Energy loss beyond multiple soft or single hard approximations

Liliana Apolinário

based on
JHEP 07 (2020) 114

in collaboration with
C. Andrés and F. Dominguez

2020 RHIC/AGS Annual Users Meeting

Thursday, Oct 22nd
Jets in medium

- Several medium-induced effects will change a “pp jet” into a “PbPb jet”
Jets in medium

- Several medium-induced effects will change a “pp jet” into a “PbPb jet”

- Medium-induced energy loss

- Collisional energy loss

- Re-scattering

- Fast evolving medium
Jets in medium

- Several medium-induced effects will change a “pp jet” into a “PbPb jet”
Several medium-induced effects will change a “pp jet” into a “PbPb jet”

Jet Energy Loss

ATLAS [1805.05635]

Particle Energy Loss

PHENIX [2002.11156]
Jets in medium

- Several medium-induced effects will change a “pp jet” into a “PbPb jet”
Jets in medium

- Several medium-induced effects will change a “pp jet” into a “PbPb jet”

Medium-induced energy loss

Collisional energy loss

Re-scattering

Fast evolving medium

Jet Substructure

Need accurate theoretical description to withdraw QGP characteristics!
Medium-induced energy loss

- Understand the stopping power of matter for colour-charged particles

Fast evolving medium
Medium-induced energy loss

- Understand the stopping power of matter for colour-charged particles

- From a pQCD view:
 - QGP is a collection of static scattering centres
 - Multiple interactions enhance gluon radiation
Medium-induced energy loss

- Understand the stopping power of matter for colour-charged particles

- From a pQCD view:
 - QGP is a collection of static scattering centres
 - Multiple interactions enhance gluon radiation
 - Number of interactions is not fixed
Medium-induced energy loss

- Understand the stopping power of matter for colour-charged particles

- From a pQCD view:
 - QGP is a collection of static scattering centres
 - Multiple interactions enhance gluon radiation
 - Number of interactions is not fixed

 ⇒ Need resumation up to all orders
 or
 ⇒ Opacity expansion (finite interactions with the medium)
Medium-induced gluon radiation

- Accumulation of momenta enhances gluon radiation:

\[
\omega \frac{dI}{d\omega d^2k} = \frac{2\alpha_s C_R}{(2\pi)^2 \omega^2} \text{Re} \int_0^\infty dt' \int_0^{t'} dt \int_{pq} p \cdot q \tilde{\mathcal{K}}(t', q; t, p) \mathcal{P}(\infty, \mathbf{k}; t', q)
\]
Medium-induced gluon radiation

- Accumulation of momenta enhances gluon radiation:

\[
\omega \frac{dI}{d\omega d^2k} = \frac{2\alpha_s C_R}{(2\pi)^2\omega^2} \text{Re} \int_0^\infty dt' \int_0^{t'} dt \int_{pq} p \cdot q \tilde{K}(t', q; t, p) \mathcal{P}(\infty, k; t', q)
\]

Momentum Broadening:

\[
\mathcal{P}(t'', k; t', q) \equiv \int d^2z e^{-i(k-q) \cdot z} \exp \left\{ -\frac{1}{2} \int_{t'}^{t''} ds n(s) \sigma(z) \right\}
\]

Density of scattering centres:

\[
n(x_+) = \int dx_i \delta(x_+ - x_i).
\]

Dipole cross-section:

\[
\sigma(r) = \int_q V(q) (1 - e^{iqr})
\]
Medium-induced gluon radiation

- Accumulation of momenta enhances gluon radiation:

\[
\omega \frac{dI}{d\omega d^2k} = \frac{2\alpha_s C_R}{(2\pi)^2 \omega^2} \text{Re} \int_0^\infty dt' \int_0^{t'} dt \int_{pq} p \cdot q \, \bar{K}(t',q;t,p) \mathcal{P}(\infty,k;t',q)
\]

Collision rate
(parton-medium interaction)

Momentum Broadening:

\[
\mathcal{P}(t'',k;t',q) \equiv \int d^2z \, e^{-i(k-q) \cdot z} \exp \left\{ -\frac{1}{2} \int_{t'}^{t''} ds \, n(s) \sigma(z) \right\}
\]

Density of scattering centres:

\[
n(x_+) = \int dx_+ \delta(x_+ - x_{i+}).
\]

Dipole cross-section:

\[
\sigma(r) = \int_q |V(q)| \left(1 - e^{iqr} \right)
\]
Medium-induced gluon radiation

- Accumulation of momenta enhances gluon radiation:

\[\omega \frac{dI}{d\omega d^2k} = \frac{2\alpha_s C_R}{(2\pi)^2 \omega^2} \text{Re} \int_0^\infty dt' \int_0^{t'} dt \int_{pq} p \cdot q \, \bar{\mathcal{K}}(t', q; t, p) \mathcal{P}(\infty, k; t', q) \]
Medium-induced gluon radiation

- Accumulation of momenta enhances gluon radiation:

\[\omega \frac{dI}{d\omega d^2k} = \frac{2\alpha_s C_R}{(2\pi)^2 \omega^2} \text{Re} \int_0^\infty dt' \int_0^{t'} dt \int_{pq} p \cdot q \tilde{K}(t', q; t, p) \mathcal{P}(\infty, k; t', q) \]

Emission Kernel:

\[\tilde{K} (t', z; t, y) \equiv \int_{pq} e^{i(q \cdot z - p \cdot y)} \tilde{K} (t', q; t, p) \]

\[= \int_{r(t')=z}^{r(t)=y} \mathcal{D}r \exp \left[\int_t^{t'} ds \left(\frac{i\omega}{2} r^2 - \frac{1}{2} n(s) \sigma(r) \right) \right] \]

Solution to the path integral (for an arbitrary potential) poses significant technical challenges...
H. Oscillator

- Analytical solution to medium-induced gluon radiation for finite size medium

- 2 free parameters: \hat{q} and L

- Resums scatterings over medium length

Useful to gain qualitative insight into experimental observations

[Baier, Dokshitzer, Mueller, Peigné, Schiff (97-00), Zakharov (96)]
[Wiedemann (00), Arnold, Moore, Yaffe (01)]
H. Oscillator

- Analytical solution to medium-induced gluon radiation for finite size medium

- 2 free parameters: \(\hat{q} \) and L

- Resums scatterings over medium length

Useful to gain qualitative insight into experimental observations

Target from several theoretical developments: finite energy corrections, interplay between energy loss and transverse momentum broadening, interferences between successive emitters, …
H. Oscillator

- Analytical solution to medium-induced gluon radiation for finite size medium

- 2 free parameters: \hat{q} and L

- Resums scatterings over medium length

- Only valid when medium is dense:

 $n(s)\sigma(r) \approx \frac{1}{2} \hat{q}(s)r^2 + \mathcal{O}(r^2 \ln r^2)$,

 $\hat{q} = \frac{<k^2_{\perp}>}{\lambda_{mfp}}$

- Ignores perturbative tails at high transverse momentum.

Useful to gain qualitative insight into experimental observations

Target from several theoretical developments: finite energy corrections, interplay between energy loss and transverse momentum broadening, interferences between successive emitters, …

[Baier, Dokshitzer, Mueller, Peigné, Schiff (97-00), Zakharov (96)]

[Wiedemann (00), Arnold, Moore, Yaffe (01)]

[Mehtar-Tani, Salgado, Tywoniuk (2010-2011)]

[LA, Armesto, Salgado (12), Blaizot, Dominguez, Iancu, Mehtar-Tani (13-14)]

[Blaizot, Iancu, Mehtar-Tani (13), Blaizot, Mehtar-Tani, Torres (14)]

[LA, Armesto, Milhano, Salgado (15)]

[...]
H. Oscillator

- Analytical solution to medium-induced gluon radiation for finite size medium
 - 2 free parameters: \(\hat{q} \) and \(L \)
 - Resums scatterings over medium length
 - Only valid when medium is dense:
 - \(n(s)\sigma(r) \approx \frac{1}{2} \hat{q}(s)r^2 + \mathcal{O}(r^2 \ln r^2) \), \(\hat{q} = \frac{k^2_{\perp}}{\lambda_{mfp}} \)
 - Ignores perturbative tails at high transverse momentum.

\[^{\dagger}q = \frac{q_{N/T^3_{\text{DIS}}}}{\text{Au+Au at RHIC}} \]

Transport coefficient: RHIC > LHC at the same temperature

Center-of-mass energy dependent
Opacity expansion (GLV limit)

- Radiation pattern = Incoherent superposition of just a few single hard scattering processes.

\[\mathcal{P}(t'', k; t', q) \equiv \int d^2 z \ e^{-i(k-q)\cdot z} \ \exp \left\{ -\frac{1}{2} \int_{t'}^{t''} ds \ n(s) \ \sigma(z) \right\} \]

- Expansion in terms of: \((n(s)\sigma(r))^N \)

- Exact form of potential: \(V(q) = \frac{8\pi\mu^2}{(q^2 + \mu^2)^2} \)

- 3 parameters: n0, L, \(\mu \)

An opacity expansion of the BDMPS-ASW reproduces the GLV approach

\[\sigma(r) = \int_q V(q) \ (1 - e^{iqr}) \]
Opacity expansion

- Exact limit when medium is dilute;

- For dense medium (large number of scattering centers):
 - Needs resuming the contributions from all orders (analytically and computationally demanding)

Recent works:
- [Vitev, Ovanesyan (2013)]
- [Arnold, Iqbal (2015)]
- [Sievert, Vitev (2018)]
Towards resummation

- Analytical expansion around the HO:
 \[n(s)\sigma(r) \approx \frac{1}{2} \hat{q}(s) r^2 + \mathcal{O}(r^2 \ln r^2) \]

Fast convergence of the improved opacity expansion

Energy Spectrum

Momentum broadening

\[\lambda = \ln^{-1}(Q^2/p^2) = 0.1 \]
Towards resummation

- Analytical expansion around the HO: \(n(s)\sigma(r) \approx \frac{1}{2} \hat{q}(s) r^2 + \mathcal{O}(r^2 \ln r^2) \)

Fast convergence of the improved opacity expansion

(still limited by an order-by-order calculation)
Towards resummation

- Full resummation of all scatterings within a MC approach:

- Result with the full resummation of all scatterings (in the soft limit) without apparent inconsistencies in temperature
Towards resummation

- Full resummation of all scatterings within a MC approach:

![Graph showing resummation of scatterings](chart)

Result with the full resummation of all scatterings (in the soft limit) without apparent inconsistencies in temperature

Uses involving Monte Carlo methods
(difficult to generally apply for phenomenological studies)
Towards resummation

- Solve the spectrum by using Schwinger-Dyson type equations (in momentum space):

- Evolution equations for emission kernel and broadening

\[
\partial_\tau \mathcal{P}(\tau, \mathbf{k}; s, l) = -\frac{1}{2} n(\tau) \int_{\mathbf{k}'} \sigma(\mathbf{k} - \mathbf{k}') \mathcal{P}(\tau, \mathbf{k}'; s, l)
\]

\[
\partial_t \tilde{\mathcal{K}}(s, \mathbf{q}; t, \mathbf{p}) = \frac{i\mathbf{p}^2}{2\omega} \tilde{\mathcal{K}}(s, \mathbf{q}; t, \mathbf{p}) + \frac{1}{2} n(t) \int_{\mathbf{k}'} \sigma(\mathbf{k}' - \mathbf{p}) \tilde{\mathcal{K}}(s, \mathbf{q}; t, \mathbf{k}')
\]
Towards resummation

- Solve the spectrum by using Schwinger-Dyson type equations (in momentum space):

- Evolution equations for emission kernel and broadening

\[
\partial_\tau \mathcal{P}(\tau, k; s, l) = -\frac{1}{2} n(\tau) \int_{k'} \sigma(k - k') \mathcal{P}(\tau, k'; s, l)
\]

\[
\partial_t \tilde{K}(s, q; t, p) = \frac{i p^2}{2\omega} \tilde{K}(s, q; t, p) + \frac{1}{2} n(t) \int_{k'} \sigma(k' - p) \tilde{K}(s, q; t, k')
\]

Set of integro-partial differential equations that can be numerically solved to any (realistic) potential

Contains the resummation of all scattering scatterings, in the soft limit, without further approximations!
Equations to solve numerically

- Set of integro-differential equations of that can be solve numerically:

 - Start with broadening and dipole cross-section equation:
 \[\partial_{\tau} \phi(\tau, k; s, q) = -\frac{1}{2} n(\tau) \int_{k'} \sigma(k - k') \phi(\tau, k'; s, q) \]
 \[\phi(s, k; s, q) = n(s) \left(\frac{k}{k^2} - \frac{q}{q^2} \right) \sigma(k - q) \]

 - Use \(\psi \) as initial condition for:
 \[\psi_I(s, k; s, p) = \phi(L, k; s, p) \]
 \[\partial_{t} \psi_I(s, k; t, p) = \frac{1}{2} n(t) \int_{k'} e^{i \frac{p^2}{2\sigma}(s-t)} \sigma(k' - p) e^{-i \frac{p^2}{2\sigma}(s-t)} \psi_I(s, k; t, k') \]

 - Finally, calculate:
 \[\omega \frac{dI}{d\omega d^2k} = \frac{2\alpha_s C_R}{(2\pi)^2 \omega} \text{Re} \int_0^L ds \int_t^s dt \int_p i e^{-i \frac{p^2}{2\sigma}(s-t)} p \cdot \psi_I(s, k; t, p) \]
GLV vs Full solution

- Specifying the interaction potential: \(\sigma(r) = \int q V(q) (1 - e^{iqr}) \)

- Yukawa-type interaction:
 \[V(q) = \frac{8\pi\mu^2}{(q^2 + \mu^2)^2} \]

- Parameters: \(n_0, L, \mu \)
 \[\kappa^2 = \frac{k^2}{\mu^2} \]
 \[x^{-1} = \frac{\mu^2 L}{2\omega} \]

\(n_0 L = 1 \) ("dilute")
GLV vs Full solution

- Specifying the interaction potential: \(\sigma(r) = \int q V(q) (1 - e^{iqr}) \)

- Yukawa-type interaction:
 \[V(q) = \frac{8 \pi \mu^2}{(q^2 + \mu^2)^2} \]

- Parameters: \(n_0, L, \mu \)
 \[\kappa^2 = \frac{\kappa^2}{\mu^2} \]
 \[x^{-1} = \frac{\mu^2 L}{2\omega} \]

\[n_0 L = 5 \text{ (“dense”)} \]
GLV vs Full solution

- Specifying the interaction potential: \[\sigma(r) = \int \frac{V(q)}{q} \left(1 - e^{iqr}\right) \]

- Yukawa-type interaction: \[V(q) = \frac{8\pi\mu^2}{(q^2 + \mu^2)^2} \]

- Parameters: \(n_0, L, \mu \)

\[\kappa^2 = \frac{k^2}{\mu^2} \]

\[x^{-1} = \frac{\mu^2 L}{2\omega} \]
GLV vs Full solution

- Specifying the interaction potential: \(\sigma(r) = \int V(q) (1 - e^{iqr}) \)

- Yukawa-type interaction: \(V(q) = \frac{8\pi \mu^2}{(q^2 + \mu^2)^2} \)

- Parameters: \(n_0, L, \mu \)

\[
\kappa^2 = \frac{k^2}{\mu^2} \\
x^{-1} = \frac{\mu^2 L}{2\omega}
\]
GLV vs Full solution

- Specifying the interaction potential: \(\sigma(r) = \int V(q) (1 - e^{iqr}) \)
- Yukawa-type interaction: \(V(q) = \frac{8\pi\mu^2}{(q^2 + \mu^2)^2} \)
- Parameters: \(n_0, L, \mu \)
GLV vs Full solution

- Specifying the interaction potential: $\sigma(r) = \int q V(q) (1 - e^{iqr})$

- Yukawa-type interaction: $V(q) = \frac{8\pi\mu^2}{(q^2 + \mu^2)^2}$

- Parameters: n_0, L, μ

Solid: Full Solution (our approach)
Dashed: GLV ($N = 1$)

\[\mu = 0.6 \text{ GeV} \]
\[n_0 = 1 \text{ fm}^{-1} \]

Energy spectrum

$L = 5 \text{ fm}$

$L = 3 \text{ fm}$
HO vs Full solution

- Specifying the interaction potential:
 \[\sigma(r) = \int_q V(q) \left(1 - e^{iqr}\right) \]

- Yukawa-type interaction:
 \[V(q) = \frac{8\pi\mu^2}{(q^2 + \mu^2)^2} \]

- Parameters (our): \(n_0, L, \mu \)

- Parameters (HO): \(\hat{q}, L \)

Only qualitative comparison:

\[\hat{q}L \approx (n_0L)\mu^2 \ln \frac{q_{\text{max}}}{\mu} \rightarrow 1.3(n_0L)\mu^2 \]

\[x^{-1} = \frac{\mu^2 L}{2\omega} \quad \kappa^2 = \frac{k^2}{\mu^2} \]
Comparing QGP potential models

• Comparing two potentials:

 • Yukawa:
 \[
 V(q) = \frac{8\pi\mu^2}{(q^2 + \mu^2)^2}
 \]

 • Hard Thermal Loop (HTL):
 \[
 \frac{1}{2} n V(q) = \frac{g_s^2 N_c m_D^2 T}{q^2(q^2 + m_D^2)}
 \]

Matching small distance behaviour:

\[
 n_0\mu^2 = \alpha_s N_c T m_D^2, \quad m_D^2 = \epsilon \mu^2
\]
Comparing QGP potential models

- Comparing two potentials:
 - Yukawa:
 \[V(q) = \frac{8\pi\mu^2}{(q^2 + \mu^2)^2} \]
 - Hard Thermal Loop (HTL):
 \[\frac{1}{2\pi} V(q) = \frac{g_s^2 N_c m_D^2 T}{q^2 (q^2 + m_D^2)} \]

Matching small distance behaviour:
\[n_0 \mu^2 = \alpha_s N_c T m_D^2, \quad m_D^2 = \epsilon \mu^2 \]
Comparing QGP potential models

- Comparing two potentials:
 - Yukawa (GW):
 \[V(q) = \frac{8\pi\mu^2}{(q^2 + \mu^2)^2} \]
 - Hard Thermal Loop (HTL):
 \[\frac{1}{2} n V(q) = \frac{g_s^2 N_c m_D^2 T}{q^2(q^2 + m_D^2)} \]

Matching small distance behaviour:
\[n_0 \mu^2 = \alpha_s N_c T m_D^2, \quad m_D^2 = \epsilon \mu^2 \]

Non-universal, model dependent, contributions seem to be negligible
Summary

- Novel analytical approach: resummation of all multiple scatterings

- Comparison with GLV limit and HO approximation:
 - GLV valid for single hard scattering; overestimate true contribution from soft and low momentum gluons
 - HO more suitable than GLV to describe low energy gluons; underestimate true contribution from hard gluons (single soft scattering)
Summary

- Novel analytical approach: resummation of all multiple scatterings

- Comparison with GLV limit and HO approximation:
 - GLV valid for single hard scattering; overestimate true contribution from soft and low momentum gluons
 - HO more suitable than GLV to describe low energy gluons; underestimate true contribution from hard gluons (single soft scattering)

 Improves accuracy of QGP-related characteristics
Summary

- Novel analytical approach: resummation of all multiple scatterings

- Comparison with GLV limit and HO approximation:
 - GLV valid for single hard scattering; overestimate true contribution from soft and low momentum gluons
 - HO more suitable than GLV to describe low energy gluons; underestimate true contribution from hard gluons (single soft scattering)

- Comparison between two potentials:
 - Details of the interaction seem to become less important with increasing larger/denser medium

Improves accuracy of QGP-related characteristics
Summary

- Novel analytical approach: resummation of all multiple scatterings

- Comparison with GLV limit and HO approximation:
 - GLV valid for single hard scattering; overestimate true contribution from soft and low momentum gluons
 - HO more suitable than GLV to describe low energy gluons; underestimate true contribution from hard gluons (single soft scattering)

- Comparison between two potentials:
 - Details of the interaction seem to become less important with increasing larger/denser medium

 \(\text{Improves accuracy of QGP-related characteristics} \)

 \(\text{Phase space to pin down QGP main characteristics} \)
Summary

- Novel analytical approach: resummation of all multiple scatterings

- Comparison with GLV limit and HO approximation:
 - GLV valid for single hard scattering; overestimate true contribution from soft and low momentum gluons
 - HO more suitable than GLV to describe low energy gluons; underestimate true contribution from hard gluons (single soft scattering)

- Comparison between two potentials:
 - Details of the interaction seem to become less important with increasing larger/denser medium

Improves accuracy of QGP-related characteristics

Phase space to pin down QGP main characteristics

Thank you!