Transverse single-spin asymmetry for very forward π^0 production in $p^\uparrow + p$ collisions at $\sqrt{s} = 510$ GeV

Minho Kim (Korea Univ./ RIKEN) on behalf of the RHICf collaboration
Transverse single spin asymmetry (A_N)

- In polarized $p + p$ collision, A_N is defined as a left-right cross section asymmetry of a specific particle.

- Though the non-zero A_N of π^0 has been intensively studied for longer than 30 years, the origin of it is still open question.
A_N in forward π^0 production

- Observed non-zero A_N of π^0 ever has been interpreted based on only perturbative picture theoretically.

- Non-zero A_N comes from an asymmetry of the partonic-level fragmentation process or spin-dependent quark-gluon correlations in the proton.
New question to the A_N of forward π^0

Larger A_N was observed by more isolated π^0 than less isolated one.

Non-perturbative process may have a finite contribution to the $\pi^0 A_N$ as well as perturbative one.
No detailed measurement ever for the p_T range below 1 GeV/c.

In June, 2017, RHICf experiment measured the A_N of very forward π^0 ($6 < \eta$ and $p_T < 1$ GeV/c) where the non-perturbative process is expected to be dominant.
RHIC forward (RHICf) experiment

- 18 m away from IP.
- $0.2 < x_F < 1.0$.
- $0.0 < p_T < 1.0$ GeV/c.

Large tower
Small tower

40 mm
20 mm

With three Det. positions
0-degree position

RHICf detector

DX dipole magnet

ZDC

Intersection point

24 mm
RHICf detector & π^0 measurement

Small tower: 20/20 mm
Large tower: 40/40 mm
17 tungsten absorbers
(44 X_0, 1.6 λ_{int})
16 GSO plates for energy measurement
4 GSO bar layers for position measurement

Type-I π^0 trigger

dE > 45 MeV AND
RHICf detector & π^0 measurement

Small tower: 20/20 mm
Large tower: 40/40 mm
17 tungsten absorbers (44 X_0, 1.6 λ_{int})
16 GSO plates for energy measurement
4 GSO bar layers for position measurement

Type-II π^0

High EM trigger

π^0 γ γ γ

$dE > 500$ MeV OR \cdots
Operation summary

- Total 110 M events were accumulated for neutral particles (neutron, π^0, and single photon) during 4 fills (28 hours).

- 90°-rotated radial polarization.

- Higher $\beta^* = 8$ m and lower luminosity = 10^{31} cm$^{-2}$s$^{-1}$ than usual.
Position reconstruction of photon

- If a photon hit a tower,\(\gamma \) (x, y)
- Positions of decayed photons are measured by 1 mm dimension GSO bars.
Energy reconstruction of photon

- If a photon hit a tower,

\[\gamma(x, y) \]

Cor. 1

\[\frac{dE(x,y)}{dE_{\text{center}}} \]

Simulation

Cor. 2

\[\frac{dE_{\text{center}}}{\text{Sum}dE} \]

Cor. 1

\[\frac{E_{\gamma}}{\text{Sum}dE} \]

Cor. 2

\[dE(x, y) \]

Simulation

\[dE_{\text{center}} \]

\[\text{Sum}dE \]

\[E_{\gamma} \]
Invariant mass of two photons

- Data is well matched with simulation showing clear π^0 peak around 135 MeV/c2 with \sim8 MeV/c2 peak width.

- Invariant mass was fitted by polynomial function for background and Gaussian one for π^0.
π^0 kinematics & A_N calculation

- Very forward π^0 over the x_F range of $0.2 < x_F < 1.0$ and p_T range of $0.0 < p_T < 1.0$ GeV/c was measured.

- Systematic uncertainties by polarization, background A_N subtraction, and beam center were included.

\[
A_N = \frac{1}{P \cdot D_\Phi} \left(\frac{N^\uparrow - RN^\downarrow}{N^\uparrow + RN^\downarrow} \right)
\]

- P: Polarization
- D_Φ: Dilution factor
- R: Relative luminosity
Very forward $\pi^0 A_N$ as a function of x_F

- The higher p_T range the A_N is measured in, the more clearly it increases as a function of x_F.

- Note that x_F resolutions of the RHICf detector are much finer than x_F binning.
Comparison with previous measurements

There can be perturbative contribution even in lower p_T area?

The origin of the x_F scaling is non-perturbative process?

We need to explore what makes the non-zero A_N in more direct way.
Non-zero A_N was observed even in very forward π^0 showing clear increasing tendency as a function of p_T.

Note that p_T resolutions of the RHICf detector are also much finer than the p_T binning.
Comparison with previous measurements

What’s the real origin of the non-zero A_N of π^0?

How competitively each perturbative and non-perturbative process contribute to the $\pi^0 A_N$ will be answered by combined analysis with STAR and follow-up experiments in near future.
The very forward neutron A_N is also being analyzed.

The ongoing analysis shows the data is well matched with the previous measurements \(\rightarrow\) will be extended to the higher p_T.

\(\sim 1.2\)
RHICf experiment measured the A_N of very forward ($6 < \eta$) neutral particles (neutron, π^0, single γ).

Large non-zero A_N was also observed in the kinematic range where the non-perturbative process is expected to be dominant.

More detailed analysis with STAR detectors and follow-up experiment will provide a hint for the origin of the $\pi^0 A_N$.

Result of the very forward neutron A_N will be also released soon.
Backup
Contents..
New question to the A_N of forward π^0

Smaller A_N was observed with increasing multiplicity of photons (closer to hard scattering event topology).

RHICf experiment was successfully operated in June 2017.

Total 110 M events were accumulated for neutral particles (neutron, π^0, and single photon) during 28 hours.

Radial polarization.

Higher β^*: 8 m and lower luminosity: 10^{31} cm$^{-2}$s$^{-1}$ than usual.
Shower trigger: Energy deposits of three successive layers at large or small tower are larger than 45 MeV. (for neutron and single photon)

High EM trigger: Energy deposit of 4th layer at large or small tower is larger than 500 MeV. (for high energy photon and Type-II π^0)

Type-I π^0 trigger: Energy deposits of three forward (up to 7th) successive layers at large and small tower are larger than 45 MeV. (for Type-I π^0)
Beam center calculation (by neutron)

- Neutrons were used for beam center calculation.
- Square root formula shows good agreement with luminosity one.
L90 represents the longitudinal depth where the energy deposit reaches 90% of total energy deposit.

Gamma events can be distinguished from neutron ones using that EM shower develops more rapidly than hadronic one.
A_N calculation

\[
A_N = \frac{1}{P \epsilon} \frac{N^{\uparrow} - RN^{\downarrow}}{N^{\uparrow} + RN^{\downarrow}}
\]

- $P \ (\sim 0.55 \pm 0.05)$ can be calculated by polarization monitor.
- $R \ (\sim 0.970 \pm 0.02)$ is estimated by luminosity ratio of charged particles near IP.
- $\epsilon \ (\sim 0.95 \pm 0.05)$ can be studied by comparing actual and diluted A_N in simulation.
Background A_N subtraction

Background A_Ns are all consistent with zero.

Difference between the A_N with and without the π^0 tail was considered as a systematic uncertainty. Should be overestimated due to the π^0 tail.
Using other STAR detectors, event type dependence for the A_N can be studied.

A follow-up experiment will be proposed to practically compare the each contribution from partonic and diffractive process.