Energy loss beyond multiple soft or single hard approximations

2020 RHIC/AGS Annual Users Meeting

Liliana Apolinário

based on **JHEP 07 (2020) 114**

in collaboration with **C.** Andrés and F. Dominguez

Thursday, Oct 22nd

Several medium-induced effects will change a "pp jet" into a "PbPb jet"

Several medium-induced effects will change a "pp jet" into a "PbPb jet"

L. Apolinário

Several medium-induced effects will change a "pp jet" into a "PbPb jet"

L. Apolinário

L. Apolinário

Need accurate theoretical description to withdraw QGP characteristics!

Understand the stopping power of matter for colour-charged particles

Fast evolving medium

- Understand the stopping power of matter for colour-charged particles
- From a pQCD view:
 - QGP is a collection of static scattering centres
 - Multiple interactions enhance gluon radiation

- Understand the stopping power of matter for colour-charged particles
- From a pQCD view:
 - QGP is a collection of static scattering centres
 - Multiple interactions enhance gluon radiation
 - Number of interactions is not fixed

- Understand the stopping power of matter for colour-charged particles
- From a pQCD view:
 - QGP is a collection of static scattering centres
 - Multiple interactions enhance gluon radiation
 - Number of interactions is not fixed
 - \Rightarrow Need ressumation up to all orders

or

 \Rightarrow Opacity expansion (finite interactions with the medium)

L. Apolinário

Accumulation of momenta enhances gluon radiation:

L. Apolinário

 $\omega \frac{dI}{d\omega d^2 \mathbf{k}} = \frac{2\alpha_s C_R}{(2\pi)^2 \omega^2} \operatorname{Re} \int_0^\infty dt' \int_0^{t'} dt \int_{\mathbf{n} \mathbf{q}} \mathbf{p} \cdot \mathbf{q} \ \widetilde{\mathcal{K}}(t', \mathbf{q}; t, \mathbf{p}) \mathcal{P}(\infty, \mathbf{k}; t', \mathbf{q})$

Accumulation of momenta enhances gluon radiation:

L. Apolinário

$$\int_{0}^{t'} dt \int_{pq} \boldsymbol{p} \cdot \boldsymbol{q} \ \widetilde{\mathcal{K}}(t', \boldsymbol{q}; t, \boldsymbol{p}) \mathcal{P}(\infty, \boldsymbol{k}; t', \boldsymbol{q})$$

Momentum Broadening:

$$\mathcal{P}(t'', \boldsymbol{k}; t', \boldsymbol{q}) \equiv \int d^2 \boldsymbol{z} \, e^{-i(\boldsymbol{k}-\boldsymbol{q})\cdot\boldsymbol{z}} \, \exp\left\{-\frac{1}{2} \int_{t'}^{t''} \, ds \, n(s) \, \sigma\right\}$$

Density of scattering centres:

$$n(x_{+}) = \int dx_{i+} \delta(x_{+} - x_{i+}).$$

Dipole cross-section:

$$\sigma(\boldsymbol{r}) = \int_{\boldsymbol{q}} V(\boldsymbol{q}) \left(1 - e^{i\boldsymbol{q}\boldsymbol{r}}\right)$$

Accumulation of momenta enhances gluon radiation:

$$\omega \frac{dI}{d\omega d^2 \boldsymbol{k}} = \frac{2\alpha_s C_R}{(2\pi)^2 \omega^2} \operatorname{Re} \int_0^\infty dt' \int_0^{t'} dt \int_{\boldsymbol{pq}} \boldsymbol{p} \cdot \boldsymbol{q} \ \widetilde{\mathcal{K}}(t', \boldsymbol{q}; t, \boldsymbol{p}) \mathcal{P}(\infty, \boldsymbol{k}; t', \boldsymbol{q})$$

Collision rate (parton-medium interaction)

L. Apolinário

Momentum Broadening:

$$\mathcal{P}(t'', \boldsymbol{k}; t', \boldsymbol{q}) \equiv \int d^2 \boldsymbol{z} \, e^{-i(\boldsymbol{k}-\boldsymbol{q})\cdot\boldsymbol{z}} \, \exp\left\{-\frac{1}{2} \int_{t'}^{t''} \, ds \, n(s) \, \sigma\right\}$$

Density of scattering centres:

$$n(x_{+}) = \int dx_{i+} \delta(x_{+} - x_{i+}).$$

Dipole cross-section:

$$\sigma(\boldsymbol{r}) = \int_{\boldsymbol{q}} V(\boldsymbol{q}) (1 - e^{i\boldsymbol{q}\boldsymbol{r}})$$

Accumulation of momenta enhances gluon radiation:

L. Apolinário

 $\omega \frac{dI}{d\omega d^2 \boldsymbol{k}} = \frac{2\alpha_s C_R}{(2\pi)^2 \omega^2} \operatorname{Re} \int_0^\infty dt' \int_0^{t'} dt \int_{\boldsymbol{n}\boldsymbol{q}} \boldsymbol{p} \cdot \boldsymbol{q} \ \widetilde{\mathcal{K}}(t', \boldsymbol{q}; t, \boldsymbol{p}) \mathcal{P}(\infty, \boldsymbol{k}; t', \boldsymbol{q})$

Accumulation of momenta enhances gluon radiation:

L. Apolinário

$$\int_{0}^{t'} dt \, \int_{\boldsymbol{p}\boldsymbol{q}} \, \boldsymbol{p} \cdot \boldsymbol{q} \, \widetilde{\mathcal{K}}(t', \boldsymbol{q}; t, \boldsymbol{p}) \mathcal{P}(\infty, \boldsymbol{k}; t', \boldsymbol{q})$$

Emission Kernel:

$$\begin{split} \mathcal{C}(t', \boldsymbol{z}; t, \boldsymbol{y}) &\equiv \int_{\boldsymbol{p}\boldsymbol{q}} e^{i(\boldsymbol{q}\cdot\boldsymbol{z}-\boldsymbol{p}\cdot\boldsymbol{y})} \widetilde{\mathcal{K}}(t', \boldsymbol{q}; t, \boldsymbol{p}) \\ &= \int_{\boldsymbol{r}(t)=\boldsymbol{y}}^{\boldsymbol{r}(t')=\boldsymbol{z}} \mathcal{D}\boldsymbol{r} \exp\left[\int_{t}^{t'} ds \ \left(\frac{i\omega}{2} \dot{\boldsymbol{r}}^{2} - \frac{1}{2}n(s)\sigma\right)\right] \end{split}$$

Solution to the path integral (for an arbitrary potential) poses significant technical challenges...

Analytical solution to medium-induced gluon radiation for finite size medium

2 free parameters: \hat{q} and L

Resums scatterings over medium length

[Baier, Dokshitzer, Mueller, Peigné, Schiff (97-00), Zakharov (96)] [Wiedemann (00), Arnold, Moore, Yaffe (01)]

Useful to gain qualitative insight into experimental observations

Analytical solution to medium-induced gluon radiation for finite size medium

2 free parameters: \hat{q} and L

Resums scatterings over medium length

[Baier, Dokshitzer, Mueller, Peigné, Schiff (97-00), Zakharov (96)] [Wiedemann (00), Arnold, Moore, Yaffe (01)] [Mehtar-Tani, Salgado, Tywoniuk (2010-2011)] [LA, Armesto, Salgado (12), Blaizot, Dominguez, Iancu, Mehtar-Tani (13-14)] [Blaizot, Iancu, Mehtar-Tani (13), Blaizot, Mehtar-Tani, Torres (14)] [LA, Armesto, Milhano, Salgado (15)]

Useful to gain qualitative insight into experimental observations

Target from several theoretical developments: finite energy corrections, interplay between energy loss and transverse momentum broadening, interferences between successive emitters, ...

- Analytical solution to medium-induced gluon radiation for finite size medium
 - 2 free parameters: \hat{q} and L
 - Resums scatterings over medium length
- Only valid when medium is dense:

•
$$n(s)\sigma(\mathbf{r}) \approx \frac{1}{2}\hat{q}(s)\mathbf{r}^2 + \mathcal{O}(\mathbf{r}^2\ln\mathbf{r}^2)$$
 ,

Ignores perturbative tails at high transverse momentum.

[Baier, Dokshitzer, Mueller, Peigné, Schiff (97-00), Zakharov (96)] [Wiedemann (00), Arnold, Moore, Yaffe (01)] [Mehtar-Tani, Salgado, Tywoniuk (2010-2011)] [LA, Armesto, Salgado (12), Blaizot, Dominguez, Iancu, Mehtar-Tani (13-14)] [Blaizot, Iancu, Mehtar-Tani (13), Blaizot, Mehtar-Tani, Torres (14)] [LA, Armesto, Milhano, Salgado (15)]

Useful to gain qualitative insight into experimental observations

Target from several theoretical developments: finite energy corrections, interplay between energy loss and transverse momentum broadening, interferences between successive emitters, ...

 $\hat{q} = \frac{\langle k_{\perp}^2 \rangle}{\lambda_{mfm}}$

- Analytical solution to medium-induced gluon radiation for finite size medium
 - 2 free parameters: \hat{q} and L
 - Resums scatterings over medium length
- Only valid when medium is dense:

•
$$n(s)\sigma(\mathbf{r}) \approx \frac{1}{2}\hat{q}(s)\mathbf{r}^2 + \mathcal{O}(\mathbf{r}^2\ln\mathbf{r}^2)$$
 ,

Ignores perturbative tails at high transverse momentum.

[Baier, Dokshitzer, Mueller, Peigné, Schiff (97-00), Zakharov (96)] [Wiedemann (00), Arnold, Moore, Yaffe (01)]

QHat puzzle?

Opacity expansion (GLV limit)

Radiation pattern = Incoherent superposition of just a few single hard scattering processes.

$$\mathcal{P}(t'', \boldsymbol{k}; t', \boldsymbol{q}) \equiv \int d^2 \boldsymbol{z} \, e^{-i(\boldsymbol{k}-\boldsymbol{q})\cdot\boldsymbol{z}} \, \exp\left\{-\frac{1}{2} \, \int_{t'}^{t''} \, ds \, n(s) \, \sigma(\boldsymbol{z})\right\}$$

- Expansion in terms of: $(n(s)\sigma(r))^N$
- Exact form of potential: $V(q) = \frac{8\pi\mu^2}{(q^2 + \mu^2)^2}$
- 3 parameters: $n0, L, \mu$

An opacity expansion of the BDMPS-ASW reproduces the GLV approach

[Gyulassy, Wang (94), Wiedemann, Gyulassy (99)]

[Vitev, Ovanesyan (2013)] [Arnold, Iqbal (2015)]

[Sievert, Vitev (18)]

Dipole cross-section:

$$\sigma(\boldsymbol{r}) = \int_{\boldsymbol{q}} V(\boldsymbol{q}) \left(1 - e^{i\boldsymbol{q}\boldsymbol{r}} \right)$$

Opacity expansion

Exact limit when medium is dilute;

For dense medium (large number of scattering centers):

Needs resuming the contributions from all orders (analytically and computationally demanding)

L. Apolinário

[Vitev, Ovanesyan (2013)] [Arnold, Iqbal (2015)] [Sievert, Vitev (18)]

Analytical expansion around the HO: $n(s)\sigma(r)$

$$\approx \frac{1}{2} \hat{q}(s) \boldsymbol{r}^2 + \mathcal{O}(\boldsymbol{r}^2 \ln \boldsymbol{r}^2)$$

Momentum broadening

[Mehtar-Tani, Tywoniuk (20), Barata, Mehtar-Tani (20), Barata et al (20)]

Analytical expansion around the HO: $n(s)\sigma(r)$

L. Apolinário

$$\approx \frac{1}{2} \hat{q}(s) \boldsymbol{r}^2 + \mathcal{O}(\boldsymbol{r}^2 \ln \boldsymbol{r}^2)$$

Momentum broadening

(still limited by an order-by-order calculation)

[Mehtar-Tani, Tywoniuk (20), Barata, Mehtar-Tani (20), Barata et al (20)]

Full resummation of all scatterings within a MC approach:

L. Apolinário

[Feal, Vazquez (18), Feal, Vazquez (20)]

Result with the full resummation of all scatterings (in the soft limit) without apparent inconsistencies in temperature

Full resummation of all scatterings within a MC approach:

Uses involving Monte Carlo methods (difficult to generally apply for phenomenological studies) [Feal, Vazquez (18), Feal, Vazquez (20)]

Result with the full resummation of all scatterings (in the soft limit) without apparent inconsistencies in temperature

- Solve the spectrum by using Schwinger-Dyson type equations (in momentum space):
 - Evolution equations for emission kernel and broadening

$$\begin{aligned} \partial_{\tau} \mathcal{P}(\tau, \boldsymbol{k}; s, \boldsymbol{l}) &= -\frac{1}{2} n(\tau) \int_{\boldsymbol{k}'} \sigma(\boldsymbol{k} - \boldsymbol{k}') \mathcal{P}(\tau, \boldsymbol{k}'; s, \boldsymbol{l}) \\ \partial_{t} \widetilde{\mathcal{K}}(s, \boldsymbol{q}; t, \boldsymbol{p}) &= \frac{i \boldsymbol{p}^{2}}{2 \omega} \widetilde{\mathcal{K}}(s, \boldsymbol{q}; t, \boldsymbol{p}) + \frac{1}{2} n(t) \int_{\boldsymbol{k}'} \sigma(\boldsymbol{k}' - \boldsymbol{p}) \widetilde{\mathcal{K}}(s, \boldsymbol{q}; t, \boldsymbol{k}') \end{aligned}$$

- Solve the spectrum by using Schwinger-Dyson type equations (in momentum space):
 - Evolution equations for emission kernel and broadening

$$\begin{aligned} \partial_{\tau} \mathcal{P}(\tau, \boldsymbol{k}; s, \boldsymbol{l}) &= -\frac{1}{2} n(\tau) \int_{\boldsymbol{k}'} \sigma(\boldsymbol{k} - \boldsymbol{k}') \mathcal{P}(\tau, \boldsymbol{k}'; s, \boldsymbol{l}) \\ \partial_{t} \widetilde{\mathcal{K}}(s, \boldsymbol{q}; t, \boldsymbol{p}) &= \frac{i \boldsymbol{p}^{2}}{2 \omega} \widetilde{\mathcal{K}}(s, \boldsymbol{q}; t, \boldsymbol{p}) + \frac{1}{2} n(t) \int_{\boldsymbol{k}'} \sigma(\boldsymbol{k}' - \boldsymbol{p}) \widetilde{\mathcal{K}}(s, \boldsymbol{q}; t, \boldsymbol{k}') \end{aligned}$$

Set of integro-partial differential equations that can be numerically solved to any (realistic) potential

Contains the resummation of all scattering scatterings, in the soft limit, without further approximations!

Equations to solve numerically

- Set of integro-differential equations of that can be solve numerically:
 - Start with broadening and dipole cross-section equation: $\partial_{\tau} \boldsymbol{\phi}(\tau, \boldsymbol{k}; s, \boldsymbol{q}) = -\frac{1}{2} n(\tau) \int_{\boldsymbol{k}'} \sigma(\boldsymbol{k} - \boldsymbol{k}') \boldsymbol{\phi}(\tau, \boldsymbol{k}';$
 - Use ϕ as initial condition for: $\psi_I(s, k; s, p) =$ $\partial_t \psi_I(s, \boldsymbol{k}; t, \boldsymbol{p}) = \frac{1}{2} n(t) \int_{\boldsymbol{k}'} e^{\frac{i\boldsymbol{p}^2}{2\omega}(s-t)} \sigma(\boldsymbol{k}' - \boldsymbol{p})$
 - Finally, calculate: $\omega \frac{dI}{d\omega d^2 \mathbf{k}} = \frac{2\alpha_s C_R}{(2\pi)^2 \omega} \operatorname{Re} \int_0^L \alpha_s dV_R$

[Andrés, LA, Dominguez (20)]

Initial condition:

$$\phi(s, \boldsymbol{k}; s, \boldsymbol{q}) = n(s) \left(rac{\boldsymbol{k}}{\boldsymbol{k}^2} - rac{\boldsymbol{q}}{\boldsymbol{q}^2}
ight) \sigma(\boldsymbol{k} - \boldsymbol{q})$$

$$\phi(L, \mathbf{k}; s, \mathbf{p})$$

 $\phi(L, \mathbf{k}; s, \mathbf{p})$
 $\phi(L, \mathbf{k}; s, \mathbf{p})$
 $\phi(L, \mathbf{k}; s, \mathbf{p})$

$$ds \int_0^s dt \int_{\mathbf{p}} i \, e^{-i\frac{\mathbf{p}^2}{2\omega}(s-t)} \, \mathbf{p} \cdot \psi_I(s, \mathbf{k}; t, \mathbf{p})$$

Specifying the interaction potential: $\sigma(\mathbf{r}) = \int_{-\infty}^{\infty} \sigma(\mathbf{r}) d\mathbf{r}$

• Yukawa-type interaction:

$$V(q) = \frac{8\pi\mu^2}{(q^2 + \mu^2)^2}$$
• Parameters: n₀, L, µ

$$\kappa^2 = \frac{k^2}{\mu^2}$$
• V(q) = \frac{8\pi\mu^2}{(q^2 + \mu^2)^2}
• O.30

Parameters: n_0 , L, μ

$$\kappa^2 = \frac{k^2}{\mu^2}$$

$$x^{-1} = \frac{\mu^2 L}{2\omega}$$
 0.05

L. Apolinário

$$V(\boldsymbol{q})\left(1-e^{i\boldsymbol{q}\boldsymbol{r}}\right)$$

 $n_0 L = 1$ ("dilute")

Specifying the interaction potential: $\sigma(\mathbf{r}) = \int_{-\infty}^{\infty} \sigma(\mathbf{r}) d\mathbf{r}$

• Yukawa-type interaction:

$$V(q) = \frac{8\pi\mu^2}{(q^2 + \mu^2)^2}$$
1.25
• Parameters: n_0, L, μ
 $\kappa^2 = \frac{k^2}{\mu^2}$
0.50

Parameters: n_0 , L, μ

$$\kappa^2 = \frac{k^2}{\mu^2}$$

$$x^{-1} = \frac{\mu^2 L}{2\omega}$$
 0.25

$$V(\boldsymbol{q})\left(1-e^{i\boldsymbol{q}\boldsymbol{r}}\right)$$

 $n_0 L = 5$ ("dense")

• Specifying the interaction potential: $\sigma(\mathbf{r}) = \int_{-\infty}^{\infty} V(\mathbf{q}) \left(1 - e^{i\mathbf{q}\mathbf{r}}\right)$

• Yukawa-type interaction: $V(q) = \frac{8\pi\mu^2}{(q^2 + \mu^2)^2}$

• Parameters: n_0 , L, μ

$$\kappa^2 = \frac{k^2}{\mu^2}$$

$$x^{-1} = \frac{\mu^2 L}{2\omega}$$

L. Apolinário

Specifying the interaction potential: $\sigma(\mathbf{r}) = \int_{\sigma} V(\mathbf{q}) \left(1 - e^{i\mathbf{q}\mathbf{r}}\right)$

Yukawa-type interaction: $V(q) = \frac{8\pi\mu^2}{(q^2 + \mu^2)^2}$

Parameters: n_0 , L, μ

$$\kappa^2 = \frac{k^2}{\mu^2}$$

$$x^{-1} = \frac{\mu^2 L}{2\omega}$$

L. Apolinário

Specifying the interaction potential: $\sigma(\mathbf{r}) = \int_{\alpha} V(\mathbf{q}) \left(1 - e^{i\mathbf{q}\mathbf{r}}\right)$

Yukawa-type interaction: $V(q) = \frac{8\pi\mu^2}{(q^2 + \mu^2)^2}$

L. Apolinário

Specifying the interaction potential: $\sigma(\mathbf{r}) = \int_{\sigma} V(\mathbf{q}) \left(1 - e^{i\mathbf{q}\mathbf{r}}\right)$

Yukawa-type interaction: $V(q) = \frac{8\pi\mu^2}{(q^2 + \mu^2)^2}$

L. Apolinário

Au+Au p+p ⊕ Au+Au CMS PbPb $\sqrt{s_{NN}}$ = 2.76 TeV tLu 2 3 $\xi = \ln(1/z)$. . .

HO vs Full solution

Specifying the interaction potential: $\sigma(\mathbf{r}) = \int V(\mathbf{q}) (1 - e^{i\mathbf{q}\mathbf{r}})$

Yukawa-type interaction: $V(q) = \frac{8\pi\mu^2}{(q^2 + \mu^2)^2}$

Parameters (our): n_0 , L, μ

• Parameters (HO):
$$\hat{q}$$
, L

Only qualitative comparison:

$$\hat{q}L \sim (n_0 L)\mu^2 \ln \sqrt{\frac{q_{max}}{\mu}} \rightarrow 1.3(n_0 L)\mu^2$$

$$x^{-1} = \frac{\mu^2 L}{2\omega} \qquad \kappa^2 = \frac{k^2}{\mu^2}$$

L. Apolinário

0.06-

0.04-

0.02-

0.00 -

 $\omega dI/d\omega dk^2$ (GeV $^{-2}$

$$n(s)\sigma(\mathbf{r}) \approx \frac{1}{2}\hat{q}(s)\mathbf{r}^2$$

Solid: Full Solution (our approach) Dashed: HO

Comparing QGP potential models

Comparing two potentials:

> Yukawa:

$$V(q) = \frac{8\pi\mu^2}{(q^2 + \mu^2)^2}$$

Hard Thermal Loop (HTL): $\frac{1}{2}n V(\boldsymbol{q}) = \frac{g_s^2 N_c m_D^2 T}{\boldsymbol{q}^2 (\boldsymbol{q}^2 + m_D^2)}$

Matching small distance behaviour: $n_0\mu^2 = \alpha_s N_c T m_D^2$ $m_D^2 = e \, \mu^2$

L. Apolinário

Full HTL TL = 0.4Full Yukawa $n_0 L = 1$

Comparing QGP potential models

Comparing two potentials:

> Yukawa:

$$V(q) = \frac{8\pi\mu^2}{(q^2 + \mu^2)^2}$$

Hard Thermal Loop (HTL): $\frac{1}{2}n V(\boldsymbol{q}) = \frac{g_s^2 N_c m_D^2 T}{\boldsymbol{q}^2 (\boldsymbol{q}^2 + m_D^2)}$

Matching small distance behaviour: $n_0\mu^2 = \alpha_s N_c T m_D^2$ $m_D^2 = e\,\mu^2$

L. Apolinário

Full HTL TL = 0.4Full Yukawa $n_0 L = 1$

Full HTL TL = 2- Full Yukawa $n_0 L = 5$

Comparing two potentials:

Yukawa (GW):
$$V(\boldsymbol{q}) = \frac{8\pi\mu^2}{(\boldsymbol{q}^2 + \mu^2)^2}$$

• Hard Thermal Loop (HTL):

$$\frac{1}{2}n V(\boldsymbol{q}) = \frac{g_s^2 N_c m_D^2 T}{\boldsymbol{q}^2 (\boldsymbol{q}^2 + m_D^2)}$$

Matching small distance behaviour: $n_0\mu^2 = \alpha_s N_c T m_D^2.$ $m_D^2 = e\,\mu^2$

L. Apolinário

Comparing QGP potential models

to be negligible

- Novel analytical approach: resummation of all multiple scatterings
 - Comparison with GLV limit and HO approximation:
 - gluons
 - hard gluons (single soft scattering)

GLV valid for single hard scattering; overestimate true contribution from soft and low momentum

HO more suitable than GLV to describe low energy gluons; underestimate true contribution from

- Novel analytical approach: resummation of all multiple scatterings
 - Comparison with GLV limit and HO approximation:
 - gluons
 - hard gluons (single soft scattering)

GLV valid for single hard scattering; overestimate true contribution from soft and low momentum

HO more suitable than GLV to describe low energy gluons; underestimate true contribution from

Improves accuracy of QGP-related characteristics

- Novel analytical approach: resummation of all multiple scatterings
 - Comparison with GLV limit and HO approximation:
 - gluons
 - hard gluons (single soft scattering)
 - Comparison between two potentials:

GLV valid for single hard scattering; overestimate true contribution from soft and low momentum

HO more suitable than GLV to describe low energy gluons; underestimate true contribution from

Improves accuracy of QGP-related characteristics

• Details of the interaction seem to become less important with increasing larger/denser medium

- Novel analytical approach: resummation of all multiple scatterings
 - Comparison with GLV limit and HO approximation:
 - gluons
 - hard gluons (single soft scattering)
 - Comparison between two potentials:

Phase space to pin down QGP main characteristics

GLV valid for single hard scattering; overestimate true contribution from soft and low momentum

HO more suitable than GLV to describe low energy gluons; underestimate true contribution from

Improves accuracy of QGP-related characteristics

• Details of the interaction seem to become less important with increasing larger/denser medium

- Novel analytical approach: resummation of all multiple scatterings
 - Comparison with GLV limit and HO approximation:
 - gluons
 - hard gluons (single soft scattering)
 - Comparison between two potentials:

Phase space to pin down QGP main characteristics

GLV valid for single hard scattering; overestimate true contribution from soft and low momentum

HO more suitable than GLV to describe low energy gluons; underestimate true contribution from

Improves accuracy of QGP-related characteristics

• Details of the interaction seem to become less important with increasing larger/denser medium

Thank you!

