
Streaming readout for multi-purpose DAQ system MBS

Jörn Adamczewski-Musch, Nikolaus Kurz

Experiment ELectronics department (EEL), GSI Helmholtzzentrum f. Schwerionenforschung, Darmstadt, Germany

BNL streaming readout workshop VII, 16-18 November 2020

Some Facts about MBS

- General purpose DAQ
- System scalable:

from single-crate systems up to

hierarchically structured Multi-Branch System (MBS)

- > 70 systems installed and running at GSI "standard" DAQ at GSI
- > 150 systems installed and running outside of GSI
- Entirely written in C; started in 1993; continuously developed
- Support for Linux and LynxOS
- Support for VME, VXI, CAMAC, FASTBUS, PCI and PCI Express based systems
- Supported processor platforms: IPV, RIO4, RIO3, RIO2, E7 (VME)

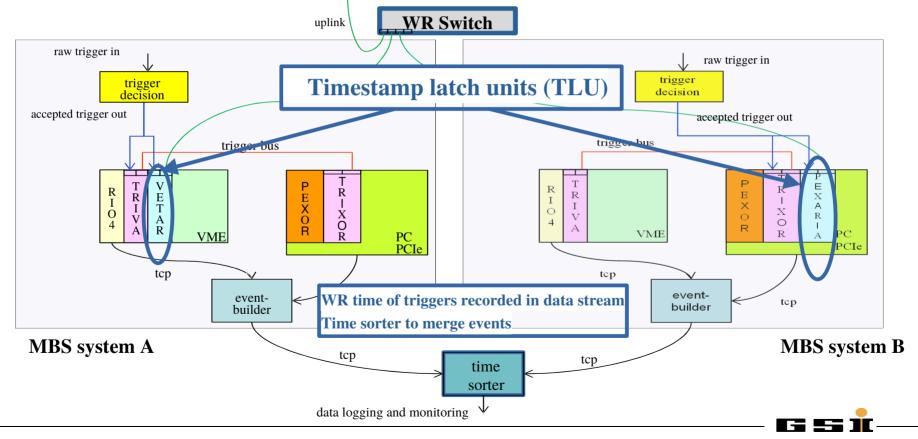
CVC PC (CAMAC) (PCI Express, PCI)

• Data Transport via all **address-mapped buses** and **TCP/IP** (10 Mb/s up to 10 Gb/s)

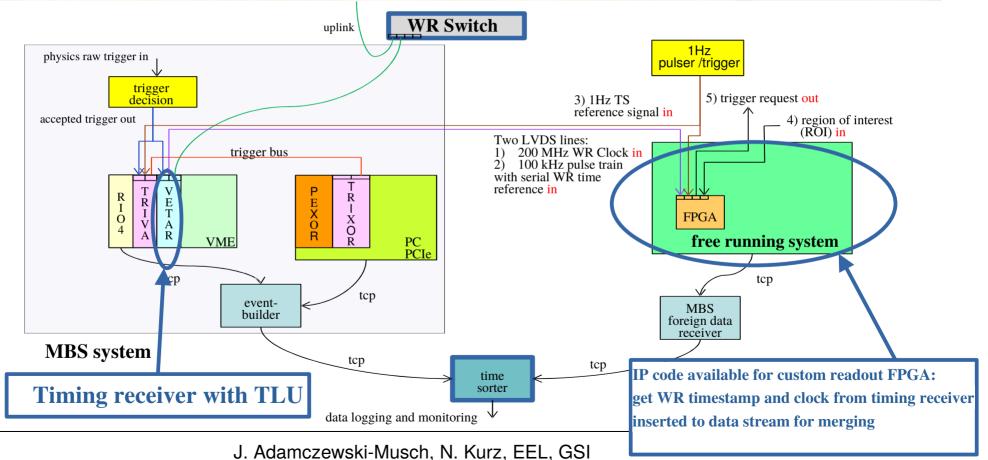
Streaming readout for GSI "standard" DAQ?

See full presentation of Nikolaus Kurz, EEL, GSI at https://www.gsi.de/fileadmin/EE/MBS/mbs_overview.pdf

Time Stamp Synchronization of GSI MBS (Multi Branch System) DAQ with White Rabbit:


Synchronization of **several globally triggered** MBS systems

Synchronization of **locally triggered (free running) DAQ systems** with globally triggered MBS DAQ


Intended FAIR (NUSTAR) experiments: R3B Silicon Tracker, AIDA, HYDE, MONSTER, ??

Two Globally Triggered, White Rabbit Synchronized MBS Systems

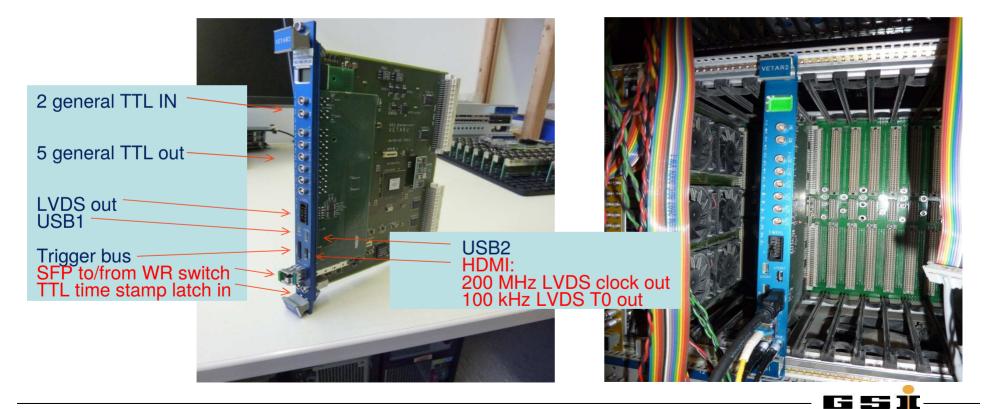
Synchronization of "Free" Running System with Globally Triggered MBS System

Summary "streaming readout" for MBS DAQ

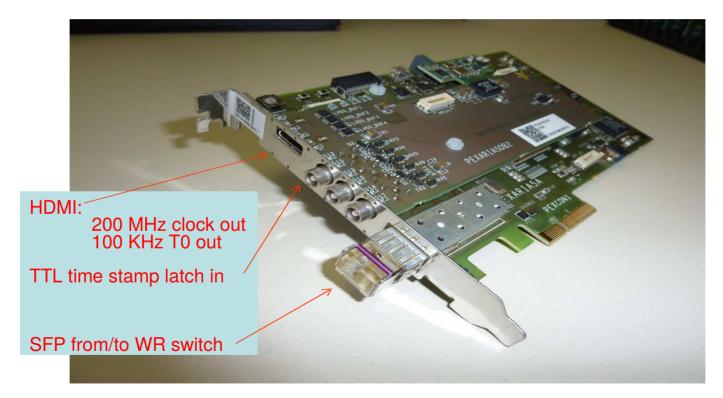
- WhiteRabbit is general machine timing system for FAIR, available in all caves
- WhiteRabbit timing receivers with TLU ready for MBS DAQ systems
- MBS event time sorting software is well established
- Allows to combine **independent triggered readout branches**
- Allows to combine **triggered with streaming readout branches**
- Data is always build at least as **"readout trigger" event packets**
- Users may add **own software for physics event selection** later

Thank you!

Bonus slides:


Selected Features of White Rabbit Timing Receivers (WTR)

- 64 bit time stamps with 1 ns units, starting from 1970
- FIFOs for 256 WR time stamps (allows for multi-event readout for globally triggered MBS systems)
- time stamp latch units. Latches actual time stamp with leading edge of TTL input signal. Input signal shall be accepted trigger signal
- 125 and 200 MHz WR controlled high precision LVDS clock outputs
- 100 KHz T0 LVDS pulse train
- WR time transmission between T0 pulses via serial protocol


PEXARIA:1 ns time stamp granularityVETAR2:8 ns (125 MHz native network clock)

White Rabbit VME Timing Receiver VETAR2

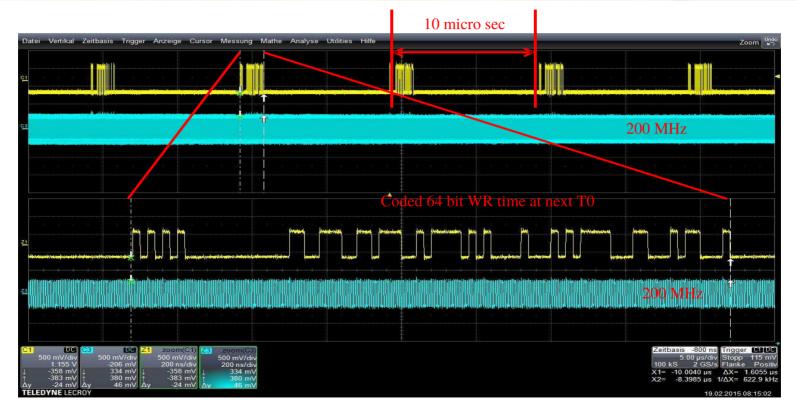
White Rabbit PCI Express Timing Receiver PEXARIA5

Synchronization Inputs/Outputs for "Free" Running Systems

1) 200 MHz: input, mandatory

- disciplined by WR
- could be other frequency (50 MHz?) on request
- basic precision 5 ns (with 200 MHz WR clock). Could be improved with fast FPGA in "free" running system

2) 100 KHz T0 + serial time forwarding: input, mandatory


- decoder and encoder FPGA code available
- phase stable with 200 MHz WR clock
- no reset necessary, if new systems couple to a running system

3) 1 Hz reference hit: input, mandatory

- allows permanent testing of WR time stamp status
- allows for continuous data flow. important for time sorter
- 4) ROI (region of interest): input, (important)
 - allows to cut out data outside a programmable time window from free running system
 - ROI could be accepted trigger signal from globally triggered system
 - important, if data rate from unwanted hits (noise, delta electrons) becomes too high
- 5) TR (trigger request): output, nice to have (depends)
 - to be used by globally triggered systems as input for trigger processing

White Rabbit 100 KHz T0 and - Serial Time Distribution White Rabbit 200 MHz

Streaming readout for multi-purpose DAQ system MBS

data packets from free running systems:

- free running data acquisition systems sends formatted MBS sub-events of hits
- each sub-event is headed by White Rabbit Time
 Stamp (WRTS) 1 ns units, starting from 1970
- each sub-event contains data from "many" hits (MBS container)
- each hit has TS of variable size, but significantly smaller than WRTS
- each hit TS must have a sufficient correlation to full WRTS header
- hit data format inside MBS container has no dependency for time sorting and can be chosen freely by each detector/sub-system

MBS subevent header (big endian representation):

typedef struct{

int	l_dlen;	/* Data length +2 in words */
short	i_subtype;	/* Subtype */
short	i_type;	/* Type number */
char	h_control;	/* Processor type code */
char	h_subcrate;	/* Subcrate number */
short	i_procid;	/* Processor ID [from setup] */

} s_veshe;

White Rabbit full timestamp header (WRTS):

int	sub-system id	/*	(32 bits, multiples of 0x100) $\ */$	
short	0x03E1	/*	(16 bit fixed code)*/	
short	WRTS_L16	/*	WRTS bits 00-15 */	
short	0x04E1	/*	(16 bit fixed code)*/	
short	WRTS_M16	/*	WRTS bits 16-31 */	
short	0x05E1	/*	(16 bit fixed code)*/	
short	WRTS_H16	/*	WRTS bits 32-47 */	
short	0x06E1	/*	(16 bit fixed code)*/	
short	WRTS_X16	/*	WRTS bits 48-61 */	

Custom hit messages with "local" timestamps (TS, relative to WRTS header)

J. Adamczewski-Musch, N. Kurz, EEL, GSI

....