from imaginary

µB [41, 42, 42, 43, 44, 45, 46, 47, 48], reweighting of the generated configurations

[49, 50, 51, 52], use of the canonical ensemble [53, 54, 55] and density of state methods

[56, 57]. Here we will focus on the first two.

The pressure of QCD can be expanded in a Taylor series around µB = 0 in the

following way

p(T, µB)

T 4
=

p(T, 0)

T 4
+

1X

n=1

1

(2n)!

d2n(p/T 4)

d(µB
T )2n

�����
µB=0

✓
µB

T

◆2n

=
1X

n=0

c2n(T )
✓

µB

T

◆2n

. (8)

The coe�cients ci(T ) of the Taylor series are simulated on the lattice, either directly

at µB = 0 or by using the analytical continuation technique from imaginary µB. This

means that the method traditionally used at µB = 0 can be generalized to any imaginary

µB, and the µB-dependence of the direct derivative is then analyzed, in order to extract

higher order coe�cients. More in detail, in the direct method a derivative of the partition

function can be written in terms of the action with all fermionic degrees of freedom

already integrated out, Seff , as follows:

@i log Z =
1

Z

Z
DU@ie

�Se↵ = hAii . (9)

Here i indicates the variable of the derivative, the chemical potential µi in this

case. Ai is the first derivative of Se↵ without the factor e�Se↵ . Its ensemble average is
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WB: J. Guenther et al, NPA (2017)

HotQCD: A. Bazavov et al, PRD (2017)For  see: S. Borsanyi et al, JHEP (2018)μS = μQ = 0



QCD Phenomenology

➤ All stages of heavy-ion collision modeling should seek to investigate the same slice 
of the phase diagram as the experiments
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QCD Phenomenology

➤ All stages of heavy-ion collision modeling should seek to investigate the same slice 
of the phase diagram as the experiments
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Chemical freeze-out



II.  Flavor Hierarchy



Chemical Freeze-out Parameters

➤ Experimental particle yields and fluctuations tell us about the system at chemical 
freeze-out
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FIG. 18: (Color online) Centrality dependences of 〈pT 〉 for (a) π+, (b) π−, (c) K+, (d) K−, (e) p, and (f) p̄ at midrapidity
(|y| < 0.1) in Au+Au collisions at

√
sNN = 7.7, 11.5, 19.6, 27, and 39 GeV. Results are compared with published results

in Au+Au collisions at
√
sNN = 62.4 and 200 GeV [43, 48]. Errors shown are quadrature sum of statistical and systematic

uncertainties where the latter dominates.
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FIG. 19: (Color online) Variation of (a) π−/π+, (b) K−/K+, and (c) p̄/p ratios as a function of 〈Npart〉 at midrapidity
(|y| < 0.1) in Au+Au collisions at all BES energies. Also shown for comparison are the corresponding results in Au+Au
collisions at

√
sNN = 62.4 and 200 GeV [11–14, 43]. Errors shown are the quadrature sum of statistical and systematic

uncertainties where the latter dominates.

mechanisms. The collision centrality dependence for the
BES results is similar to that at higher beam energies.
The normalized yields decrease from central to periph-
eral collisions for π±, K±, and p. However, the central-
ity dependence of normalized yields for p̄ is weak. The

dN/dy values for π±, K±, p and p̄ in different centralities
at various BES energies are listed in Table VI.

11

10 210

0.03

0.1

0.2
0.3

Net Kaon
Au+Au

(a)

10 210

0

0.2

0.4

0.6

0.8 0-5%    STAR   
70-80% STAR    
0-5%    Poisson
0-5%    NBD 

  0-5%    UrQMD  

(b)

7 8 10 20 30 40 100 200

2−

0

2
(c)  < 1.6 GeV/c, |y| < 0.5

T
0.2 < p

 ( GeV )NNs
2

σ
κ

2
σ

M
/

σS

FIG. 11. (Color Online). Collision energy dependence of the
values of M/�2, S�, �2 for �NK multiplicity distributions
from 0-5% most central and 70-80% peripheral collisions in
Au+Au collisions at

p
sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4

and 200 GeV. The error bars are statistical uncertainties and
the caps represent systematic uncertainties. The expectations
from Poisson and NBD and the results of the UrQMD model
calculations are all from the 0-5% centrality.

for net-baryon) [29] and net-charge [30] fluctuations in
Au+Au collisions from the first phase of the beam en-
ergy scan at RHIC. In this paper, we present the first
measurements of the moments of net-kaon (proxy for net-
strangeness) multiplicity distributions in Au+Au colli-
sions from

p
sNN = 7.7 to 200 GeV. The measured M/�2

values decrease monotonically with increasing collision
energy. The Poisson baseline for C1/C2 slightly under-
estimates the data. No significant collision centrality de-
pendence is observed for both S� and �2 at all energies.
For C3/C2 (=S�), the Poisson and NBD expectations are
lower than the measured S� values at low collision en-
ergies. The measured values for C4/C2 (=�2) are con-
sistent with both the Poisson and NBD baselines within
uncertainties. UrQMD calculations for S� and �2 are
consistent with data for the most central 0-5% Au+Au
collisions. Within current uncertainties, the net-kaon cu-
mulant ratios appear to be monotonic as a function of
collision energy. The moments of net-kaon multiplicity
distributions presented here can be used to extract freeze-
out conditions in heavy-ion collisions by comparing to
Lattice QCD calculations. Future high statistics mea-
surements with improved e�ciency correction method
will be made for fluctuation studies in the second phase
of the RHIC Beam Energy Scan during 2019-2020.
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Particle yields
 Fluctuations

➤ Ratios eliminate volume 
dependence 


➤ Moments can be

calculated as 

derivatives of the

pressure
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Chemical Freeze-out Parameters

➤ Utilize Hadron Resonance Gas Model to perform thermal fits of yields and analyses 
of net-particle fluctuations including strangeness neutrality


➤ Investigate influence of number of states on freeze-out parameters
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Particle yields
 Fluctuations

Thermal-FIST: A package for heavy-ion collisions
and hadronic equation of state
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Abstract

Thermal-FIST⇤⇤ is a C++ package designed for convenient general-purpose
physics analysis within the family of hadron resonance gas (HRG) models.
This mainly includes the statistical analysis of particle production in heavy-
ion collisions and the phenomenology of hadronic equation of state. Notable
features include fluctuations and correlations of conserved charges, e↵ects of
probabilistic decay, chemical non-equilibrium, and inclusion of van der Waals
hadronic interactions. Calculations are possible within the grand canonical
ensemble, the canonical ensemble, as well as in mixed-canonical ensembles
combining the canonical treatment of certain conserved charges with the
grand-canonical treatment of other conserved charges. The package contains
a fast thermal event generator, which generates particle yields in accordance
with the HRG chemistry, and particle momenta based on the Blast Wave
model. A distinct feature of this package is the presence of the graphical
user interface frontend – QtThermalFIST – which is designed for fast and
convenient general-purpose HRG model applications.

⇤Corresponding author.
⇤⇤Thermal-FIST – Thermal, Fast and Interactive Statistical Toolkit
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predominant radiative decay, analogously to PDG states
with incomplete information. The remaining percentage
is reserved for hadronic decays, for which we use lin-
ear extrapolation from known branching ratios of PDG
particles with the same quantum numbers B, S, I
and Q (baryon number, strangeness, isospin and electric
charge).

The linear extrapolation is performed as follows.
States from the PDG2016+ list are divided into “fam-
ilies” with the same quantum numbers, and all strong
decay modes present in the family are grouped together.
For each channel appearing in the family, a linear inter-
polation of its branching ratio as a function of the particle
mass is performed. Then, QM states of the same fam-
ily are assigned branching ratios by sampling the linear
mass dependence constructed as explained above. At this
point, all negative BR values are discarded, as well as all
decays that violate mass conservation. Finally, the sum
of branching ratios for strong decays is normalized and
put together with the electromagnetic ones.

We emphasize here that for the QM states we have the
least amount of information and, therefore, the largest
amount of uncertainties.

III. THERMAL FITS AND THE HADRON
RESONANCE GAS MODEL

The study of chemical freeze-out we present here
makes use of the Hadron Resonance Gas (HRG) model,
which describes the hadronic phase below the transi-
tion temperature Tc as a system of non-interacting parti-
cles [5, 36, 37]. The HRG model has a wide-spread appli-
cability in heavy-ion studies in reproducing thermal par-
ticle abundances and lately also in providing results on
fluctuations of conserved charges (B, Q, S) [12, 13, 38–
40]. Recently, these observables have been compared to
the measured moments of net-particle distributions, and
provided freeze-out temperatures which are compatible
with the ones obtained by comparing the experimental
data to lattice QCD calculations [38, 41–45].

Historically, the HRG model has been widely employed
to compare data on particle production for energies rang-
ing from the AGS to the LHC [46–54]. Produced particle
yields hNii are obtained by adding the contribution from
resonances to the primordial thermal yield, given by V ni:

hNii = V ni + V
X

R

hniiR nR . (1)

In the above, hniiR is the average number of particles of
type i resulting from a decay of resonance R, ni and nR

are thermal densities calculated through the statistical
model, and V is the system volume. The decay of res-
onance R into stable particles such as p, ⇡, K, ⇤, ⌅
and ⌦ is taken into account by introducing an e↵ec-
tive chemical potential µR =

P
i µihniiR. Here µi =

BiµB+QiµQ+SiµS is the chemical potential for particle i
carrying specific baryonic, electric charge and strangeness

quantum numbers. Conditions on the net-strangeness
and net-charge density are imposed, to match the heavy-
ion collision situation:

hnS(T ;µB , µQ, µS)i = 0 ,

hnQ(T ;µB , µQ, µS)i =
Z

A
hnBi . (2)

These allow one to constrain the three chemical poten-
tials. In this way, yields and ratios calculated within
the HRG model only depend on the thermal parameters
(T, µB) (and V in the case of yields).
Thermal properties at the chemical freeze-out have

been studied using yields and ratios from STAR data in
Au-Au collisions at

p
sNN = 200, 39, 27, 19.6, 11.5, 7.7

GeV [55–57] and from ALICE data in Pb-Pb collisions
at

p
sNN = 2.76TeV and 5.02TeV [9, 11, 58–61].

In this manuscript, we focus on the STAR data atp
sNN = 200 GeV and 0 � 5% centrality, and the AL-

ICE data at
p
sNN = 5.02 TeV and 0 � 10% centrality.

We perform thermal fits of the particle yields and ratios,
using published data on ratios, if available, for STAR [55]
and for ALICE. In order to build the remaining ratios,
published data on yields from both collaborations have
been used with a proper propagation of the errors in
the final result. We evaluate the yields and ratios for
each hadronic list and extract the thermal parameters
(T, µB , V ) by using the thermal fit package FIST [62].
The package allows users to choose their own particle
lists, as well as data sets, in the fit.

IV. SINGLE FREEZE-OUT SCENARIO

Initially, we consider a common freeze-out tem-
perature for strange and light hadrons. We fit
the measured yields for the following particles:
⇡+, ⇡�, K+, K�, p, p̄, ⇤, ⇤̄, �, ⌅, ⌅̄, ⌦, ⌦̄ at the
LHC, while at RHIC the separate ⌦ and ⌦̄ yields are
replaced by the sum ⌦ + ⌦̄. When we take the ratios,
we divide the light particle yields by the yield of either
⇡+ or ⇡� and the strange particle yields by the yield of
either K+ or K�. The results of the thermal fits for both
yields and ratios while varying the particle resonance list
are shown in Table I for LHC data at

p
sNN = 5.02TeV

and in Table II for STAR data at
p
sNN = 200GeV. At

the LHC we hold µB = 1MeV fixed to avoid the possibil-
ity of negative chemical potentials and remain consistent
with previous analyses [63].
From Tables I and II a few trends begin to emerge:

• for both yields and ratios, more hadronic states
generally decrease the chemical freeze-out temper-
ature;

• the chemical freeze-out temperatures from yields
and ratios approximately agree;

• generally, due to the decrease of the chemical
freeze-out temperature with the increase of the

The canonical treatment of charm here assumes that there are no multi-
charmed particles in the particle list and that the system is net charm free,
which is su�cient for most applications. The yields of charmed hadrons in
the charm-canonical ensemble (CCE) are then calculated as follows

hN ce

i i = hNgce

i i
I1(

P
j2ChN

gce

j i)
I0(

P
j2ChN

gce

j i) , i 2 C. (39)

2.9. Thermal fits

Perhaps the most common application of the HRG model is fitting the
hadron yield data from relativistic heavy-ion collisions – the thermal fits.
Such an approach assumes thermal and (partial) chemical equilibrium be-
tween all stable hadrons and all resonances at the so-called “chemical freeze-
out” stage of a heavy-ion reaction. The HRG model fits are performed by
minimizing the value

�2

Ndof

=
1

Ndof

NX

i=1

�
N exp

i � NHRG

i

�2

�2

i

, (40)

where N exp

i and NHRG

i are the experimental and calculated in the HRG
hadron multiplicities, respectively; Ndof is the number of degrees of freedom,
that is the number of the data points minus the number of fitting parameters;
and �2

i = (�syst
i )2 + (�stat

i )2 is the sum of the squares of the statistical and
systematic experimental errors. Note that NHRG

i is the total hadron yield,
including the resonance feeddown, calculated in accordance with Eq. (25)
and using the appropriate feeddown flags. Ni in Eq. (40) can also represent
a ratio of two yields. Thermal-FIST employs the MINUIT2 package [77]
for the �2 minimization procedure.

In the simplest setup, corresponding to the full chemical equilibrium in the
grand canonical ensemble, there are only three fit parameters: the tempera-
ture T , the baryonic chemical potential µB, and the system volume parameter
V . The electric charge and strangeness chemical potentials µQ and µS are
not fitted. Instead, at each fixed temperature T and baryochemical potential
µB, the µQ and µS are determined in a unique way in order to satisfy two
conservation laws given by the “initial” conditions: the electric-to-baryon
charge ratio of Q/B = 0.4, and the vanishing net strangeness S = 0. These
two conditions are relevant if pre-freezeout radiation is neglected. Other-
wise, µS and/or µQ can also be considered as additional fit parameters. For
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1 First example

The well known Pythagorean theorem sigma2+y2 = z2 was proved to be invalid
for other exponents. Meaning the next equation has no integer solutions:

�2/M = �2/�1

2 Second example

In physics, the mass-energy equivalence is stated by the equation E = mc2,
discovered in 1905 by Albert Einstein.

The mass-energy equivalence is described by the famous equation

E = mc2

discovered in 1905 by Albert Einstein. In natural units (c = 1), the formula
expresses the identity

E = m (1)

3 Third example

This is a simple math expression
p
x2 + 1 inside text. And this is also the same:p

x2 + 1 but by using another command.
This is a simple math expression without numbering

p
x2 + 1

separated from text.
This is also the same: p

x2 + 1

. . . and this: p
x2 + 1

1

V. Vovchenko and H. Stöcker, Thermal-FIST, Comp. Phys. Comm. (2019)



Hadronic States in HRG Model

➤ Pressure in HRG model depends on resonances included in the calculation: 


➤ PDG2005: 142 species


➤ PDG2016: 608 species


➤ PDG2016+: 738 species (all experimentally 

observed particles, i.e. *,**,***,****)


➤ QM: 1517 species (all states predicted by the

Quark Model)
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List of hadrons and resonances

7/30

Particle list in the thermal model usually includes all hadrons
and resonances listed as established in the PDG listing

~400 species
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Theory: Hadron Resonance Gas model

I Interacting hadrons in the ground state well approximated by non-interacting
resonance gas

I Pressure given by the sum of partial contributions:

P

T 4
=

1

V T 3

X

i

ln Zi(T, V, ~µ)

with:

ln ZM/B
i = ⌥

V di

(2⇡)3

Z
d3p ln

�
1 ⌥ exp

⇥
�
�
✏i � µaX

i
a

�
/T

⇤�

where:

I energy ✏i =
p

p2 + m2

i

I conserved charges ~Xi = (Bi, Si, Qi)

I degeneracy di, mass mi, volume V

NOTE: model fed with hadronic spectrum. Particle spectrum becomes a “variable”!
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In Fig. 1we compare, for several particle species, the states
listed in the PDG2016 (including states with two, three and
four stars) [33]; in the PDG2016þ (including also states with
one star) [33]; and those predicted by the original quark
model [30,31] and amore recent hypercentral version (hQM)
[34]. The latter contains fewer states than the ones found in
Refs. [30,31], due to inclusion of an interaction term between
the quarks in the bound state, and the decay modes are listed
for most of the predicted states. No mass cutoff has been
imposed. The total number of measured particles and
antiparticles, excluding the charm and the bottom sector,
increases from the 2016 to the 2016þ listing: considering
particles and antiparticles and their isospin multiplicity we
get 608 states with two, three and four stars and 738 states
when we also include the one star states. In the QM
description the overall increase is much larger: in total there
are 1517 states when merging the nonrelativistic QM states
[30,31] with the PDG2016þ and 985 in the list which adds
the hQM states [34,35] to the ones listed in the PDG2016þ.
The QM predicts such a large number of states because they
arise from all possible combinations of different quark-
flavor, spin and momentum configurations. However, many
of these states have not been observed in experiments so far;
also, the basic QM description does not provide any
information on the decay properties of such particles. As

alreadymentioned, the hQM reduces the number of states by
including an interaction term between quarks in a bound
state. A more drastic reduction can be achieved by assuming
a diquark structure [34,36,37] as part of the baryonic states,
although experiments and lattice QCD may disfavor such a
configuration [38].
In this paper, we perform an analysis of several strange-

ness-related observables, by comparing the lattice QCD
results to those of the HRG model based on different
resonance spectra: the PDG 2016 including only the more
established states (labeled with two, three and four stars);
the PDG 2016 including all listed states (also the ones with
one star); and the PDG 2016 with the inclusion of addi-
tional quark model states. This is done in order to
systematically test the results for different particle species,
and get differential information on the missing states, based
on their strangeness content. The observables which allow
the most striking conclusions are the partial pressures,
namely the contribution to the total pressure of QCD from
the hadrons, grouped according to their baryon number and
strangeness content. The main result of this paper is a lattice
determination of these partial pressures. This is a difficult
task, since the partial pressures involve a cancellation of
positive and negative contributions (see the next section),
and they span many orders of magnitude, as can be seen in
Fig. 2. From this analysis a consistent picture emerges: all
observables confirm the need for not yet detected, or at least
not yet fully established, strangeness states. The full
PDG2016 list provides a satisfactory description for most
observables, but for some of them the QM states are needed
in order to reproduce the lattice QCD results. Moreover, all
hadronic lists currently available underestimate the partial
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FIG. 1. Comparison of hadronic states, grouped according to
the particle species, experimentally established in the PDG2016
(green), PDG2016 including also one star states (red) [33] and
predicted by the QM (blue) [30,31] and the hQM (magenta)
[34,35].
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FIG. 2. Logarithmic plot illustrating the many orders of
magnitude the values of the partial pressures studied in this
paper cover. The total pressure is taken from Ref. [6]. Note that
the value for the B ¼ 0, jSj ¼ 1 sector is not a proper continuum
limit; it is a continuum estimate based on the Nt ¼ 12 and 16
lattices. For all other cases, the data are properly continuum
extrapolated. In all cases, the solid lines correspond to the HRG
model results based on the PDG2016 spectrum.
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listed in the PDG2016 (including states with two, three and
four stars) [33]; in the PDG2016þ (including also states with
one star) [33]; and those predicted by the original quark
model [30,31] and amore recent hypercentral version (hQM)
[34]. The latter contains fewer states than the ones found in
Refs. [30,31], due to inclusion of an interaction term between
the quarks in the bound state, and the decay modes are listed
for most of the predicted states. No mass cutoff has been
imposed. The total number of measured particles and
antiparticles, excluding the charm and the bottom sector,
increases from the 2016 to the 2016þ listing: considering
particles and antiparticles and their isospin multiplicity we
get 608 states with two, three and four stars and 738 states
when we also include the one star states. In the QM
description the overall increase is much larger: in total there
are 1517 states when merging the nonrelativistic QM states
[30,31] with the PDG2016þ and 985 in the list which adds
the hQM states [34,35] to the ones listed in the PDG2016þ.
The QM predicts such a large number of states because they
arise from all possible combinations of different quark-
flavor, spin and momentum configurations. However, many
of these states have not been observed in experiments so far;
also, the basic QM description does not provide any
information on the decay properties of such particles. As

alreadymentioned, the hQM reduces the number of states by
including an interaction term between quarks in a bound
state. A more drastic reduction can be achieved by assuming
a diquark structure [34,36,37] as part of the baryonic states,
although experiments and lattice QCD may disfavor such a
configuration [38].
In this paper, we perform an analysis of several strange-

ness-related observables, by comparing the lattice QCD
results to those of the HRG model based on different
resonance spectra: the PDG 2016 including only the more
established states (labeled with two, three and four stars);
the PDG 2016 including all listed states (also the ones with
one star); and the PDG 2016 with the inclusion of addi-
tional quark model states. This is done in order to
systematically test the results for different particle species,
and get differential information on the missing states, based
on their strangeness content. The observables which allow
the most striking conclusions are the partial pressures,
namely the contribution to the total pressure of QCD from
the hadrons, grouped according to their baryon number and
strangeness content. The main result of this paper is a lattice
determination of these partial pressures. This is a difficult
task, since the partial pressures involve a cancellation of
positive and negative contributions (see the next section),
and they span many orders of magnitude, as can be seen in
Fig. 2. From this analysis a consistent picture emerges: all
observables confirm the need for not yet detected, or at least
not yet fully established, strangeness states. The full
PDG2016 list provides a satisfactory description for most
observables, but for some of them the QM states are needed
in order to reproduce the lattice QCD results. Moreover, all
hadronic lists currently available underestimate the partial
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FIG. 2. Logarithmic plot illustrating the many orders of
magnitude the values of the partial pressures studied in this
paper cover. The total pressure is taken from Ref. [6]. Note that
the value for the B ¼ 0, jSj ¼ 1 sector is not a proper continuum
limit; it is a continuum estimate based on the Nt ¼ 12 and 16
lattices. For all other cases, the data are properly continuum
extrapolated. In all cases, the solid lines correspond to the HRG
model results based on the PDG2016 spectrum.
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HRG Partial Pressures Confront LQCD

➤ Determine which particle list best matches Lattice QCD (LQCD) by breaking 
pressure into various sectors of baryon number and strangeness

7/20P. Alba et al, PRD (2017)

As for strange mesons, we point out that the PDG2016
and 2016þ coincide since there is no star ranking for
mesons. In this sector, it was not possible to perform a
continuum extrapolation for the data, since apparently they
are not in the scaling regime. However, there is a clear trend
in the Nt ¼ 10, 12, 16 data that makes it very natural to
assume that the continuum extrapolated results will lie
above the HRG curves. We also include a continuum
estimate of this quantity, based on only the Nt ¼ 12 and 16
lattices, which is clearly above the HRG curves. This might
mean that, for strange mesons, the interaction between
particles is not well mimicked by the HRG model in the
Boltzmann approximation, or that we need even more
states than the ones predicted by the QM. This was already
suggested in Ref. [57], based on a different analysis. In
general, one should keep in mind that here we use a version
of the HRG model in which particles are considered stable
(no width is included). Any width effects on the partial
pressures can be considered in future work. Besides, our
previous lattice QCD results did not show indications of

finite volume effects for the total pressure. These effects
have not been checked for the partial pressures presented
here.
Our analysis shows that, for most hadronic sectors, the

spectrum PDG2016 does not yield a satisfactory descrip-
tion of the lattice results. All sectors clearly indicate the
need for more states, in some cases up to those predicted by
the original quark model. One has to keep in mind that
using the QM states in a HRG description will introduce
additional difficulties in calculations used in heavy ion
phenomenology, as the QM does not give us the decay
properties of these new states. The HRG model is success-
fully used to describe the freeze-out of a heavy-ion
collision, by fitting the yields of particles produced in
the collision and thus extracting the freeze-out temperature
and chemical potential [58–60], which are known as
“thermal fits.” To this purpose, one needs to know the
decay modes of the resonances into the ground state
particles which are reaching the detector. As of yet, the
QM decay channels are unknown so predictions for their
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Thermal Fit Analyses

➤ Systematic study: chemical freeze-out dependence on number of resonances


➤ Flavor hierarchy investigation

➤ Single freeze-out (1FO): simultaneous fit of all particles


➤ Two flavor freeze-out (2FO): fit light and strange particles separately
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Thermal Fit Analyses

➤ Systematic study: chemical freeze-out dependence on number of resonances


➤ Flavor hierarchy investigation

➤ Single freeze-out (1FO): simultaneous fit of all particles


➤ Two flavor freeze-out (2FO): fit light and strange particles separately
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➤ Separating into light and strange particles produces an overall better fit

Light v. Strangeness Freeze-out: Yields

9/20

7

Fig 3

PDG2005 Two Freeze-out Scenario PDG2016 Two Freeze-out Scenario

PDG2016+ Two Freeze-out Scenario QM Two Freeze-out Scenario

0 10 20 30 40 50
130

140

150

160

170

180

�B[MeV]

T[
M
eV

]

Light yields

Light ratios

Str yields

Str ratios

0 10 20 30 40 50
130

140

150

160

170

180

�B[MeV]

T[
M
eV

]

Light yields

Light ratios

Str yields

Str ratios

0 10 20 30 40 50
130

140

150

160

170

180

�B[MeV]

T[
M
eV

]

Light yields

Light ratios

Str yields

Str ratios

0 10 20 30 40 50
130

140

150

160

170

180

�B[MeV]

T[
M
eV

]

Light yields

Light ratios

Str yields

Str ratios

�

��

�

��

� ��� ��

0 10 20 30 40 50
130

140

150

160

170

180

�B[MeV]

T[
M
eV

]

Light yields

Light ratios

Str yields

Str ratios

FIG. 3. (Color online) Extracted light and strange freeze-out temperatures and chemical potentials from yields and ratios at
the LHC and RHIC, in the case of a double freeze-out scenario. Each panel corresponds to a di↵erent particle list.

Results: PDG2012 and PDG2016+

Compare the freeze-out parameters for the kaons and light particles for the 
different lists in order to determine the effect of the number of resonant states:

With the inclusion of more states in the HRG Model the kaon freeze-out 
temperature is decreased, but the separation remains
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FIG. 4. (Color online) Comparison of freeze-out parame-
ters obtained via a combined fit of net-proton and net-electric
charge with those obtained from the net-kaon fluctuations fol-
lowing the analysis from Ref. [12] with di↵erent particle lists.

compared to light particles. We explore this alternative
picture here.

For the first time in this paper, we systematically ex-
plore the e↵ect of enlarged hadronic resonance spectra

– along with their decay properties – on thermal fits,
and find that this tension is not resolved. Especially
at the LHC, the separation between strange and light
freeze-out is extremely pronounced. At RHIC the sep-
aration is smaller, and is almost resolved when states
from the Quark Model are included, although it is im-
portant to remember that certainly too many strange
states are predicted by these calculations, as was shown
in Ref. [24]. From thermal fits based on the most realis-
tic particle list PDG2016+, we estimate the light chem-
ical freeze-out temperature to be TL ⇠ 141 � 144 MeV
and the strange chemical freeze-out temperature to be
TS ⇠ 163 � 167 MeV at the LHC, and TL ⇠ 148 � 158
MeV and TS ⇠ 155� 161 MeV at RHIC. Generally, the
light chemical freeze-out temperature appears to be con-
sistent with the net-p and net-Q results (within error
bars), while the strange temperature is consistent with
the one obtained from net-K fluctuations.

Finally, we note that in other works [17, 18, 20] it was
suggested the a dynamical scenario could explain the pro-
ton to pion puzzle at the LHC. The inclusion of the ad-
ditional states in such a scenario is left for a future work.
Generally, we find hints of two separate chemical freeze-
out temperatures, but smaller error bars in the experi-
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states are predicted by these calculations, as was shown
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➤ Freeze-out parameters calculated via net-particle fluctuations are different for p and K


➤ Light freeze-out determined by combined fit of  and 


➤ Calculate  along the Lattice QCD isentropes
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FREEZE-OUT TEMPERATURE FROM NET-KAON … PHYSICAL REVIEW C 99, 034912 (2019)

to match {χ p
1 /χ

p
2 ,χQ

1 /χQ
2 }. Such an analysis was performed

in Ref. [28]. However, for strange particles only net kaons
have been measured, so it is not possible to determine both
{Tf , µB f } by fitting χK

1 /χK
2 . We tried a simultaneous fit of

χK
1 /χK

2 and χK
3 /χK

2 , but the experimental error bars on the
latter did not allow a precise determination of the freeze-out
parameters. In Fig. 3 of Ref. [30], isentropic trajectories using
lattice QCD results for the Taylor-reconstructed QCD phase
diagram at finite µB are shown. These trajectories assume that
the entropy per baryon number is conserved and illustrate the
path across which the quark gluon plasma evolves through
the phase diagram after a heavy-ion collision in the absence
of dissipation. They are a reasonable approximation of the
actual ones over a short section of the system evolution,
close to the freeze-out. Thus we assume that the evolution
of the system created in a heavy ion collision lies on the
lattice QCD isentropic trajectories, which yield a relationship
between T and µB. These isentropes were determined by
starting from the chemical freeze-out points for light hadrons
from Ref. [28], calculating S/NB at those points, and imposing
that the ratio is conserved on the corresponding trajectory.
In this way we take into account the possibility that kaons
can freeze-out at a different moment in the evolution of
the system at a given collision energy, related to the light
particle freeze-out point by the conservation of S/NB. This
procedure allows us to determine {Tf , µB f } for kaons. Re-
cently, the authors of Ref. [31] performed an analysis similar
to the one presented here, but they determined the freeze-
out chemical potentials by fitting the antibaryon-over-baryon
abundance ratios for the different collision energies. The
results they found are compatible with ours.

III. RESULTS

In Fig. 1, χK
1 /χK

2 is calculated along the lattice QCD
isentropic trajectories (pink, dashed band) and compared

to the (M/σ 2)K (mean-over-variance) data from the STAR
Collaboration [27] (gray, full band). At

√
sNN = 200 GeV, due

to the large experimental uncertainty, the region of overlap
between the theoretical band and the experimental data corre-
sponds to a temperature range of T ≈ 163–185 MeV, which
is clearly above the light chemical freeze-out temperature
T f = 148 ± 6 MeV. At lower energies, the overlap region is
smaller but it is still located around T ≈ 160 MeV. We would
like to stress that, even though we calculate χK

1 /χK
2 in the

HRG model up to temperatures as high as T ≈ 190 MeV,
we do not expect this approach to hold for these values of
T , well above the pseudocritical temperature predicted from
lattice QCD. Nevertheless, we show the curves up to these
high temperatures for completeness, and to see how large the
overlap region with the experimental value turns out to be in
this approach.

In Fig. 2 we directly compare our acceptable bands for the
strange {T f , µ

f
B} (gray bands) and the light {T f , µ

f
B} from

Ref. [28] (red points). Note that the shape of the strange
{T f , µ

f
B} regions reflects the shape of the overlap regions

seen in Fig. 1. From the plot it is clear that, performing the
same analysis as was done in Ref. [28] for light particles, the
freeze-out parameters that we obtain from kaon fluctuations
are in disagreement with the light particle ones. Therefore,
we conclude that the kaon fluctuation data from the STAR
Collaboration cannot be reproduced within the HRG model,
using the freeze-out parameters obtained from the combined
analysis of χ

p
1 /χ

p
2 and χQ

1 /χQ
2 . Kaon fluctuations seem to

confirm a flavor hierarchy scenario. In the same figure, we also
show the freeze-out parameters from thermal fits to particle
yields by the STAR Collaboration at

√
s = 39 GeV [10].

The orange triangular point has been obtained by fitting all
measured ground-state hadrons, while for the blue diamond-
shaped point the fit only included protons, pions and kaons.
It is clear that the inclusion of all strange particles drives the
freeze-out temperature to values which are close to the ones

FIG. 1. Results for χK
1 /χK

2 calculated in the HRG model along the lattice QCD isentropic trajectories (pink, dashed band) compared to
(M/σ 2)K data from [27] (gray, full band) across the Beam Energy Scan at STAR.
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pT -window of the measurement (0.2–2 GeV/c). This result is in 
agreement with a similar previous study [23].

3. Results

In the following, we compare our HRG model calculations with 
the efficiency corrected experimental results for the most central 
collisions (0–5%) published by the STAR Collaboration for net-
proton1 [9] and net-electric charge fluctuations [10]. The suscep-
tibilities of conserved charges are defined as

χBSQ
lmn = ∂ l+m+n(p/T 4)

∂(µB/T )l∂(µS/T )m∂(µQ /T )n
. (6)

Their relationship with the central moments of the conserved 
charge multiplicity distributions is

mean : M = 〈N〉 = V T 3χ1,

variance : σ 2 =
〈
(δN)2〉 = V T 3χ2,

skewness : S = 〈(δN)3〉
σ 3 = V T 3χ3

(V T 3χ2)3/2 ,

kurtosis : κ = 〈(δN)4〉
σ 4 − 3 = V T 3χ4

(V T 3χ2)2 , (7)

where δN = N − 〈N〉. From the quantities in Eqs. (7) the following, 
to leading order volume-independent, ratios can be defined:

σ 2/M = χ2/χ1, Sσ = χ3/χ2,

κσ 2 = χ4/χ2, Sσ 3/M = χ3/χ1.

We calculate the net-proton fluctuations according to the 
method presented in Ref. [24], where besides kinematic accep-
tance cuts also resonance decays and regeneration below the 
chemical freeze-out are taken into account. While resonance de-
cays feed the distributions of the primordial protons and anti-
protons, the regeneration of resonances leads to a randomization 
of the nucleon isospin: the dominant process is the regeneration 
of &(1232)-resonances from the scatterings of nucleons with ther-
mal pions. Subsequently, these &-resonances decay into either the 
same or the opposite isospin state, where neutrons are, however, 
not detected experimentally. Consequently, additional fluctuations 
in the net-proton number arise, which we include based on the 
formalism by Kitazawa and Asakawa (KA) [38,39].

Net-electric charge fluctuations are calculated based on the 
most abundant charged particles, namely pions, kaons, and pro-
tons as well as their anti-particles. Also here, primordial distribu-
tions are fed by resonance decays, but corrections similar to the 
KA-corrections for the net-proton number are not needed, because 
processes via intermediate resonances conserve electric charge.

While the application of the experimental acceptance cuts is 
straightforward in the net-proton case (where 0.4 GeV/c < pT <
0.8 GeV/c and |y| < 0.5), it is more difficult in the case of 
net-electric charge. Here, the general cuts are 0.2 GeV/c < pT <
2 GeV/c and |η| < 0.5, but in order to suppress spallation protons, 
all protons (and anti-protons) with pT < 0.4 GeV/c are removed in 
the experimental analysis. Due to correlated resonance decay con-
tributions to (anti-)protons and pions or kaons, e.g. &++ → p +π+

or Λ0(1520) → p + K − , which are given by a single integral in 
the HRG model calculation, we cannot cut the resonance contri-
bution to the (anti-)protons in the same way without also affect-
ing the contributions to the pions and kaons. We thus apply the 

1 The efficiency-corrected data for the lowest cumulant ratio (χ2/χ1) for net-
protons can be found on the public STAR webpage.

Fig. 1. (Color online.) Comparison between HRG model results and experimental 
data for the most central collisions (0–5%) (from Refs. [9,10]) for σ 2/M of net-
electric charge (blue, upper symbols) and net-protons (red, lower symbols). The 
experimental data have been used in the HRG model in order to extract a freeze-out 
temperature and baryo-chemical potential for each collision energy.

lower pT -cut of 0.4 GeV/c only to the primordial protons and anti-
protons.

In order to extract the freeze-out temperature and baryo-
chemical potential for each collision energy, we have simultane-
ously analyzed two experimentally measured susceptibility ratios. 
With the resulting freeze-out conditions (Tch , µB,ch) we can cal-
culate the remaining susceptibility ratios, which gives us a cross-
check on the reliability of the determined freeze-out parameters. 
The large experimental uncertainties in the higher-order suscep-
tibility ratios of the net-electric charge χ3/χ2 and χ4/χ2 do 
not allow to meaningfully constrain the freeze-out temperature 
and baryo-chemical potential from net-electric charge fluctuations 
alone. Moreover, for the net-protons, as already noted in Ref. [24], 
it is not possible to simultaneously reproduce σ 2/M and Sσ for 
all beam energies: this might point at a limitation in our approach, 
for example, due to an overestimate of the KA-corrections, which 
maximize the impact of isospin randomization. Several other ef-
fects that might impact the higher order moments have also 
not yet been considered, such as volume fluctuations [40], ex-
act (local) charge conservation [18,41] or repulsive van-der-Walls 
forces among hadrons [22]. Finally, the discrepancy in particular at 
larger µB , could also hint at the onset of chiral critical fluctuations 
in the higher moments (skewness and above) [42,43].

We therefore perform, first, a combined analysis of the ratios 
with the smallest experimental uncertainty, namely σ 2/M for net-
electric charge and for net-protons. In addition, we consider an 
alternative analysis using higher-order cumulants, namely σ 2/M
for net-electric charge and Sσ for net-protons, and discuss the dif-
ference in the extracted freeze-out parameters between these two 
choices.

In Fig. 1, we show the experimental data as a function of col-
lision energy per nucleon pair 

√
s (from Refs. [9,10]) together 

with our results for the first choice of fluctuation observables, 
i.e. the combined σ 2/M datasets. We find that it is possible to 
extract, for each collision energy, a freeze-out temperature and 
baryo-chemical potential, which allow to simultaneously reproduce 
the ratios of the lowest-order susceptibilities for net-protons and 
net-electric charge. The smallest collision energy we consider is √

s = 11.5 GeV: below this energy we expect that the isospin ran-
domization is not realized [24,38,39]. We note that for the deter-
mination of these freeze-out parameters the inclusion of the KA-
corrections for σ 2/M of net-protons, in accordance with Ref. [24], 
is essential.

In Fig. 2, we show the freeze-out temperature (upper panel) 
and baryo-chemical potential (lower panel) corresponding to this 
set of analyzed cumulant ratios, as functions of 

√
s. The precision 

in the experimental results allows a rather precise determination 

See also: M. Bluhm and M. Nahrgang, 
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➤ Freeze-out curves for light particles and net-kaons compared to net-Λ fluctuations 
shows this strange baryon prefers to freeze-out with strange particles
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III.  Cross-correlators



Off-diagonal Correlators of Conserved Charges

➤ The contribution of individual species to correlators on the lattice can be determined 
by comparing to the HRG model 
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experimentally
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possible to construct a net-particle quantity (it is its own
antiparticle), and additionally part of the information on the
mixing between K0 and K̄0 is lost because K0

L cannot be
measured. For this reason, in the following we consider K0

and K̄0 instead, and treat them as “not measured.” Finally,
we note that, since the decay Σ0 → Λþ γ has a branching
ratio of ∼100%, effectively what we indicate with Λ
contains the entire Σ0 contribution as well; this well
reproduces the experimental situation, where Λ and Σ0

are treated as the same state.
It is straightforward to adapt the HRG model so that it is

expressed in terms of stable hadronic states only. The sum
over the whole hadronic spectrum is converted into a sum
over both the whole hadronic spectrum and the list of states
which are stable under strong interactions,

X

R

Bl
RQ

m
RS

n
RI

R
p →

X

i∈stable

X

R

ðPR→iÞpBl
iQ

m
i S

n
i I

R
p; ð25Þ

with lþmþ n ¼ p, and where the first sum only runs over
the particles which are stable under strong interactions, and
the sum PR→i ¼

P
αN

α
R→in

R
i;α gives the average number of

particle i produced by each particle R after the whole decay
chain. The sum runs over particle R decay modes, where
Nα

R→i is the branching ratio of the mode α, and nRi;α is the
number of particles i produced by a particle R in the
channel α.
In light of the above considerations, it is useful to define

the contribution to the conserved charges from final state
stable hadrons. In the following, we adopt the convention
where the net number of particles of species A (i.e., the
number of particles A minus the number of antiparticles Ā)
is Ã ¼ A − Ā.
With this definition, we can express conserved

charges as

net-B∶ p̃þ ñþ Λ̃þ Σ̃þ þ Σ̃− þ Ξ̃0 þ Ξ̃− þ Ω̃−;

net-Q∶ π̃þ þ K̃þ þ p̃þ Σ̃þ − Σ̃− − Ξ̃− − Ω̃−;

net-S∶ K̃þ þ K̃0 − Λ̃ − Σ̃þ − Σ̃− − 2Ξ̃0 − 2Ξ̃− − 3Ω̃−:

ð26Þ

Using this decomposition, we can write as an example
the BQ correlator

χBQ11 ðT; μ̂B; μ̂Q; μ̂SÞ ¼
X

R

ðPR→net−BÞðPR→net−QÞ

× IR2 ðT; μ̂B; μ̂Q; μ̂SÞ; ð27Þ

where PR→net−B¼PR→p̃þPR→ñþPR→Λ̃þPR→Σ̃þþPR→Σ̃−þ
PR→Ξ̃0þPR→Ξ̃−þPR→Ω̃− , and e.g., PR→p̃ ¼ PR→p − PR→p̄.
Analogous expressions apply to net-Q and net-S.

The result of this decomposition is that each of the
correlators one can build between conserved charges is
formed from the sum of many different particle-particle
correlations. In particular, the sum of those correlators
which entirely consist of observable species yields the
measured part of a certain correlator, while its nonmeasured
part consists of all other terms, which include at least one
nonobservable species. In Fig. 8 the nondiagonal correla-
tors are shown as a function of the temperature at vanishing
chemical potential. The measured and nonmeasured con-
tributions are shown with blue, dashed-dotted and red,
dashed lines, respectively, while the full contribution is
shown with a solid, thicker black line. Alongside the HRG
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possible to construct a net-particle quantity (it is its own
antiparticle), and additionally part of the information on the
mixing between K0 and K̄0 is lost because K0

L cannot be
measured. For this reason, in the following we consider K0

and K̄0 instead, and treat them as “not measured.” Finally,
we note that, since the decay Σ0 → Λþ γ has a branching
ratio of ∼100%, effectively what we indicate with Λ
contains the entire Σ0 contribution as well; this well
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net-B∶ p̃þ ñþ Λ̃þ Σ̃þ þ Σ̃− þ Ξ̃0 þ Ξ̃− þ Ω̃−;

net-Q∶ π̃þ þ K̃þ þ p̃þ Σ̃þ − Σ̃− − Ξ̃− − Ω̃−;

net-S∶ K̃þ þ K̃0 − Λ̃ − Σ̃þ − Σ̃− − 2Ξ̃0 − 2Ξ̃− − 3Ω̃−:

ð26Þ

Using this decomposition, we can write as an example
the BQ correlator

χBQ11 ðT; μ̂B; μ̂Q; μ̂SÞ ¼
X

R

ðPR→net−BÞðPR→net−QÞ

× IR2 ðT; μ̂B; μ̂Q; μ̂SÞ; ð27Þ

where PR→net−B¼PR→p̃þPR→ñþPR→Λ̃þPR→Σ̃þþPR→Σ̃−þ
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With this definition, we can express conserved

charges as
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Off-diagonal Correlators of Conserved Charges

➤ In reality, there are only a few terms that makeup the overwhelming majority of a 
correlator


➤ Determine proxy by constructing ratios with the most dominate species

13/20

Proxy to measure baryon-strangeness

correlator

of all species involved occurs at the same time in the
evolution of the system, hence at the same volume.
Let us start considering the χBS11 correlator. One could

expect that, having both kaons and protons in the bulk of
particle production, their correlator σpK would be a good
proxy. However, as we can see in Fig. 9, this is clearly not
the case, as the proton-kaon correlator gives a negligible
contribution to χBS11 . On the contrary, the variance of the net-
Lambda distribution σ2Λ represents a much more sizable
contribution to the total correlator.
In the upper panel of Fig. 13 we show the HRG model

results for the ratio χBS11 =χ
S
2 at μB ¼ 0 (black, thicker line).

As already mentioned, from Figs. 9 and 10 we see how the
leading contributions to the two correlators come from σ2Λ
and σ2K, respectively. We can then construct a tentative
proxy as

C̃Λ;K
BS;SS ¼ σ2Λ=σ

2
K; ð29Þ

which is shown as a green, dashed line. We see that, although
this quantity reproduces very well the full result at low
temperatures—where the kaons dominate—it overshoots at
higher temperatures, and in particular around the QCD
transition and chemical freeze-out temperatures, which are
obviously the interesting regime. It is worth noticing that, in
order to construct a good proxy for a ratio of conserved
charges fluctuations, it is not sufficient to choose the best
proxy for both the numerator and the denominator. In fact, a
good proxy for the ratio is obtained when the proxy in the
numerator and the denominator are equally good. Some
guidance in this construction is then provided by Fig. 10,
where the extent to which a hadronic correlator reproduces
the corresponding BQS fluctuation is most evident. For this
reason, we consider adding the contribution from the net-Λ
fluctuations to χS2 too, and define

C̃Λ;ΛK
BS;SS ¼ σ2Λ=ðσ2K þ σ2ΛÞ; ð30Þ

which is shown as a blue, dotted line. We see how this
second proxy is much better at reproducing the full result, as
it is very close to it at all temperatures, including in
the vicinity of the QCD transition. In addition, again
referring to Figs. 9 and 10, it is interesting to try and include
the contributions from multistrange hadrons, both in the
numerator and denominator. With these, one has

C̃ΛΞΩ;ΛΞΩK
BS;SS ¼ ðσ2Λ þ 2σ2Ξ þ 3σ2ΩÞ=ðσ2Λ þ 4σ2Ξ þ 9σ2Ω þ σ2KÞ;

ð31Þ

which is shown as the orange, dashed-dotted line, and also
reproduces very well the behavior of the full ratio, although
not really improving the situation over the previous one.
As a final check, one can build a proxy from the σpK
correlator as

C̃pK;ΛK
BS;SS ¼ σpK11 =ðσ2K þ σ2ΛÞ; ð32Þ

which is shown as the yellow, dashed-double-dotted line.
Not unexpectedly, this combination is not able to serve as a
good proxy.
The case of χQS

11 =χ
Q
2 follows directly from the previous

one, and is shown in the lower panel of Fig. 13. In fact, in a
system with 2þ 1 quarks (with no isospin symmetry
breaking) the following relation applies:

2hQSi − hBSi ¼ hSSi; ð33Þ

from which one can derive that

χQS
11

χS2
¼ 1

2

!
1 −

χBS11
χS2

"
: ð34Þ

Thus, exploiting this relation and the good proxy C̃Λ;ΛK
BS;SS we

have defined for χBS11 =χ
S
2, we can define
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FIG. 13. The temperature dependence of the ratios −χBS11 =χS2
(upper panel) and χQS

11 =χ
S
2 (lower panel), at μB ¼ 0. In both cases

the total contribution is shown with a solid black line, along with
different proxies: (upper panel) C̃Λ;K

BS;SS (dashed green line), C̃
Λ;ΛK
BS;SS

(dotted blue line), C̃ΛΞΩ;ΛΞΩK
BS;SS (dashed-dotted orange line) and

C̃pK;ΛK
BS;SS (dashed-double-dotted yellow line), defined in Eqs. (29)–

(32), respectively; (lower panel) C̃K;ΛK
QS;SS (dotted blue line) defined

in Eq. (35).
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model results, continuum extrapolated lattice results are
shown as magenta points as introduced in Sec. II.
We notice that both the BQ and QS correlators are

largely reproduced by the measured contribution (for the
BQ correlator, the measured portion even exceeds the full
one, as the nonmeasured contribution is negative), while
the BS correlator is roughly split in half between measured
and nonmeasured terms. This is because the former are
unsurprisingly dominated by the net-proton and net-kaon
contributions, respectively, which in this temperature
regime form the bulk of particle production, together with
the pions. The BS correlator conversely receives its main
contributions from strange baryons, which are almost
equally split between measured and nonmeasured.

B. Breakdown of the measured and
nonmeasured contributions

The decomposition in Eq. (26) allows one to break down
the different contributions to any cross correlator, as well as
the diagonal ones, entirely. In Figs. 9 and 10, we show the
breakdown of the measured portion of the single final state
hadronic (self-) correlations to the nondiagonal and diago-
nal correlators, respectively. Let us start from the non-
diagonal case.
A few features can be readily noticed. First, in all cases

only a handful of the most sizable contributions account for
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Cross-correlators at Freeze-out

➤ The baryon-strangeness correlator can test the flavor hierarchy

➤ Lines show parametrization of proxy on upper and lower bounds of crossover


➤ Experimental data favor higher temperature 
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QCD. The ratios χBS11 =χ
S
2 and χQS

11 =χ
S
2 are shown in the first

and second row, respectively. We see that for these ratios,
the agreement with the considered proxies does not worsen
with the increase in the chemical potential, and the curves
remain very close for a broad range of collision energies.
This means that the scope of the proxies we have
constructed to reproduce the behavior of fluctuations of
conserved charges is not limited to small μB, but can be
extended to the study in the Beam Energy Scan as well.
In Sec. IV we have mentioned that one of the strengths of

the HRG model is the possibility it offers to include effects
that are present in the experimental situation, like the use of
cuts on the kinematics. In the central panel of Fig. 16 we
show the same scenario as in the left panel, but with the
inclusion of exemplary mock cuts: 0.2 ≤ pT ≤ 2.0 GeV,
jyj ≤ 1.0. These cuts do not correspond to any past or
ongoing measurement at the LHC or RHIC, but are
constructed such as to be reproducible in the experiment,
and still give a hint of the effect of including the cuts at all.
For a systematic treatment of the dependence of fluctua-
tions on the kinematic cuts—which is beyond the scope of
this work—see [82], where it is studied in a thermal model
with an older hadron list and without the inclusion of
resonance decays. In our example, the same cuts are
applied to all particle species. We see that for all the
observables considered the agreement between net-charge
fluctuation ratios and proxies remains the same as in the
case without cuts, for both freeze-out lines.
Finally, in the right panel of Fig. 16 we show the selected

proxies, for both freeze-out curves, comparing the cases
with and without the cuts. We see that the effect is very
minimal for the two ratios χBS11 =χ

S
2 and χQS

11 =χ
S
2 . This is

obviously of key importance in light of a potential direct
comparison to results from lattice QCD calculations, as the
one discussed in Sec. III for χBS11 =χ

S
2. This is one of the main

reasons these proxies were built in the first place.
The third row in Fig. 16 shows the behavior of the ratio

χB2 =χ
Q
2 when acceptance cuts are introduced. As opposed to

the discussed off-diagonal ratios it shows a large depend-
ence on the cuts. Thus, even though this ratio does not
suffer from the effect of isospin randomization, a com-
parison to lattice simulations can be problematic. Thus, we
focus on the strangeness related off-diagonal correlators in
the next section, where we compare to experimental data.

VII. COMPARISON TO
EXPERIMENTAL RESULTS

In the previous section we have considered the impact of
including kinematic cuts on the proxies we have defined
previously, by considering some exemplary cuts which
were chosen to be the same for all particle species.
However, experimental measurements exist for different
species, and it is possible to test how the proxies we
constructed compare to the experimental results, this time

including the corresponding cuts on a species-by-species
(or measurement-by-measurement) basis.
In Fig. 17 we show the behavior of the proxies C̃Λ;ΛK

BS;SS
and C̃K;ΛK

QS;SS from Eqs. (30) and (35), along the same freeze-
out lines used in Fig. 16, and compare them to available
experimental results from the STAR Collaboration [56,57].
The important difference is that now the experimental cuts
are the ones taken from the actual measurements, and
namely they are not the same for the different species.
We see that the proxy (it is only one independent

quantity as discussed above) works well also in com-
parison with available experimental data, when the con-
sidered freeze-out line is the one with a temperature
TðμB ¼ 0Þ ¼ 165 MeV. This is in line with results from
other analyses, which indicate that strange particles seem to
prefer a higher chemical freeze-out temperature [59].
One more remark is in order: by comparing, e.g., the

curves in Figs. 17 (top panel) and 16 (first row, left or
central panel), we can see how crucial it is that the same
cuts are applied to the different hadronic species utilized in
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FIG. 17. Behavior of the proxies C̃Λ;ΛK
BS;SS and C̃K;ΛK

QS;SS along
freeze-out lines with T0 ¼ 145 MeV (blue dashed line) and T0 ¼
165 MeV (black dotted line)—using different cuts for the differ-
ent species, according to the experimental situation—compared
to the experimental results [56,57] (light blue points).
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IV.  BQS Modeling



BQS Initial Conditions

➤ Initial densities for each conserved charge 

can be constructed by re-sampling the initial

energy density to map gluon density to 

production

➤ Baryon and charge densities largely

mirror energy density

➤ Strangeness density is related to

distribution of hot spots 

  


qq̄
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The Full Picture

• Complete resampling of the input energy 
generates new initial conditions for BSQ

• Energy density has been modified
¾ Large scale structure intact
¾ Some artifacts seen

• Significant coupling of quark flavor to 
geometry through the mass threshold

¾ B and Q track the energy density
¾ Strangeness is visibly different.

M. Sievert Initial Conditions of BSQ 16 / 28
M. D. S. et al., arXiv: 1911.10272, 1911.12454

Consistency Check:  Hot Spot Grooming

M. Sievert Initial Conditions of BSQ 22 / 28

𝑇~ 400 𝐾 (?)• Strangeness geometry can be 
reproduced by grooming the 
initial hot spots

• The 𝒔ത𝒔 mass threshold 
couples to the hot spot 
geometry rather than the bulk

ICCING: M. Martinez et al, arXiv: 1911.12454;1911.10272



BQS EoS

➤ Reconstruct the QCD equation of state from all diagonal and off-diagonal Taylor 
expansion coefficients up to 𝒪(μ4

B)

16/20

EoS with three conserved charges

I Hydrodynamic simulations can now include all conserved charges

) Produce an EoS depending on (µB , µQ, µS)

I Recent lattice QCD results are available for diagonal and o↵-diagonal �BSQ
ijk

I The full pressure reads:

P (T, µB , µQ, µS)

T 4
=

X

i,j,k

1

i!j!k!
�BQS
ijk (T )

⇣µB

T

⌘j ⇣µQ

T

⌘k ⇣µS

T

⌘i

with the coe�cients:

�BQS
ijk (T ) =

@i+j+k(p/T 4)

@(µB

T )i@(µQ

T )j@(µS

T )k

����
µB ,µQ,µS=0

Up to order O(µ4) the list is complete ) 22 coe�cients
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FIG. 2. From left to right, top to bottom: Expansion coefficients χBQ
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31 , χQS
31 , χBQ

13 , χBS
13 , χQS

13 , χBQ
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22 , χQS
22 , χBQS

211 , χBQS
121 , χBQS

112 as
functions of temperature. In each panel, the black dots are the HRG model results, the red triangles correspond to the lattice QCD results, and
the thicker blue line on the right indicates the Stefan-Boltzmann limit. The thin solid, black curve shows our parametrization of the data.

These Fourier harmonics appear to be important to distinguish
baryon interactions within a hadron resonance gas (see also
Ref. [50]), specifically for the thermodynamic regime above
T > 150 MeV. We note that here we use lattice QCD data en-
tirely in this regime (our hadron resonance gas model is only
to constrain low temperatures below T ! 135 MeV, where no
lattice QCD results are available). However, due to the Taylor
expansion, our approach is limited to chemical potentials
µB ! (2–2.5)T . To fully reproduce the Fourier harmonics
we would need to reach µB ! πT , for which higher-order
coefficients in the Taylor series would need to be included.

In this manuscript, we construct an equation of state for
QCD at finite T, µB, µS, µQ. We build the pressure as a
Taylor series of the three chemical potentials, with coefficients
taken from lattice simulations [43]. At low temperatures,
we perform a smooth merging between the lattice and the
hadron resonance gas model results [51] and ensure conti-
nuity of higher-order derivatives. At high temperatures, we
impose a smooth approach to the Stefan-Boltzmann limit. We
parametrize each one of these coefficients as a ratio of polyno-
mials. From this we obtain the pressure and can then calculate
all other quantities from thermodynamic relationships.
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112 as
functions of temperature. In each panel, the black dots are the HRG model results, the red triangles correspond to the lattice QCD results, and
the thicker blue line on the right indicates the Stefan-Boltzmann limit. The thin solid, black curve shows our parametrization of the data.

These Fourier harmonics appear to be important to distinguish
baryon interactions within a hadron resonance gas (see also
Ref. [50]), specifically for the thermodynamic regime above
T > 150 MeV. We note that here we use lattice QCD data en-
tirely in this regime (our hadron resonance gas model is only
to constrain low temperatures below T ! 135 MeV, where no
lattice QCD results are available). However, due to the Taylor
expansion, our approach is limited to chemical potentials
µB ! (2–2.5)T . To fully reproduce the Fourier harmonics
we would need to reach µB ! πT , for which higher-order
coefficients in the Taylor series would need to be included.

In this manuscript, we construct an equation of state for
QCD at finite T, µB, µS, µQ. We build the pressure as a
Taylor series of the three chemical potentials, with coefficients
taken from lattice simulations [43]. At low temperatures,
we perform a smooth merging between the lattice and the
hadron resonance gas model results [51] and ensure conti-
nuity of higher-order derivatives. At high temperatures, we
impose a smooth approach to the Stefan-Boltzmann limit. We
parametrize each one of these coefficients as a ratio of polyno-
mials. From this we obtain the pressure and can then calculate
all other quantities from thermodynamic relationships.
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functions of temperature. In each panel, the black dots are the HRG model results, the red triangles correspond to the lattice QCD results, and
the thicker blue line on the right indicates the Stefan-Boltzmann limit. The thin solid, black curve shows our parametrization of the data.

These Fourier harmonics appear to be important to distinguish
baryon interactions within a hadron resonance gas (see also
Ref. [50]), specifically for the thermodynamic regime above
T > 150 MeV. We note that here we use lattice QCD data en-
tirely in this regime (our hadron resonance gas model is only
to constrain low temperatures below T ! 135 MeV, where no
lattice QCD results are available). However, due to the Taylor
expansion, our approach is limited to chemical potentials
µB ! (2–2.5)T . To fully reproduce the Fourier harmonics
we would need to reach µB ! πT , for which higher-order
coefficients in the Taylor series would need to be included.

In this manuscript, we construct an equation of state for
QCD at finite T, µB, µS, µQ. We build the pressure as a
Taylor series of the three chemical potentials, with coefficients
taken from lattice simulations [43]. At low temperatures,
we perform a smooth merging between the lattice and the
hadron resonance gas model results [51] and ensure conti-
nuity of higher-order derivatives. At high temperatures, we
impose a smooth approach to the Stefan-Boltzmann limit. We
parametrize each one of these coefficients as a ratio of polyno-
mials. From this we obtain the pressure and can then calculate
all other quantities from thermodynamic relationships.
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112 as
functions of temperature. In each panel, the black dots are the HRG model results, the red triangles correspond to the lattice QCD results, and
the thicker blue line on the right indicates the Stefan-Boltzmann limit. The thin solid, black curve shows our parametrization of the data.

These Fourier harmonics appear to be important to distinguish
baryon interactions within a hadron resonance gas (see also
Ref. [50]), specifically for the thermodynamic regime above
T > 150 MeV. We note that here we use lattice QCD data en-
tirely in this regime (our hadron resonance gas model is only
to constrain low temperatures below T ! 135 MeV, where no
lattice QCD results are available). However, due to the Taylor
expansion, our approach is limited to chemical potentials
µB ! (2–2.5)T . To fully reproduce the Fourier harmonics
we would need to reach µB ! πT , for which higher-order
coefficients in the Taylor series would need to be included.

In this manuscript, we construct an equation of state for
QCD at finite T, µB, µS, µQ. We build the pressure as a
Taylor series of the three chemical potentials, with coefficients
taken from lattice simulations [43]. At low temperatures,
we perform a smooth merging between the lattice and the
hadron resonance gas model results [51] and ensure conti-
nuity of higher-order derivatives. At high temperatures, we
impose a smooth approach to the Stefan-Boltzmann limit. We
parametrize each one of these coefficients as a ratio of polyno-
mials. From this we obtain the pressure and can then calculate
all other quantities from thermodynamic relationships.
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FIG. 2. From left to right, top to bottom: Expansion coefficients χBQ
31 , χBS
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13 , χBQ
22 , χBS
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22 , χBQS

211 , χBQS
121 , χBQS

112 as
functions of temperature. In each panel, the black dots are the HRG model results, the red triangles correspond to the lattice QCD results, and
the thicker blue line on the right indicates the Stefan-Boltzmann limit. The thin solid, black curve shows our parametrization of the data.

These Fourier harmonics appear to be important to distinguish
baryon interactions within a hadron resonance gas (see also
Ref. [50]), specifically for the thermodynamic regime above
T > 150 MeV. We note that here we use lattice QCD data en-
tirely in this regime (our hadron resonance gas model is only
to constrain low temperatures below T ! 135 MeV, where no
lattice QCD results are available). However, due to the Taylor
expansion, our approach is limited to chemical potentials
µB ! (2–2.5)T . To fully reproduce the Fourier harmonics
we would need to reach µB ! πT , for which higher-order
coefficients in the Taylor series would need to be included.

In this manuscript, we construct an equation of state for
QCD at finite T, µB, µS, µQ. We build the pressure as a
Taylor series of the three chemical potentials, with coefficients
taken from lattice simulations [43]. At low temperatures,
we perform a smooth merging between the lattice and the
hadron resonance gas model results [51] and ensure conti-
nuity of higher-order derivatives. At high temperatures, we
impose a smooth approach to the Stefan-Boltzmann limit. We
parametrize each one of these coefficients as a ratio of polyno-
mials. From this we obtain the pressure and can then calculate
all other quantities from thermodynamic relationships.
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112 as
functions of temperature. In each panel, the black dots are the HRG model results, the red triangles correspond to the lattice QCD results, and
the thicker blue line on the right indicates the Stefan-Boltzmann limit. The thin solid, black curve shows our parametrization of the data.

These Fourier harmonics appear to be important to distinguish
baryon interactions within a hadron resonance gas (see also
Ref. [50]), specifically for the thermodynamic regime above
T > 150 MeV. We note that here we use lattice QCD data en-
tirely in this regime (our hadron resonance gas model is only
to constrain low temperatures below T ! 135 MeV, where no
lattice QCD results are available). However, due to the Taylor
expansion, our approach is limited to chemical potentials
µB ! (2–2.5)T . To fully reproduce the Fourier harmonics
we would need to reach µB ! πT , for which higher-order
coefficients in the Taylor series would need to be included.

In this manuscript, we construct an equation of state for
QCD at finite T, µB, µS, µQ. We build the pressure as a
Taylor series of the three chemical potentials, with coefficients
taken from lattice simulations [43]. At low temperatures,
we perform a smooth merging between the lattice and the
hadron resonance gas model results [51] and ensure conti-
nuity of higher-order derivatives. At high temperatures, we
impose a smooth approach to the Stefan-Boltzmann limit. We
parametrize each one of these coefficients as a ratio of polyno-
mials. From this we obtain the pressure and can then calculate
all other quantities from thermodynamic relationships.
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FIG. 2. From left to right, top to bottom: Expansion coefficients χBQ
31 , χBS

31 , χQS
31 , χBQ

13 , χBS
13 , χQS

13 , χBQ
22 , χBS

22 , χQS
22 , χBQS

211 , χBQS
121 , χBQS

112 as
functions of temperature. In each panel, the black dots are the HRG model results, the red triangles correspond to the lattice QCD results, and
the thicker blue line on the right indicates the Stefan-Boltzmann limit. The thin solid, black curve shows our parametrization of the data.

These Fourier harmonics appear to be important to distinguish
baryon interactions within a hadron resonance gas (see also
Ref. [50]), specifically for the thermodynamic regime above
T > 150 MeV. We note that here we use lattice QCD data en-
tirely in this regime (our hadron resonance gas model is only
to constrain low temperatures below T ! 135 MeV, where no
lattice QCD results are available). However, due to the Taylor
expansion, our approach is limited to chemical potentials
µB ! (2–2.5)T . To fully reproduce the Fourier harmonics
we would need to reach µB ! πT , for which higher-order
coefficients in the Taylor series would need to be included.

In this manuscript, we construct an equation of state for
QCD at finite T, µB, µS, µQ. We build the pressure as a
Taylor series of the three chemical potentials, with coefficients
taken from lattice simulations [43]. At low temperatures,
we perform a smooth merging between the lattice and the
hadron resonance gas model results [51] and ensure conti-
nuity of higher-order derivatives. At high temperatures, we
impose a smooth approach to the Stefan-Boltzmann limit. We
parametrize each one of these coefficients as a ratio of polyno-
mials. From this we obtain the pressure and can then calculate
all other quantities from thermodynamic relationships.
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FIG. 1. From left to right, top to bottom: Expansion coefficients χB
2 , χQ

2 , χ S
2 , χBQ
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4 ,χ S
4 as functions of temperature. In

each panel, the black dots are the HRG model results, the red triangles correspond to the lattice QCD results, and the thicker blue line on the
right indicates the Stefan-Boltzmann limit. The thin solid, black curve shows our parametrization of the data.

remain regarding a possible separate freeze-out temperature
for strange hadrons [32–35] and separations of electric charge
due to a possible chiral magnetic effect [36], so many in-
teresting questions need to be answered that go beyond just
baryon charge conservation. At the LHC, where the baryonic
chemical potential µB is basically vanishing, the chemical
potentials for strangeness µS and electric charge µQ are also
zero. At RHIC, however, as the baryonic density increases,
the other two chemical potentials have finite values as well.
Until now, the equation of state of QCD has only been extrap-
olated to finite µB, either by keeping µS = µQ = 0 or along
a specific trajectory in the four-dimensional (4D) parameter
space, namely imposing that the strangeness density 〈nS〉 = 0
and that the electric charge density 〈nQ〉 = 0.4〈nB〉 to match
the experimental situation.

After the early results for χ2, χ4, and χ6 [37], a continuum
extrapolation for χ2 was published in Ref. [38]; in Ref. [39]
χ4 was shown but only at finite lattice spacing. The continuum
limit for χ6 was published for the first time in Ref. [40] in
the case of strangeness neutrality and later in Ref. [41] for
both cases. In Ref. [42], a first determination of χ8 at two
values of the temperature and Nt = 8 was presented. Finally,
in Ref. [43] a determination of χ8 was presented for the first

time as a function of the temperature, at Nt = 12, keeping
µS = µQ = 0. Recently, the effect of introducing a critical
point in the equation of state of QCD has also been tested [26].

However, a Taylor expansion of the equation of state,
along a direction which satisfies the strangeness-neutrality
condition, is not enough for the hydrodynamics approach,
since the fluid cells have local fluctuations in strangeness
density. Additionally, there is a complicated interplay between
transport coefficients when B, Q, S are considered [44] that
cannot be neglected at large baryon densities. For these rea-
sons, an EoS fully expanded as a Taylor series in powers of
µB/T, µS/T, µQ/T is needed as an input of hydrodynamic
simulations of the matter created at RHIC. In order to perform
such an expansion, all of the diagonal and nondiagonal sus-
ceptibilities of these three conserved charges are needed from
lattice QCD up to the chosen power. In this work, we perform
the Taylor expansion to total power four in the chemical
potentials. These results recently became available [43] on
Nt = 12 lattices.

Alternative approaches to the Taylor-series expansion have
been suggested in Refs. [45,46] and Refs. [47,48], which
have been shown to match well to lattice QCD data for
the Fourier harmonics [49] at imaginary chemical potential.
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II. METHODOLOGY AND RESULTS

The Taylor series of the pressure in terms of the three
conserved charge chemical potentials can be written as

p(T, µB, µQ, µS )
T 4

=
∑

i, j,k

1
i! j!k!

χBQS
i jk

(µB

T

)i(µQ

T

) j(µS

T

)k
.

(1)

We limit our calculation to i + j + k ! 4. The coefficients

χBQS
i jk = ∂ i+ j+k (p/T 4)

∂
(

µB
T

)i
∂
(µQ

T

) j
∂
(

µS
T

)k

∣∣∣∣∣
µB,µQ,µS=0

(2)

have recently been published from lattice QCD simulations
on 483 × 12 lattices [43] in the temperature range (135

MeV) < T < (220 MeV). Since this is not enough to cover
the hydrodynamical evolution of the system, we smoothly
merge each coefficient at low temperature with the hadron
resonance gas model result, while at high temperature we
calculate the Stefan-Boltzman limit for each one of them
and assume that their value at T = 800 MeV is ∼10%
away from the respective Stefan-Boltzmann limit. To sim-
plify the notation, whenever i, j, k are zero, we only write
the nonzero indices and only the corresponding conserved
charges: For example, χBQS

200 becomes χB
2 , χBQS

301 becomes
χBS

31 , and so on. In order to provide a smooth pressure
which can be easily derived to obtain the other thermody-
namic quantities, we parametrize each coefficient by means
of a ratio of up-to-ninth-order polynomials in the inverse
temperature:

χBQS
i jk (T ) =

ai
0 + ai

1/t + ai
2/t2 + ai

3/t3 + ai
4/t4 + ai

5/t5 + ai
6/t6 + ai

7/t7 + ai
8/t8 + ai

9/t9

bi
0 + bi

1/t + bi
2/t2 + bi

3/t3 + bi
4/t4 + bi

5/t5 + bi
6/t6 + bi

7/t7 + bi
8/t8 + bi

9/t9
+ c0.

Only χB
2 requires a different parametrization:

χ2(T ) = e−h1/t ′−h2/t ′2
f3[1 + tanh( f4t ′ + f5)]. (3)

In both equations above, t = T/154 MeV and t ′ =
T/200 MeV [52]. The values of the parameters for each
coefficient are given in the Appendix, together with the
respective Stefan-Boltzmann limits. Figures 1 and 2 show
all of the Taylor expansion coefficients as functions of the
temperature. The black dots are the HRG model results, the
red triangles correspond to the lattice QCD results, and the
thick blue line indicates the Stefan-Boltzmann limit.

Making use of this parametrization, we construct the pres-
sure from Eq. (1). The other thermodynamic quantities are
then derived from the pressure as follows:

s
T 3

= 1
T 3

∂ p
∂T

∣∣∣∣
µi

,
ε

T 4
= s

T 3
− p

T 4
+

∑

i

µi

T
ni

T 3

ni

T 3
= 1

T 3

∂ p
∂µi

∣∣∣∣
T,µ j

, c2
s = ∂ p

∂ε

∣∣∣∣
ni

+
∑

i

ni

ε + p
∂ p
∂ni

∣∣∣∣
ε,n j

. (4)

Everywhere in the above equation, i %= j is intended.
In Fig. 3 we show the dependence of the normalized pres-

sure, entropy density, energy density, baryonic, strangeness,
and electric charge densities on the temperature, along lines
of constant µB/T = 0.5, 1, 2, with both 〈nS〉 = 0, 〈nQ〉 =
0.4〈nB〉 (solid black lines) and in the case of µS = µQ = 0
(dashed red lines). We find that the thermodynamic quantities
that are less sensitive to the chemical composition of the
system do not show large discrepancies between the two sce-
narios for all three values of µB/T . On the other hand, when
realistic conditions on the global chemical composition of the
system are imposed, the baryon density is largely affected and
substantially decreased; the opposite effect is visible for the
electric charge density, which is heavily enhanced.

Finally, we compare (i) the isentropic trajectories, (ii) the
temperature dependence of the speed of sound along lines of

constant µB/T , and (iii) the behavior of the speed of sound
along parametrized chemical freeze-out lines between these
two cases. The isentropic trajectories are shown in Fig. 4 for
selected values of s/nB, which correspond to the indicated
collision energies [40]. In the upper panel of Fig. 5 we show
the speed of sound as a function of the temperature along lines
with µB/T = 0.5, 1, 2; the different colors correspond to
different values of µB/T . In the lower panel of Fig. 5 we show
the behavior of the speed of sound along two parametrized
chemical freeze-out lines. These two freeze-out lines are
shifted from the one presented in Ref. [53], and have the form:

TFO(µB) = T0 + bµ2
B + cµ4

B, (5)

FIG. 4. Isentropic trajectories in the (T, µB ) plane, for s/nB =
420, 144, 70, 30, corresponding to collision energies

√
sNN =

200, 62.4, 27, 14.5 GeV, respectively. The solid black lines cor-
respond to 〈nS〉 = 0, 〈nQ〉 = 0.4〈nB〉 while the dashed red lines to
µS = µQ = 0.

064910-5

J. NORONHA-HOSTLER et al. PHYSICAL REVIEW C 100, 064910 (2019)

FIG. 3. Normalized pressure, entropy density, energy density, baryonic, strangeness, and electric charge densities are shown as functions
of temperature along the µB/T = 0.5 (top), µB/T = 1.0 (middle), and µB/T = 2.0 (bottom) lines. In all plots, the solid black curves indicate
the case 〈nS〉 = 0 and 〈nQ〉 = 0.4〈nB〉, whereas the dashed red ones indicate the case µQ = µS = 0.
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QCD EQUATION OF STATE AT FINITE DENSITIES

• Strangeness neutrality improves the hadronic chemistry in the hybrid 
dynamic framework
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Enabled hydrodynamic simulations at finite μ

BQS EoS

➤ Full dynamical modeling with successive 
additions of charge conservation 
conditions increases agreement of 
predicted particle ratios with 
experimental data


➤ Including only baryon number is not 
sufficient


➤ Strange baryons especially affected


➤ Small difference after adding Q
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BQS Conserved Fluctuations

➤ Using the subensemble acceptance method, the conservation effects can be studied 
for all QCD charges
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2

(a) Subensemble acceptance

(b) Binomial acceptance

Figure 1. A subsystem (dashed red rectangle) within
a thermal system (solid black rectangle). The subsystem
can exchange particles (conserved charges), shown by the
circles, with the rest of the system. The filled red circles
in (a) depict the particles within the subsystem, as consid-
ered in the present subensemble acceptance procedure. In
contrast, the filled red circles in (b) highlight the particles
from a typical configuration resulting from the binomial
filter.

between the GCE susceptibilities �B

n
and measured

cumulants of conserved charge n[B] to make it valid
for subsystems that are comparable in size to the
total system. We will still assume that the size of
the subsystem is large enough to capture the relevant
physics. Further assuming strong space-momentum
correlations, as is the case for LHC and top RHIC en-
ergies, the formalism presented here connects the mea-
sured cumulants with those obtained in lattice QCD
over a wide range of acceptance windows.
Formalism. Consider a spatially uniform thermal

system at a fixed temperature T , volume V , and total
net charge, say net baryon number, B, which is de-
scribed by statistical mechanics in the canonical en-
semble and characterized by its canonical partition
function Z(T, V,B). We pick a subsystem of a fixed
volume V1 = ↵V within the whole system, which can
freely exchange the conserved charge B with the rest
of the system (see Fig. 1). Our goal is to evaluate
the cumulants n[B1] of the distribution of charge B1

within the subsystem [the red points in Fig. 1(a)]. Our
considerations will be quite di↵erent from a binomial
filter previously considered in Refs. [10, 12]. The bino-
mial filter corresponds to an independent acceptance
of particles with a probability ↵ from the entire vol-
ume V [the red points in Fig. 1(b)]. The binomial filter
is appropriate for non-interacting systems, e.g. for the
ideal HRG model, where there are no spatial correla-
tions between the particles. Given a finite correlation
length, however, particles will be more strongly corre-

lated with their neighboring particles than with those
far away. The binomial filter artificially suppresses
these correlations and thus will not provide the cor-
rect results for the subvolume V1.

Our arguments will be based purely on statistical
mechanics. Assuming the subvolume V1 as well as the
remaining volume V2 = (1 � ↵)V to be large com-
pared to correlation length ⇠, V1 � ⇠3 and V2 � ⇠3,
the canonical ensemble partition function of the total
system with total baryon number B is given by

Z(T, V,B) =
X

B1

Z(T,↵V,B1)Z(T,�V,B �B1) (2)

Here � ⌘ 1 � ↵. The probability P (B1) to find B1

baryons in the subsystem with volume V1 is propor-
tional to the product of the canonical partition func-
tions of the two subsystems:

P (B1) / Z(T,↵V,B1)Z(T,�V,B �B1). (3)

The procedure based on Eqs. (2) and (3) will be called
the subensemble acceptance procedure. Note that for
the ideal HRG it reduces to the binomial acceptance
sampling1.

In the thermodynamic limit, i.e. for V ! 1,
the above results can be generalized, since in this
case the canonical partition function can be expressed
through the volume-independent free energy density
f : Z(T, V,B) = exp

⇥
�V

T
f(T, ⇢B)

⇤
with ⇢B ⌘ B/V

being the conserved baryon density. To evaluate
n[B1] we introduce the cumulant generating function
GB1(t):

GB1(t) ⌘ lnhet B1i = ln
X

B1

exp(tB1)P (B1)

= ln

(
X

B1

et B1 exp


�↵V

T
f(T, ⇢B1)

�

⇥ exp


��V

T
f(T, ⇢B2)

��
+ C̃. (4)

Here ⇢B2 = B�B1
V�V1

is the charge density in the sec-

ond subsystem and C̃ is an irrelevant normalization

1
Strictly speaking, this is valid for the classical ideal HRG

when quantum statistics e↵ects can be neglected. This is the

case especially for baryons, where, due to their large mass,

corrections to baryon number cumulants arising from Fermi

statistics are small at the chemical freeze-out, T ' 155MeV

and µB ' 0.

Subensemble acceptance method  
(SAM) 

12

Partition a thermal system with a globally conserved charge B (canonical 
ensemble) into two subsystems which can exchange the charge

The canonical partition function then reads:

The probability to have charge B1 in V1 is:

V = V1 + V2

Assume thermodynamic limit: 

V, V1, V2 → ∞; V1
V

= α = const; V2
V

= (1 − α) = const;
V1, V2 ≫ ξ3 ξ = correlation length

Zce(T, V, B) = ∑
B1

Zce(T, V1, B1)Zce(T, V − V1, B − B1)

P(B1) ∼ Zce(T, αV, B1)Zce(T, (1 − α)V, B − B1), α ≡ V1/V
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Fluctuations and correlations of many different quantities, that include both the con-

served charges and various hadron number distributions, have been measured in a number

of experiments. These include measurements of second order cumulants, both diagonal [9–

12] and off-diagonal [13–15], as well as higher-order fluctuation measures [16–19]. An

important question is how to relate the experimental measurements to theoretical predic-

tions. For instance, cumulants of the net-proton number cannot be computed in many of

the theories, lattice gauge theory in particular, where only the conserved baryon number is

accessible. In such a case one either has to reconstruct net-baryon fluctuations from net-

proton measurements [20, 21], or directly compare net-proton and net-baryon cumulants,

accepting an inevitable systematic error stemming from such an approximation. Another

problem is participant (or volume) fluctuations, which is a source of non-dynamical fluc-

tuations affecting comparisons between theory and experiment [22, 23].

Perhaps the most important issue is the choice of statistical ensemble. The vast ma-

jority of theories operate in the grand canonical ensemble, where the system can freely

exchange conserved charges with a reservoir. Direct comparison of grand canonical sus-

ceptibilities with heavy-ion data is commonplace in the literature [24–33]. However, all

charges are globally conserved in heavy-ion collisions. This would imply that the canonical

ensemble is more appropriate than the grand canonical ensemble. The difference between

ensembles does not play a major role if only mean hadron yields are considered in central

collisions of heavy ions — due to the thermodynamic equivalence of statistical ensembles

for the averages, the difference between hadron abundances evaluated in different statis-

tical ensembles disappears in large systems. However, the thermodynamic equivalence of

statistical ensembles does not extend to fluctuations, meaning that values of second and

higher order cumulants will depend on the choice of the ensemble, no matter how large the

system is.

The experimental measurements typically have a limited momentum acceptance, cov-

ering only a fraction of the total momentum space. In ref. [34] the necessary conditions

to emulate the grand canonical ensemble in heavy-ion collisions have been outlined: mea-

surements should be performed in a rapidity acceptance ∆Yacc which is, on one hand,

large enough to capture all the relevant physics, ∆Yacc ! ∆Ycor, where ∆Ycor characterizes

the correlation range in rapidity, while on the other hand, it covers only a small frac-

tion of the whole momentum space such that global conservation laws can be neglected,

∆Yacc " ∆Y4π. Furthermore, the measurements should cover the entire transverse mo-

mentum range.

Global conservation effects are non-negligible whenever ∆Yacc is comparable to ∆Y4π.

The magnitude of these effects, as well as ways to deal with them, have been studied in

the past using a picture of an uncorrelated hadron gas with a single globally conserved

charge in a number of papers [35–42]. The analysis in ref. [37] indicated that the effects

of global conservation are sizable already for moderate values of the acceptance fraction

α ≡ ∆Yacc/∆Y4π ! 0.2, especially for higher-order cumulants. In our recent work [1],

we introduced a subensemble acceptance method (SAM) — a procedure to calculate the

cumulants in a presence of a single conserved charge for an arbitrary equation of state. In

ref. [43] this formalism was applied to fluctuations in vicinity of a critical point.
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must not only be opposite to each other, as stipulated by eq. (2.45), but also equal to one

another due to symmetry.

2.6 Conserved charges in QCD

2.6.1 Single conserved charge B

Let us consider the case of a single conserved charge — the baryon number B. Then

Q̂ = (B), N = 1 and χ̂i1,...,iM = χB
M , i.e. all in = 1. Using the results of the preceding

three subsections we can write the cumulants of baryon number B1 inside a subvolume

explicitly:

κ1[B
1] = αV T 3 χB

1 , (2.46)

κ2[B
1] = αV T 3 βχB

2 , (2.47)

κ3[B
1] = αV T 3 β(1− 2α)χB

3 , (2.48)

κ4[B
1] = αV T 3 β

[
(1− 3αβ)χB

4 − 3αβ
(χB

3 )
2

χB
2

]
, (2.49)

κ5[B
1] = αV T 3 β(1− 2α)

[
(1− 2αβ)χB

5 − 10αβ
χB
3 χ

B
4

χB
2

]
, (2.50)

κ6[B
1] = αV T 3 β

{
[1− 5αβ(1− αβ)]χB

6 + 45α2β2 (χ
B
3 )

2χB
4

(χB
2 )

2
− 15α2β2 (χ

B
3 )

4

(χB
2 )

3

− 10αβ(1− 2α)2
(χB

4 )
2

χB
2

− 15 αβ(1− 3αβ)
χB
3 χ

B
5

χB
2

}
. (2.51)

These expressions reproduce the results of ref. [1], where the SAM was originally formulated

for the case of a single conserved charge.

2.6.2 Two conserved charges B and Q

In a case of two conserved charges, say baryon number B and electric charge Q, we have

Q̂ = (B,Q) and N = 2. Here we would like to illustrate how the cumulants of baryon

number are affected by the presence of exact conservation of other conserved charges.

First, we note that, following eqs. (2.39), (2.40), and (2.41), the first three cumulants of

baryon number B1 have the same expression in the case of a single charge, i.e. they are

unaffected by the presence of the conserved electric charge Q (or any other additional

exactly conserved quantity).

To evaluate the fourth order cumulant, κ4[B1] [eq. (2.42)], we need to compute the

convolution in the second term of the r.h.s. of eq. (2.42), making use of the inverse matrix

of second order susceptibilities. Appendix B provides the details of this calculation. The

result is

κ4[B
1] = αV T 3 β

[
(1− 3αβ)χB

4 − 3αβ
(χB

3 )
2χQ

2 − 2χBQ
21 χBQ

11 χB
3 + (χBQ

21 )2χB
2

χB
2 χ

Q
2 − (χBQ

11 )2

]
. (2.52)

It is evident from eq. (2.52) that the presence of a conserved electric charge influences

the fourth order baryon number cumulant if there are baryon-electric charge correlations
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Here we only present the explicit expression for κ6[B1] at µ̂ = 0, where all odd-order

susceptibilities vanish and thus simplify the formula considerably:

κ6[B
1]
∣∣
µ̂=0

= αV T 3 β

[
(1− 5αβ(1− αβ))χB

6

+10αβ(1− 2α)2
χB
2 (χ

BQ
31 )2+χB

4 (χ
Q
2 χ

B
4 −2χBQ

11 χBQ
31 )

χB
2 χ

Q
2 − (χBQ

11 )2

]
. (2.56)

2.6.3 Three conserved charges B, Q, and S

Let us consider now three conserved charges: baryon number B, electric charge Q, and

strangeness S. In this case Q̂ = (B,Q, S) and N = 3. The first three cumulants of baryon

number B1 are the same as in the case of a single baryon charge. The fourth cumulant reads

κ4[B
1] = αV T 3 β

[
(1−3αβ)χB

4 − 3αβ

D[χ̂2]

×
{
(χB

3 )
2[χQ

2 χ
S
2 −(χQS

11 )2]+(χBQ
21 )2[χB

2 χ
S
2 −(χBS

11 )2]+(χBS
21 )2[χB

2 χ
Q
2 −(χBQ

11 )2]

−2χB
3 χ

BQ
21 (χS

2χ
BQ
11 −χBS

11 χQS
11 )−2χB

3 χ
BS
21 (χQ

2 χ
BS
11 −χBQ

11 χQS
11 )
}]

. (2.57)

Here D[χ̂2] is the determinant of the matrix of second order susceptibilities:

D[χ̂2] = χB
2 χ

Q
2 χ

S
2 + 2χBQ

11 χBS
11 χQS

11 − χB
2 (χQS

11 )2 − χQ
2 (χBS

11 )2 − χS
2 (χBQ

11 )2. (2.58)

The fourth-order cumulant κ4[B1] is affected by both the baryon-electric charge

and baryon-strangeness correlations. Even the correlation between electric charge and

strangeness does contribute, through a correlator χQS
11 . It is notable that the entire second

term in the r.h.s. of eq. (2.57) vanishes at LHC energies (µ̂ = 0), i.e.

κ4[B
1]|µ̂=0 = αV T 3 β (1− 3αβ)χB

4 . (2.59)

We do not write here the lengthy expressions for κ5[B1] and κ6[B1]. These can be

worked out from eqs. (2.43) and (2.44), if desired. We will only write, for completeness,

the expression for κ6[B1] for µ̂ = 0 (LHC energies), where it is considerably simplified:

κ6[B
1]
∣∣
µ̂=0

= αV T 3 β

[
(1−5αβ(1−αβ))χB

6 − 10αβ(1−2α)2

D[χ̂2]

×
{
(χBS

31 )2[χB
2 χ

Q
2 −(χBQ

11 )2]+(χBQ
31 )2[χB

2 χ
S
2 −(χBS

11 )2]

+(χB
4 )

2[χQ
2 χ

S
2 −(χQS

11 )2]+2χBS
31 χBQ

31 (χBS
11 χBQ

11 −χB
2 χ

QS
11 )

+2χBS
31 χB

4 (χ
QS
11 χBQ

11 −χQ
2 χ

BS
11 )+2χBQ

31 χB
4 (χ

QS
11 χBS

11 −χB
2 χ

BQ
11 )

}]
. (2.60)

2.7 Strongly intensive quantities

Our considerations in the present paper are focused on effects of global conservation of mul-

tiple conserved charges, and how they distort the grand canonical baseline in the measured
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Here we only present the explicit expression for κ6[B1] at µ̂ = 0, where all odd-order

susceptibilities vanish and thus simplify the formula considerably:

κ6[B
1]
∣∣
µ̂=0

= αV T 3 β

[
(1− 5αβ(1− αβ))χB

6

+10αβ(1− 2α)2
χB
2 (χ

BQ
31 )2+χB

4 (χ
Q
2 χ

B
4 −2χBQ

11 χBQ
31 )

χB
2 χ

Q
2 − (χBQ

11 )2

]
. (2.56)

2.6.3 Three conserved charges B, Q, and S

Let us consider now three conserved charges: baryon number B, electric charge Q, and

strangeness S. In this case Q̂ = (B,Q, S) and N = 3. The first three cumulants of baryon

number B1 are the same as in the case of a single baryon charge. The fourth cumulant reads

κ4[B
1] = αV T 3 β

[
(1−3αβ)χB

4 − 3αβ

D[χ̂2]

×
{
(χB

3 )
2[χQ

2 χ
S
2 −(χQS

11 )2]+(χBQ
21 )2[χB

2 χ
S
2 −(χBS

11 )2]+(χBS
21 )2[χB

2 χ
Q
2 −(χBQ

11 )2]

−2χB
3 χ

BQ
21 (χS

2χ
BQ
11 −χBS

11 χQS
11 )−2χB

3 χ
BS
21 (χQ

2 χ
BS
11 −χBQ

11 χQS
11 )
}]

. (2.57)

Here D[χ̂2] is the determinant of the matrix of second order susceptibilities:

D[χ̂2] = χB
2 χ

Q
2 χ

S
2 + 2χBQ

11 χBS
11 χQS

11 − χB
2 (χQS

11 )2 − χQ
2 (χBS

11 )2 − χS
2 (χBQ

11 )2. (2.58)

The fourth-order cumulant κ4[B1] is affected by both the baryon-electric charge

and baryon-strangeness correlations. Even the correlation between electric charge and

strangeness does contribute, through a correlator χQS
11 . It is notable that the entire second

term in the r.h.s. of eq. (2.57) vanishes at LHC energies (µ̂ = 0), i.e.

κ4[B
1]|µ̂=0 = αV T 3 β (1− 3αβ)χB

4 . (2.59)

We do not write here the lengthy expressions for κ5[B1] and κ6[B1]. These can be

worked out from eqs. (2.43) and (2.44), if desired. We will only write, for completeness,

the expression for κ6[B1] for µ̂ = 0 (LHC energies), where it is considerably simplified:

κ6[B
1]
∣∣
µ̂=0

= αV T 3 β

[
(1−5αβ(1−αβ))χB

6 − 10αβ(1−2α)2

D[χ̂2]

×
{
(χBS

31 )2[χB
2 χ

Q
2 −(χBQ

11 )2]+(χBQ
31 )2[χB

2 χ
S
2 −(χBS

11 )2]

+(χB
4 )

2[χQ
2 χ

S
2 −(χQS

11 )2]+2χBS
31 χBQ

31 (χBS
11 χBQ

11 −χB
2 χ

QS
11 )

+2χBS
31 χB

4 (χ
QS
11 χBQ

11 −χQ
2 χ

BS
11 )+2χBQ

31 χB
4 (χ

QS
11 χBS

11 −χB
2 χ

BQ
11 )

}]
. (2.60)

2.7 Strongly intensive quantities

Our considerations in the present paper are focused on effects of global conservation of mul-

tiple conserved charges, and how they distort the grand canonical baseline in the measured
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Figure 3. Dependence of kurtosis cumulant ratios κ4/κ2 of net-baryon (black), net-charge (blue),
and net-strangeness (red) numbers on the acceptance fraction α, as calculated in the hadron reso-
nance gas model using the canonical ensemble Monte Carlo sampler with 108 events (symbols) and
analytically in the framework of the subensemble acceptance method (solid lines). The dashed lines
depict SAM calculations for a single conserved charge [eq. (3.4)]. The Monte Carlo sample is the
same as in figure 1.

between multiple conserved charges on κX4 /κX2 it is instructive to compare the results to

predictions of the SAM for a single conserved charge. The ratio κX4 /κX2 in this case is

obtained by dividing eq. (2.49) by eq. (2.47),

κX4
κX2

= (1− 3αβ)
χX
4

χX
2

− 3αβ

(
χX
3

χX
2

)2

, X ∈ (B,Q, S) , (3.4)

which is depicted in figure 3 by dashed lines. Equation (3.4) deviates from the general

result (3.3) by no more than a few percent, indicating the behavior of kurtosis of a conserved

charge is primarily driven by the exact conservation of that charge, whereas the influence of

exact conservation of other conserved charges is subleading. We also remind the reader that

this influence of other conserved charges vanishes completely at µB = 0 (LHC energies),

where all odd-order susceptibilities is zero. These observations lead us to conclude that

the simplified eq. (3.4) is rather accurate for practical applications, at least for µB !
100MeV (

√
sNN " 40GeV).

3.5 Off-diagonal cumulants involving non-conserved quantities

Next, we switch from cumulants of globally conserved quantities to cumulants involving

quantities that are not globally conserved. This does better reflect the current experimental

reality. To be more specific, we shall consider second order cumulants involving net-proton,

net-kaon, and net-charge numbers. This is in part motivated by recent experimental ef-

forts of the STAR collaboration in measuring these quantities [15]. While the net electric

charge is globally conserved, the net proton and net kaon numbers do fluctuate even in the

full acceptance.

As follows from the results of section 2.8, a correlation of a non-conserved quantity

with a conserved charge is affected by the global conservation laws by the same factor
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Figure 1. Dependence of combinations of second order cumulants of conserved charges on the
acceptance fraction α, as calculated in the hadron resonance gas model using canonical ensemble
Monte Carlo sampler (symbols) and analytically in the framework of the subensemble acceptance
method (lines). The Monte Carlo calculation contains 108 events. Left panel: Diagonal cumulants of
net-baryon (black), net-charge (blue), and net-strangeness (red) numbers scaled by a factor αβV T 3,
yielding the grand-canonical susceptibilities in the SAM [eq. (2.40)]. Here β ≡ 1− α. Right panel:
Off-diagonal to diagonal conserved charge cumulant ratios κBQ

11 /κB
2 (black), κQS

11 /κS
2 (blue), and

κBS
11 /κS

2 (red).

characterizes the asymmetry of a distribution around the mean value. The signs of the

skewness of QCD conserved charges are thought to be sensitive probes of the QCD phase

structure [61]. The SAM predicts that the skewness κX3 /κX2 scaled by (1 − 2α) is inde-

pendent of acceptance and coincides with the skewness χX
3 /χX

2 evaluated in the grand

canonical ensemble.

The left panel of figure 2 depicts the ratios (κX3 /κX2 )/(1 − 2α) for baryon number,

electric charge, and strangeness evaluated using the Monte Carlo event generator. The

Monte Carlo results are consistent with (κX3 /κX2 )/(1 − 2α) being independent on α and

coincide with the grand canonical (χX
3 /χX

2 ) susceptibility ratios.

In addition, the SAM predicts that any ratio of two third order cumulants of conserved

charges is insensitive to global conservation laws. This follows from eq. (2.41). The right

panel of figure 2 depicts the α-dependence of cumulant ratios κB3 /κ
Q
3 , κ

QS
21 /κS3 , and κBS

12 /κS3 ,

as calculated within the Monte Carlo event generator (symbols) and within the SAM using

the grand canonical susceptiblities. The Monte Carlo calculations are consistent with the

α-independence of all these ratios, and in agreement with the grand canonical baseline, as

predicted by the SAM. The statistical errors in the Monte Carlo calculations become large

in the vicinity of α = 1/2, as clearly seen in figure 2. This is a consequence of the fact that

third order cumulants vanish at α = 1/2, as follows from eq. (2.41). A ratio of third order

cumulants in the vicinity of α = 1/2 corresponds to a ratio of two small numbers, hence

the large statistical uncertainties. As a consequence, it would be advisable to perform

experimental analysis of third order cumulants in acceptances away from α = 1/2.
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Figure 1. A subsystem (dashed red rectangle) within
a thermal system (solid black rectangle). The subsystem
can exchange particles (conserved charges), shown by the
circles, with the rest of the system. The filled red circles
in (a) depict the particles within the subsystem, as consid-
ered in the present subensemble acceptance procedure. In
contrast, the filled red circles in (b) highlight the particles
from a typical configuration resulting from the binomial
filter.

between the GCE susceptibilities �B

n
and measured

cumulants of conserved charge n[B] to make it valid
for subsystems that are comparable in size to the
total system. We will still assume that the size of
the subsystem is large enough to capture the relevant
physics. Further assuming strong space-momentum
correlations, as is the case for LHC and top RHIC en-
ergies, the formalism presented here connects the mea-
sured cumulants with those obtained in lattice QCD
over a wide range of acceptance windows.
Formalism. Consider a spatially uniform thermal

system at a fixed temperature T , volume V , and total
net charge, say net baryon number, B, which is de-
scribed by statistical mechanics in the canonical en-
semble and characterized by its canonical partition
function Z(T, V,B). We pick a subsystem of a fixed
volume V1 = ↵V within the whole system, which can
freely exchange the conserved charge B with the rest
of the system (see Fig. 1). Our goal is to evaluate
the cumulants n[B1] of the distribution of charge B1

within the subsystem [the red points in Fig. 1(a)]. Our
considerations will be quite di↵erent from a binomial
filter previously considered in Refs. [10, 12]. The bino-
mial filter corresponds to an independent acceptance
of particles with a probability ↵ from the entire vol-
ume V [the red points in Fig. 1(b)]. The binomial filter
is appropriate for non-interacting systems, e.g. for the
ideal HRG model, where there are no spatial correla-
tions between the particles. Given a finite correlation
length, however, particles will be more strongly corre-

lated with their neighboring particles than with those
far away. The binomial filter artificially suppresses
these correlations and thus will not provide the cor-
rect results for the subvolume V1.

Our arguments will be based purely on statistical
mechanics. Assuming the subvolume V1 as well as the
remaining volume V2 = (1 � ↵)V to be large com-
pared to correlation length ⇠, V1 � ⇠3 and V2 � ⇠3,
the canonical ensemble partition function of the total
system with total baryon number B is given by

Z(T, V,B) =
X

B1

Z(T,↵V,B1)Z(T,�V,B �B1) (2)

Here � ⌘ 1 � ↵. The probability P (B1) to find B1

baryons in the subsystem with volume V1 is propor-
tional to the product of the canonical partition func-
tions of the two subsystems:

P (B1) / Z(T,↵V,B1)Z(T,�V,B �B1). (3)

The procedure based on Eqs. (2) and (3) will be called
the subensemble acceptance procedure. Note that for
the ideal HRG it reduces to the binomial acceptance
sampling1.

In the thermodynamic limit, i.e. for V ! 1,
the above results can be generalized, since in this
case the canonical partition function can be expressed
through the volume-independent free energy density
f : Z(T, V,B) = exp

⇥
�V

T
f(T, ⇢B)

⇤
with ⇢B ⌘ B/V

being the conserved baryon density. To evaluate
n[B1] we introduce the cumulant generating function
GB1(t):

GB1(t) ⌘ lnhet B1i = ln
X

B1

exp(tB1)P (B1)

= ln

(
X

B1

et B1 exp


�↵V

T
f(T, ⇢B1)

�

⇥ exp


��V

T
f(T, ⇢B2)

��
+ C̃. (4)

Here ⇢B2 = B�B1
V�V1

is the charge density in the sec-

ond subsystem and C̃ is an irrelevant normalization

1
Strictly speaking, this is valid for the classical ideal HRG

when quantum statistics e↵ects can be neglected. This is the

case especially for baryons, where, due to their large mass,

corrections to baryon number cumulants arising from Fermi

statistics are small at the chemical freeze-out, T ' 155MeV

and µB ' 0.



V.  Conclusions



Conclusions

➤ Evidence for a light v. strange flavor hierarchy at chemical freeze-out from:

➤ Thermal fits with separate light and strange freeze-out parameters,


➤ Net-K and net-Λ fluctuations yield higher freeze-out temperatures


➤ Many models can now incorporate all BQS conserved charges:

➤ ICCING provides initial densities for all charges


➤ BQS EoS provides strangeness neutrality, matching experimental situation


➤ Charge conservation effects for BQS can now be corrected for any EoS


➤ …more exciting developments out there!
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4.2 Equation of state of QCD at finite chemical potential 61

Fig. 4.1 Left: Continuum extrapolation of the imaginary strangeness chemical potentials that
realize strangeness neutrality (from Ref. [37]). Results are shown as functions of the temperature,
for di�erent values of imaginary µB . Right: landscape of simulation points in the (=(µB ), =(µS ))
plane: the black circle corresponds to=(µB ) = =(µS ) = 0, the blue triangles to simulations at finite
imaginary µS and zero baryon chemical potential, the red squares to simulations at finite imaginary
µB and zero strangeness chemical potential, and the two sets of green triangles correspond to
simulations at finite =(µB ) and =(µS ) that satisfy the experimental constraints corresponding to
two di�erent temperature values.

These fits are shown in the left panel of Fig. 4.2.
More recently, the authors of Ref. [38] have performed a new, combine fit of

lower-order fluctuations up to order four. This exploits the fact that all lower-order
fluctuations share the same set of Taylor coe�cients, which are typically a numerical
factor times the T-dependent higher-order fluctuations at µB = 0. The formulas used
for the combined fit of �1, ... �4 are

�B1 ( µ̂B) = 2c2 µ̂B + 4c4 µ̂
3
B
+ 6c6 µ̂

5
B
+

4!
7!

c4✏1 µ̂
7
B
+

4!
9!

c4✏2 µ̂
9
B

�B2 ( µ̂B) = 2c2 + 12c4 µ̂
2
B
+ 30c6 µ̂

4
B
+

4!
6!

c4✏1 µ̂
6
B
+

4!
8!

c4✏2 µ̂
8
B

�B3 ( µ̂B) = 24c4 µ̂B + 120c6 µ̂
3
B
+

4!
5!

c4✏1 µ̂
5
B
+

4!
7!

c4✏2 µ̂
7
B

�B4 ( µ̂B) = 24c4 + 360c6 µ̂
2
B
+ c4✏1 µ̂

4
B
+

4!
6!

c4✏2 µ̂
6
B

(4.27)

where ✏1 and ✏2 are drawn randomly from a normal distribution with mean -1.25
and variance 2.75. This is done to eliminate the ambiguity coming from the fitting
function and just assumes that 8!c8  4!c4 and 10!c10  4!c4, or equivalently that
�B8  �

B

4 and �B10  �
B

4 .

4.2.3 Results

After the early results for c2, c4 and c6 [16], the first continuum extrapolated results
for c2 were published in Ref. [39]; in Ref. [40] c4 was shown, but only at finite lattice
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Fig. 5.8 Left: From Ref. [31]: Ratio of fourth-to-second order fluctuations of strange (red) vs light
(blue) flavors as functions of the temperature. The dots show the lattice QCD results, while the
lines are the corresponding HRG model curves. Right: from Ref. [32]: ratio of third-to-first order
fluctuations of electric charge. The black dots are the continuum extrapolated lattice QCD results
from Ref. [32], the blue points are the Nt = 8 lattice QCD results from Ref. [36], the dashed line
is the HRG model result, the yellow band is the experimental value for this observable from the
STAR collaboration [37].

Fig. 5.9 From Ref. [32]. Left: Third-to-first order cumulant of baryon number as a function of the
temperature at µB = 0. Right: fourth-to-second order cumulant of baryon number as a function
of the temperature at µB = 0. In both panels, the black points show the continuum extrapolated
result. The dashed line on the right plot is the HRG model prediction.

All non-diagonal BQS correlators up to fourth order were published in Ref. [33] for
Nt = 12 and µB = 0.

In order to compare to the experimental results at RHIC, several diagonal and
o�-diagonal fluctuations were extrapolated to finite chemical potential. Results for
�B1 /�

B

2 as functions of the chemical potential for di�erent values of the temperature
were obtained in Ref. [38]. They are shown in Fig. 5.11; for a comparison of these
results with the experimental data from the STAR collaboration, see Chapter 7.

Due to their divergence at the critical point, higher order baryon number fluctua-
tions are particularly interesting and a lot of activity has been devoted to their extrap-
olation to finite density and their comparison to experimental results. �B3 /�

B

1 and

90 5 Fluctuations of conserved charges

as a function of the temperature is similar, the two curves are shifted in temperature
by about 15 MeV. This observation has triggered some discussion in the community
about the possibility of a flavor hierarchy in the QCD transition, namely di�erent
flavors hadronizing at di�erent temperatures (see the discussion in Section 6.3.2).
The left panel of Figure 5.6 shows the �us11 correlator between the u and s quark
flavors, while the right panel shows a comparison between all di�erent second order
diagonal fluctuations. In Ref. [28], second-order diagonal and non-diagonal BQS

Fig. 5.5 From Ref. [29]. Left: Comparison between the continuum limit of light and strange quark
susceptibilities. Right: ratio �s

2 /�
u
2 as a function of the temperature. The black, solid curve is the

HRG model prediction. The dashed line indicates the ideal gas limit.

Fig. 5.6 From Ref. [29]. Left: Non-diagonal u � s correlator as a function of the temperature. The
red band is the continuum extrapolation, the black curve is the HRG model prediction.The dashed
line indicates the ideal gas limit. Right: comparison between all diagonal susceptibilities, rescaled
by the corresponding ideal gas limit, as functions of the temperature.

correlators were calculated in the continuum limit. The o�-diagonal correlators are
shown in the three top panels of Fig. 5.7. More recently, these o�-diagonal correlators
were calculated in Ref. [30], which presents a detailed comparison to the HRG model
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FIG. 6. ALICE PbPb
√

sNN = 5.02 TeV data for particle yields (left) and ratios (right) in 0 − 10% collisions, in comparison to HRG model
calculations with the PDG2016+ (upper) and QM (lower) lists; deviations in units of experimental errors σ are shown below each panel.

054905-9

STAR Collaboration (Adamczyk, L. et al.) PRL (2014)
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FIG. 11. (Color Online). Collision energy dependence of the
values of M/�2, S�, �2 for �NK multiplicity distributions
from 0-5% most central and 70-80% peripheral collisions in
Au+Au collisions at

p
sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4

and 200 GeV. The error bars are statistical uncertainties and
the caps represent systematic uncertainties. The expectations
from Poisson and NBD and the results of the UrQMD model
calculations are all from the 0-5% centrality.

for net-baryon) [29] and net-charge [30] fluctuations in
Au+Au collisions from the first phase of the beam en-
ergy scan at RHIC. In this paper, we present the first
measurements of the moments of net-kaon (proxy for net-
strangeness) multiplicity distributions in Au+Au colli-
sions from

p
sNN = 7.7 to 200 GeV. The measured M/�2

values decrease monotonically with increasing collision
energy. The Poisson baseline for C1/C2 slightly under-
estimates the data. No significant collision centrality de-
pendence is observed for both S� and �2 at all energies.
For C3/C2 (=S�), the Poisson and NBD expectations are
lower than the measured S� values at low collision en-
ergies. The measured values for C4/C2 (=�2) are con-
sistent with both the Poisson and NBD baselines within
uncertainties. UrQMD calculations for S� and �2 are
consistent with data for the most central 0-5% Au+Au
collisions. Within current uncertainties, the net-kaon cu-
mulant ratios appear to be monotonic as a function of
collision energy. The moments of net-kaon multiplicity
distributions presented here can be used to extract freeze-
out conditions in heavy-ion collisions by comparing to
Lattice QCD calculations. Future high statistics mea-
surements with improved e�ciency correction method
will be made for fluctuation studies in the second phase
of the RHIC Beam Energy Scan during 2019-2020.
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Szabó, Nature 443, 675 (2006).
[4] M. Stephanov, Int. J. Mod. Phys. A 20, 4387 (2005).
[5] R. V. Gavai, Contemporary Physics 57, 350 (2016).
[6] M. A. Stephanov, Phys. Rev. Lett. 102, 032301 (2009).
[7] M. A. Stephanov, Phys. Rev. Lett. 107, 052301 (2011).

[8] S. Gupta, X. Luo, B. Mohanty, H. G. Ritter, and N. Xu,
Science 332, 1525 (2011).

[9] R. V. Gavai and S. Gupta, Phys. Rev. D 78, 114503
(2008).

[10] M. Cheng et al., Phys. Rev. D 79, 074505 (2009).
[11] A. Bazavov et al, Phys. Rev. D 86, 034509 (2012).
[12] A. Bazavov et al, Phys. Rev. Lett. 109, 192302 (2012).
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C̃Net-NΛΞΩ;pπ
BB;QQ ¼ ðσ2Net-N þ σ2Λ þ σ2Ξ þ σ2ΩÞ=ðσ2p þ 2σpπ þ σ2πÞ:

ð41Þ

These last two proxies are also shown in Fig 15 as an
orange dashed-dotted and as a yellow-double-dotted line,
respectively. We see that both compare relatively well with
the total contribution, with the latter being the better one. It
is quite interesting how difficult it was to construct a
suitable proxy for light-quark-dominated observables, in
comparison to the previous cases of χBS11 and χQS

11 . This is
mainly due to the fact that (i) net charge is such a good
proxy for χQ2 that is hard to match for other correlators, and
(ii) isospin randomization prevents one from building
proxies with fluctuations of net proton only.
We have seen in this section how to construct good

proxies for ratios including both diagonal and cross-
correlators of conserved charges. The proxies including
strangeness make use of only a couple of hadronic
observables, namely the variances σ2K and σ2Λ, more

precisely, only their ratio. It is also remarkable how the
addition of multistrange baryons to the proxy for χBS11 =χ

S
2 is

not necessary, as it does not improve the existing agree-
ment. We also saw that for light-quark-dominated observ-
ables, isospin randomization modifies the correlators of net
proton, net pion and net neutron, preventing the construc-
tion of useful proxies for such observables.

VI. FINITE CHEMICAL POTENTIAL AND
KINEMATIC CUTS

Since experimental measurements for moments of net-
particle distributions are currently available both from the
LHC and RHIC, it is interesting to analyze the behavior
of the quantities we are studying also at finite values of
the baryon chemical potential. In the left panel of
Fig. 16, we show the behavior of the proxies along para-
metrized chemical freeze-out lines—shifted in T from the
parametrization in [81]—with T intersects at T0 ¼
145; 165 MeV, so to “bracket” the crossover region of
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FIG. 16. Behavior of the ratios −χBS11 =χS2 and χQS
11 =χ

S
2 along parametrized chemical freeze-out lines with T0 ¼ 145 MeV and

T0 ¼ 165 MeV. For a comparison we also show the diagonal χB2 =χ
Q
2 in the third row. For each ratio, the best proposed proxy is shown as

well, for both temperatures: C̃Λ;ΛK
BS;SS for −χBS11 =χS2, C̃

K;ΛK
QS;QQ for χQS

11 =χ
S
2 and C̃

NΛΞΩ;pπ
BB;QQ for χB2 =χ

Q
2 . In the left panel, we show the results in the

case without kinematic cuts: the total contribution is shown with black and burgundy solid lines for T0 ¼ 145 MeV and T0 ¼ 165 MeV,
respectively; the proxy is shown with a yellow dashed-double-dotted and orange dashed-dotted line for T0 ¼ 145 MeV and
T0 ¼ 165 MeV. In the central panel, we show the results in the case with the “mock” cuts discussed in the text: in this case the proxy is
shown with a cyan dashed and purple dotted line for T0 ¼ 145 MeV and T0 ¼ 165 MeV. Finally, in the right panel we compare the
behavior of the proxies with and without the introduction of cuts, and keep the same color code as from the right and central panel.
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model results, continuum extrapolated lattice results are
shown as magenta points as introduced in Sec. II.
We notice that both the BQ and QS correlators are

largely reproduced by the measured contribution (for the
BQ correlator, the measured portion even exceeds the full
one, as the nonmeasured contribution is negative), while
the BS correlator is roughly split in half between measured
and nonmeasured terms. This is because the former are
unsurprisingly dominated by the net-proton and net-kaon
contributions, respectively, which in this temperature
regime form the bulk of particle production, together with
the pions. The BS correlator conversely receives its main
contributions from strange baryons, which are almost
equally split between measured and nonmeasured.

B. Breakdown of the measured and
nonmeasured contributions

The decomposition in Eq. (26) allows one to break down
the different contributions to any cross correlator, as well as
the diagonal ones, entirely. In Figs. 9 and 10, we show the
breakdown of the measured portion of the single final state
hadronic (self-) correlations to the nondiagonal and diago-
nal correlators, respectively. Let us start from the non-
diagonal case.
A few features can be readily noticed. First, in all cases

only a handful of the most sizable contributions account for
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FIG. 9. Breakdown of the different final state hadronic con-
tributions to the cross-correlators of the conserved charges B, Q,
S at second order. The total contribution and the measured part
are shown as solid black and dashed-dotted blue lines, respec-
tively. The main single contributions from measured hadronic
observables are shown with different colored dashed and dashed-
dotted lines.
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initial condition generally in the region where T & 400
MeV. We find that the resulting strange quark geome-
tries are much more eccentric than the bulk, and the
eccentricities of the S+ and S� distributions can di↵er
significantly from each other on an event-by-event ba-
sis. Additionally, we find that both baryon number and
electric charge experience small but finite fluctuations in
their net eccentricities on an event by event basis, which
can provide an important QCD contribution to measure-
ments of charge splitting [24–26].

FIG. 2. Quark/gluon multiplicity ratios, normalized by the
coupling ↵s, as a function of the target saturation scale Qs for
various quark flavors. Here we use the McLerran-Venugopalan
model [43, 44] with cuto↵ ⇤/m = 0.0241.

FIG. 3. Di↵erential qq̄ splitting probability as a function of
the distance r between them for the McLerran-Venugopalan
(MV) model [43, 44]. In this plot we use the down quark mass
m = 4.8 MeV, representative values of the quark momentum
fraction ↵ = 0.3 and saturation scale Qs = 1.5 GeV, and the
cuto↵ in the MV model has been taken to be ⇤ = 1.2 MeV.

The ICCING Algorithm The model we have con-
structed, denoted “Initial Conserved Charges in Nuclear
Geometry (ICCING),” performs a sampling over an ini-
tial energy density profile ✏(~xT ) using the g ! qq̄ split-
ting functions calculated from theory to construct the

corresponding sea quark distributions in the initial state.
The details of this model and its parameters are ex-
plained in the accompanying paper [45]. The theoretical
ingredients used in the model are based on the calcula-
tions of [41] within the color glass condensate framework,
resulting in the distributions shown in Figs. 2 and 3 for
representative model parameters. The chemistry ratios
shown in Fig. 2 specify the overall probabilities to pro-
duce qq̄ pairs of di↵erent flavors at a given point in the
transverse plane based on the saturation scale Qs(~xT ),
and the probability distribution shown in Fig. 3 specifies
the qq̄ distance. By performing Monte Carlo sampling
of these two distributions, we take an arbitrary input en-
ergy density ✏(~xT ) of gluons and sample it to supplement
the gluon density with the accompanying distribution of
quarks and antiquarks, as depicted in the flow chart of
Fig. 4.

FIG. 4. Flow chart of the ICCING sampling algorithm.

The result is a new distribution of conserved charge
densities – baryon number B, strangeness S, and electric
charge Q – along with a slightly modified energy density
profile. To demonstrate this e↵ect we use initial energy
densities derived from Trento [46] for PbPb collisions at
5.02 TeV. An example of an event after the sampling al-
gorithm has completed is shown in Fig. 1. The resulting
picture is that, while the net total of B, S, and Q is zero
in the initial conditions at top collider energies, there are
significant spatial fluctuations of those charge densities
about zero. These distributions couple to the event ge-
ometry in a manner which depends on the quark flavor
through its mass in two ways. The first is through the
spatial variation of the chemistry ratios in Fig. 2 with
the saturation scale Qs(~xT ); the second is through the
mass threshold 2m needed to produce a quark pair of a
given flavor. The consequence of this spatial dependence
is clearly visible by eye from the event shown in Fig. 1:
the distributions of B and Q closely track the bulk ge-
ometry of the energy density, while the distribution of


