The future Cold QCD program with the sPHENIX detector

Desmond Shangase (University of Michigan) on behalf of the sPHENIX Collaboration
RHIC/AGS Annual Users Meeting - October 22nd 2020
Contents

- sPHENIX Detector Design + Run
- Cold QCD Measurements
 - Transverse Spin Measurements
 - Unpolarized Measurements
sPHENIX Detector

- Full azimuthal detector (Central Barrel)
- Data collection expected to begin 2023
- Cold QCD Physics Program
 - Parton Dynamics (TMD PDFs)
 - Proton/Nuclear Structure (PDFs)
 - Hadronization + Jet Substructure (FFs, \hat{q}, etc.)
sPHENIX Detector

- Full azimuthal detector (Central Barrel)
- Data collection expected to begin 2023
- Cold QCD Physics Program
 - Parton Dynamics (TMD PDFs)
 - Proton/Nuclear Structure (PDFs)
 - Hadronization + Jet Substructure (FFs, \hat{q}, etc.)

| Year | Species | $\sqrt{s_{NN}}$ [GeV] | Cryo Weeks | Physics Weeks | Rec. Lum. $|z| < 10$ cm | Samp. Lum. $|z| < 10$ cm |
|--------|---------|------------------------|------------|---------------|------------------------|------------------------|
| 2023 | Au+Au | 200 | 24 (28) | 9 (13) | 3.7 (5.7) nb$^{-1}$ | 4.5 (6.9) nb$^{-1}$ |
| 2024 | p^+p^-| 200 | 24 (28) | 12 (16) | 0.3 (0.4) pb$^{-1}$ [5 kHz] | 4.5 (6.2) pb$^{-1}$ [10%-str] |
| 2024 | p^+Au | 200 | - | 5 | 0.003 pb$^{-1}$ [5 kHz] | 0.01 pb$^{-1}$ [10%-str] |
| 2025 | Au+Au | 200 | 24 (28) | 20.5 (24.5) | 13 (15) nb$^{-1}$ | 21 (25) nb$^{-1}$ |
Full azimuthal detector (Central Barrel)

Data collection expected to begin 2023

Cold QCD Physics Program
- Parton Dynamics (TMD PDFs)
- Proton/Nuclear Structure (PDFs)
- Hadronization + Jet Substructure (FFs, \hat{q}, etc.)
Tamamushi, S. (2017)

- Full azimuthal detector (Central Barrel)
- Data collection expected to begin 2023
- Cold QCD Physics Program
 - Parton Dynamics (TMD PDFs)
 - Proton/Nuclear Structure (PDFs)
 - Hadronization + Jet Substructure (FFs, \hat{q}, etc.)

sPHENIX Detector
Tamamushi, S. (2017)

- Full azimuthal detector (Central Barrel)
- Data collection expected to begin 2023
- Cold QCD Physics Program
 - Parton Dynamics (TMD PDFs)
 - Proton/Nuclear Structure (PDFs)
 - Hadronization + Jet Substructure (FFs, \hat{q}, etc.)

sPHENIX Detector
Transverse Spin Measurements in $p^\uparrow + p^{(\uparrow)}$ and $p^\uparrow + \text{Au}$
Sivers Transverse Momentum Dependent PDF

- $f_{1T}^{±}$ = distribution of parton transverse momentum in a transversely polarized proton
 - Can be measured in p+p(Au) systems via jet and photon channels
 - Choice of channel determines sensitivity to particular parton species

- Connected to twist-3 framework
 - Twist-2 \rightarrow traditional PDF/FFs (one incident parton – one fragmenting parton)
 - Twist-3 \rightarrow introduce gluon interaction with incident or fragmenting parton (one incident parton + g – one fragmenting parton | one incident parton – one fragmenting parton + g)
 - E.g. trigluon correlations

Phys. Rev. D 78, 114013
Gluon Dynamics via Transverse Single Spin Asymmetry A_N

Direct Photon Asymmetry

- Will be used to constrain twist-3 trigluon correlator in transversely polarized protons
 - Related to f_{1T}^\perp of gluons in the proton
- Insensitive to hadronization effects at LO

\[A_N(\phi_q) = \frac{1}{P} \frac{Y^\uparrow - R \cdot Y^\downarrow}{Y^\uparrow + R \cdot Y^\downarrow} = \frac{1}{P} \frac{L(\sigma^\uparrow(\phi_q) - R \cdot \sigma^\downarrow(\phi_q))}{L(\sigma^\uparrow(\phi_q) + R \cdot \sigma^\downarrow(\phi_q))} \]

\[\text{Phys. Rev. C 92, 014907}\]
Heavy Flavor Asymmetry

- Will be used to constrain twist-3 trigluon correlator in transversely polarized protons
 - Related to f_{1T} of gluons in the proton
- Insensitive to hadronization effects at LO
- $A_N(\phi_q) = \frac{1}{P} \frac{Y^\uparrow - R \cdot Y^\downarrow}{Y^\uparrow + R \cdot Y^\downarrow} = \frac{1}{P} \frac{L(\sigma^\uparrow(\phi_q) - R \cdot \sigma^\downarrow(\phi_q))}{L(\sigma^\uparrow(\phi_q) + R \cdot \sigma^\downarrow(\phi_q))}$
- Possible due to sPHENIX streaming DAQ
 - 10% of collisions will be recorded in this triggerless configuration
Gluon Dynamics via Transverse Single Spin Asymmetry A_N

Gamma-jet Asymmetry

- Gluon-induced Compton scattering
 - Constrain gluon p_T distribution in polarized proton
 - sPHENIX is designed to be a jet detector due to the relevance of this and similar channels to heavy-ion physics

![Graph showing A_N vs. y_{jet} with different M_{jet} ranges and colored markers representing different energy thresholds.](image-url)
Parton Dynamics via A_N

Gamma-jet Asymmetry

- Gluon-induced Compton scattering
 - Constrain gluon p_T distribution in polarized proton
- $sPHENIX$ is designed to be a jet detector due to the relevance of these channels to heavy-ion physics

Dijet Asymmetry

- Sensitive to gluon and light quark Sivers TMD PDFs
- Charge-tagging for flavor-dependent Sivers asymmetry measurement
Parton Dynamics via A_N

Gamma-jet Asymmetry

- Gluon-induced Compton scattering
 - Constrain gluon p_T distribution in polarized proton
 - sPHENIX is designed to be a jet detector due to the relevance of these channels to heavy-ion physics

Dijet Asymmetry

- Sensitive to gluon and light quark Sivers TMD PDFs
- Charge-tagging for flavor-dependent Sivers asymmetry measurement

Parton Dynamics via A_N

Gamma-jet Asymmetry

- Gluon-induced Compton scattering
 - Constrain gluon p_T distribution in polarized proton
 - sPHENIX is designed to be a jet detector due to the relevance of these channels to heavy-ion physics

Dijet Asymmetry

- Sensitive to gluon and light quark Sivers TMD PDFs
- Charge-tagging for flavor-dependent Sivers asymmetry measurement

Both channels constrain LO parton kinematics

Nuclear Effects in A_N

Charged hadron Asymmetry

- Noticeable A_N suppression in pA collisions
 - At forward pseudorapidity and intermediate x_F
 - Currently no consensus on this behavior

Charged hadron Asymmetry

- Noticeable A_N suppression in pA collisions
 - At forward pseudorapidity and intermediate x_F
 - Currently no consensus on this behavior

- sPHENIX to improve statistics in this region of x_F
 - Specifically for $p^{↑}+p^{↑}$ and $p^{↑}+Au$ data points
 - Finer binning is expected
Unpolarized Measurements in $p+p$ and $p+Au$
Nuclear Effects in Hadronization

- Due to sPHENIX Central Barrel and Vertex Detector
 - Direct photons and charged hadrons up to ~45 GeV
 - Jets up to ~70 GeV
- Nuclear modification of hadron-in-jet distributions planned

sPH-TRG-2020-001
Nuclear Effects in Hadronization

- Due to sPHENIX Central Barrel and Vertex Detector
 - Direct photons and charged hadrons up to ~45 GeV
 - Jets up to ~70 GeV
- Nuclear modification of hadron-in-jet distributions planned
 - w.r.t. z, j_T, r, etc.

\[
z = \frac{p_j \cdot p_h}{|p_j|^2} \quad j_T = \frac{|p_j \times p_h|}{|p_j|} \quad r = \sqrt{(\phi_h - \phi_j)^2 + (y_h - y_j)^2}
\]
Nuclear Effects in Hadronization

- Due to sPHENIX Central Barrel and Vertex Detector
 - Direct photons and charged hadrons up to ~45 GeV
 - Jets up to ~70 GeV

- Nuclear modification of hadron-in-jet distributions planned
 - w.r.t. \(z, j_T, r \), etc.

- Similarly, can measure transport coefficient for gamma-jet systems
 - \(\langle \hat{q}L \rangle / 2 \equiv \langle p_{\text{out}}^2 \rangle_{pA} - \langle p_{\text{out}}^2 \rangle_{pp} \)

Nuclear Effects in Hadronization

- Due to sPHENIX Central Barrel and Vertex Detector
 - Direct photons and charged hadrons up to ~ 45 GeV
 - Jets up to ~ 70 GeV
- Nuclear modification of hadron-in-jet distributions planned
 - w.r.t. z, j_T, r, etc.
- Similarly, can measure transport coefficient for gamma-jet systems
 - $\langle \hat{q}L \rangle / 2 \approx \langle p_{\text{out}}^2 \rangle_{pA} - \langle p_{\text{out}}^2 \rangle_{pp}$

Constraining nPDFs

- nPDFs unconstrained at low Q^2

Phys. Rev. D 100, 014004
Constraining nPDFs

- nPDFs unconstrained at low Q^2
- Measurement of nuclear modifications can be used to constrain existing nPDFs
- Channels expected for simultaneous analysis
 - Drell-Yan
 - Dijet
 - Photon-jet

Phys. Rev. D 100, 014004
Constraining nPDFs

- nPDFs unconstrained at low Q^2
- Measurement of nuclear modifications can be used to constrain existing nPDFs
- Channels expected for simultaneous analysis
 - Drell-Yan
 - Dijet
 - Photon-jet
- Expecting improved uncertainties in gluon and antiquark nPDFs with this method
 - Particularly in shadowing region

Uncertainties from constraining EPPS16 nPDFs with sPHENIX Central Barrel ("CB") measurements
Further Prospects

- Sivers via inclusive jet A_N
 - Uncertainty expected on the order of 10^{-4}
 - Complementary study to be done at EIC

- Collins Fragmentation Function
 - H_1^\perp = distribution of in-jet hadron transverse momentum produced by a polarized quark
 - Provides us much needed access to transversity in protons
 - h_1 = parton transverse spin polarization in a transversely polarized proton

- Interference Fragmentation Function
 - Coupling between transversity and dihadron hadronization
 - Measured via dihadron angular distributions
Summary

- sPHENIX is actively constructing a cold QCD program that will provide much needed constraints and measurements for parton dynamics and cold nuclear effects during our 2024 $p^\uparrow + p(\uparrow)$ and $p^\uparrow + Au$ runs

- Transverse spin dependent observables grant us access to
 - Gluon dynamics via photon, photon-jet (new), heavy flavor, and dijet asymmetries
 - Quark dynamics via charge-tagging in dijet channel
 - A_N nuclear and pseudorapidity dependencies via inclusive hadron measurements

- Spin-independent measurements at sPHENIX will contribute to understanding of transport coefficients as well as the nuclear modification of
 - Direct photons, charged hadrons, and inclusive jet production
 - Heavy flavor distributions in jets
 - Gluon and antiquark PDFs via Drell-Yan, dijet, and photon-jet channels in p+Au

Additional Collaborators Welcome!
Backup
p_{out} Distribution
Compton Scattering Dominance