
Some thoughts on protocol generators

Jan C. Bernauer for the organizers

Streaming Readout VII, 2020



Why protocol generators

I We need to de�ne a series of data structures for data exchange
on the wire / on disk

I Ideally use common �framing� along most parts of the chain �
close to the FE to disk

I Need to specify and document formats

I Integrity check during deserialization

I Can autogenerate interface for many languages

2



Wishlist

I Low overhead � we often hit I/O limits

I Implementable on FPGA

I Can contain anonymous data

I Can contain hierarchical description

I Can describe foreign formats

I Compatible with HPC?

I Automatic tool generation

3



Data types I checked

I (u) int 8,16,24,32,64

I �oat, double

I bit�eld

I string

I vector of...

I maps (this is probably never in-place)

4



Google protocol bu�ers

I Languages: All the languages

I Not in-place, has to unpack

I Wire format is forward/backward compatible, not
self-describing

I Doesn't have: (u)int24, bit�eld. No bit packing.

I Instead, packs ints, so int64==int8.

I Has a RPC standard.

5



Google Flatbu�ers

I In-place, low overhead

I Evolution: Can add �elds, can mark �elds as deprecated (in
tables). Can not remove �elds

I Has some accomodations for re�ection.

I Doesn't have (u)int24, bit�eld, No bit packing. Vectors only
one level (or via table). No maps, but keys for bin search.

I Has nested structure, but full de�nition required at compile
time.

6



Capt'n Proto

I In-place, low overhead

I Wire format is forward/backward compatible, not
self-describing

I Doesn't have: (u)int24, bit�eld. No bit packing. No maps.
List size has to be known at alloc time.

I Has a RPC standard.

7



Apache Avro

I Every �le has schema de�nition as the header

I Dynamically typed, untagged data

I Not in place

I Types: No (u)int16,24, bit�eld. No bit packing.

8



Apache Thrift

I Languages: All the languages

I Mainly aimed at RPC

I Not in place.

I But supports di�erent encodings, transports.

I Types: No (u)int16,24, bit�eld. No bit packing.

9



Some simple prototypes

I Cap'n proto:
git@github.com:JanCBernauer/capnproto_test.git

I Flatbu�ers:
git@github.com:JanCBernauer/flatbuffers_test.git

I I liked �atbu�ers more, so I made a prototype sPHENIX event
container (with serialized root as payload):
git@github.com:JanCBernauer/storage.git

10

git@github.com:JanCBernauer/capnproto_test.git
git@github.com:JanCBernauer/flatbuffers_test.git
git@github.com:JanCBernauer/storage.git


Roll our own

I None of the exisiting solutions are perfect, for us.

I They let us de�ne a logical data structure, and will generate
the representation.

I We likely want to de�ne the representation:

I Would really be great if I could specify: bit 20 to 24 in
this DWORD is �channel_num�
And then get a proper accessor in all the languages we
want to support.

I HPC/GPU suitable?

I Automatically generate debug code � range checks, bit�eld
decoders

I We need to document data formats anyway � why not make it
work for us?

11


