PHENIX Cold QCD Highlights

Milap Patel, for the PHENIX Collaboration

RHIC/AGS Annual User’s Meeting
October 22, 2020
Polarized DIS discovered the proton spin crisis: quarks only carry small fraction of spin

\[
\frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L_q + L_g
\]

Gluons poorly constrained by DIS (indirect access via scaling violation)

\(p+p\) provides direct access to gluons
RHIC Spin Program

- What is the gluon contribution to the proton spin?
- What do transverse spin phenomena teach us about proton structure?

arXiv: 1501.01220
PHENIX Experiment

- Central Arms ($|\eta| < 0.35$)
 - Tracking: DC and PC
 - EM Calorimeter

- Forward Arms
 - Muon arms ($1.2 < |\eta| < 2.4$)
 - Zero Degree Calorimeter (ZDC)
Access to Gluons

At RHIC kinematics, the qq and qg LO processes dominate.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Dom. partonic process</th>
<th>probes</th>
<th>LO Feynman diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p\bar{p} \rightarrow \pi + X$</td>
<td>$\bar{g}g \rightarrow gg$</td>
<td>Δg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\bar{q}\bar{q} \rightarrow gg$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p\bar{p} \rightarrow \text{jet(s)} + X$</td>
<td>$\bar{g}g \rightarrow gg$</td>
<td>Δg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\bar{q}\bar{q} \rightarrow gg$</td>
<td>(as above)</td>
<td></td>
</tr>
<tr>
<td>$p\bar{p} \rightarrow \gamma + X$</td>
<td>$\bar{q}g \rightarrow \gamma q$</td>
<td>Δg</td>
<td></td>
</tr>
<tr>
<td>$p\bar{p} \rightarrow \gamma + \text{jet} + X$</td>
<td>$\bar{q}g \rightarrow \gamma q$</td>
<td>Δg</td>
<td></td>
</tr>
<tr>
<td>$p\bar{p} \rightarrow \gamma\gamma + X$</td>
<td>$\bar{q}\bar{q} \rightarrow \gamma\gamma$</td>
<td>$\Delta q, \Delta\bar{q}$</td>
<td></td>
</tr>
<tr>
<td>$p\bar{p} \rightarrow D X, B X$</td>
<td>$\bar{g}g \rightarrow c\bar{c}, b\bar{b}$</td>
<td>Δg</td>
<td></td>
</tr>
</tbody>
</table>
Gluon Spin

- Gluon helicity distribution function $\Delta g(x)$ is measured to find ΔG, the gluon spin contribution.

$$\Delta G \equiv \int_0^1 \Delta g(x) \, dx$$

- The $\Delta g(x)$ is found via the longitudinal double spin asymmetry, A_{LL}

$$A_{LL} \equiv \frac{\sigma^{++} - \sigma^{+-}}{\sigma^{++} + \sigma^{+-}}$$

Polarized PDFs

Parton-level hard scattering cross section calculable in pQCD

Unpolarized PDFs

Fragmentation functions from e+e- scattering
Gluon Spin

\[\int_{0.05}^{1} dx \Delta g(x) = 0.2^{+0.06}_{-0.07} (Q^2 = 10 \text{GeV}^2) \]
Gluon Spin III

- 510 GeV data confirmed non-zero gluon spin
- Extended x down to $\sim 10^{-2}$
Charged Pion A_{LL} at 510 GeV

- First PHENIX measurement at 510 GeV
- Consistent with DSSV global fits within statistical uncertainty

Charged pions potential indicator for sign of Δg via
pton A_{LL} ordering

Phys. Rev. D 102, 032001 (2020)
Direct Photon A_{LL} at 510 GeV

- First PHENIX direct photon cross section and A_{LL} at 510 GeV
- “Golden” channel to access gluon polarization since hard interaction is mostly q-g

![Graph showing isolated direct photon A_{LL} at 510 GeV, $|\eta| < 0.25$ with data and theory curves, along with a graph depicting the isolation cut condition and a comparison between NLO pQCD (by JETPHOX) and CT14 PDF & BFGII predictions.]
Jet A_{LL} at 510 GeV

- Jets present a challenge in PHENIX due to limited acceptance
- Jes reconstructed with anti-k_T $R(\Delta \eta, \Delta \phi) = 0.3$
- Unfolded to correct for underlying event and detector effects
 - Use Pythia simulations to generate response matrix which correlates true and reconstructed jets
Jet A_{LL} at 510 GeV II

- First jet A_{LL} at PHENIX
- Cross section below NLO prediction
 - Similar to LHC finding for small R
Transverse Spin

- Prediction of small asymmetry (PRL 41 1689 (1978))
- Found surprisingly large TSSA observed (FNAL E704)
- Asymmetry survive at higher energy at various collision energies

Transverse single spin asymmetry (TSSA)

\[A_N = \frac{\sigma^\uparrow - \sigma^\downarrow}{\sigma^\uparrow + \sigma^\downarrow} \]
Origin of TSSAs

- Transverse momentum dependent (TMD) distributions and fragmentations
 - Sivers effect (initial state): correlation between nucleon spin and parton momentum
 - Collins effect (final state): correlation between fragmenting parton and hadron transverse momentum
- Multi-parton correlation in collinear framework
 - Initial state or in fragmentation process
 - SSA appears as twist-3 observable
η and π⁰ A_N at 200 GeV

- Sensitive to both initial and final state effects
- Mid-rapidity sensitive to gluon spin-momentum correlations
- New data significantly improves precision
- Asymmetries consistent with zero
Direct Photon A_N at 200 GeV

- Sensitive to initial state effects
- Production dominated by $q+g \rightarrow q+\gamma$
- First measurement at PHENIX
 - Help constrain theory models
Neutron A_N at 200 GeV

- Forward measurement using ZDC
- Unfolded using different functional forms
- Improve understanding of forward neutron SSA
Summary

- PHENIX spin program continues to elucidate our understanding of QCD

- Results:
 - Longitudinal spin analyses:
 - Jet, direct photon, charged pion A_{LL}
 - Transverse spin analyses:
 - Direct photon, π^0 and η, and neutron A_N

- Still more to come in the future!
Future Spin Program

- sPHENIX cold QCD program: arXiv: 1602.03922
 - Improved acceptance and detectors
 - Precision measurement of jets, DY, and more!

- Electron Ion Collider (EIC)
- Polarized eN, eA collider
 - Many complementary processes
- Wide kinematic range (x, Q^2)