JLAB Data Formats for DAQ
(and proposals for Streaming)

Streaming Readout VIl - Virtual Meeting
Nov 16-18, 2020

David Abbott - FEDAQ Group
Jefferson Lab — Physics Division

Data Acquisition at JLab

Historically the DAQ group (in Physics Division) has existed at Jefferson Lab from
the very beginning

— The CODA toolkit has been supported and expanded through 3 generations so far.

— All 4 Experimental Halls are using some version of CODA for data acquisition.

One aspect of the CODA toolkit is a data format standard we call EVIO (Event 1/O)
— It defines simple data structures at the Front-End for encapsulating raw data from digitizers/ASICs

— Also defined is a file format block structure. This structure is also useful for blocking up data for
transport over a network or shared memory between CODA software components.

The CODA tool kit also has useful EVIO libraries and applications

— C, C++ and JAVA APIs for reading/writing with EVIO Files

— GUI utility (jeviodmp) for viewing and/or debugging EVIO Files as well as spying on active data
streams.

We are currently looking to adapt EVIO to support Streaming Data architectures.

D
Jefferson Lab

EVIO Primitive Data Structures

« EVIO data formats are based on 32 bit words

Evio Header Formats
Bank :

32 bits Evio Content Type Codes
se o 8.0
0x0 32 bit unknown (not swapped)
Length (32 bit words, exclusive) ox1 32 bit_unsigned int
Tag (16 bits) (2)| Type (6) Num (8) ox2 32 bit float
Pad/zling 0x3 8 bit char* (string)
Number of unused bytes at end of ox4 16 bit signed int
\ :LISowmg data if not a multiple of 32 o5 16 bit_unsigned Int
Segment . For.shorts, itis O or 2. 0x6 8 bit signed int
For chars (not strings), itis 0,1, 2, or 3 ox7 8 bit unsigned int
Tag (8 bits) [[(2) | Type (6) Length (16) s o4 bt double
Padding 0x9 64 bit signed int
Oxa 64 bit unsigned int
0xb 32 bit signed int
0xc Tag Segment
Tag Segment : — o
Tag (12 bits) Type (4) Length (16) Oxe il
Oxf Composite
0x10 Bank
0x20 Segment
Jeff./e’-go

Front-End (ROC) Data

The CODA Readout Controller
(ROC) is responsible for
collecting raw data from
digitizers as well as trigger and
timestamp information and
wrapping it up for transport.

There is always a Trigger Bank
followed by a User definable
number of Data Banks.

Note that can contain

or which can
further encapsulate information
for the User.

Lengths in the headers facilitate
finding the start of the next bank

or segment.

Headeri

Trigger
Bank

Data
Banks

<

<

ROC Raw Data Record

12 bit ROC ID (0 - 255) Bank of banks
Number of events.
Record Length -0 indi
9 | >{s| RocID| 0x10 T = If = 0, indicates a
S | ROCID | 0x10 M User event from
ROC.
Trigger Bank Length
OXFF1X 0x20 M BE | ER|SY |<— 4 bit Status
R IR
ID 1 0x01 ID Len 1 (60 go& 3 /;%\
Event Number 1) .
og @/)

Timestamp1 (31-0)

Timestamp1 (47 — 32)

Misc. 1 (?)

(One segment for each event)

Bank type = OXFF10 if no Bank of Number of events

IDM

0x01

ID Len M

timestamps, see following chart segments

Event Number M

Timestamp M

IDM

0x01 ID Len M

-

Misc. M (?)

Event ID or Segment of | Length of segment

Data Block Bank 1

Trigger Type ; 32 bitints

W

Low 32 bits of event number used for building, starting at 1 (EB uses 64-bit
value). 48-bit (max) timestamp for building is written as 2, 32-bit ints (low 32

first, high 16 last regardless of endian). Ts & misc. data are optional, but

Data Block Bank Last

events from a particular run must have same type and number of data.

/

Screenshot

Each data block has M events. There are multiple blocks only if
multiple DMAs used in data collection. See Data Block Bank diagram.

J)_ej,f/e’-gon Lab

Evio
Block
Header

Payload
Banks

Format used when sending all types of online

<

Y4

<

CODA Data Transport and Files

Block Length

Block Number

Header Length =8

Event Count

Reserved 1

Bit Info Version

Reserved 2

.

Magic Number

Payload Bank

Payload Bank

Payload Bank

.
1

/

Number of 32-bit words in evio block, inclusive.

Normally order of block in the file/network transfer & starts at 1. If sent
by ROC, = -1 if payload banks not being built, else record id.

Length of block header in 32-bit words.
Number of evio events (payload banks) in block, not including dictionary.

If content type is being built (eg ROC Raw), = source CODA id,
else reserved.

Version: lowest 8 bits (Bits 0-7).
Bit Info: Bit 8 = has dictionary, Bit 9 = is last block,
Bits 10-13 = payload bank type (ROC Raw =0, Physics = 1,
PartialPhysics = 2, Disentangled = 3, User =4,
Control = 5, Other = 15).
Bit 14 = has “first event” (in every split file) is first USER type
event in this block
NOTE: User events from ROC are typed as ROC Raw (EB handles this).

Reserved.

Magic Number (0xc0da0100) for endianness tracking.

CODA data over the network. They are in

standard evio buffer/file output format with block

headers.

- Each payload bank can be a Physics Event, ROC
Raw Record, Control Event, or User event. Note:
" there may be a block header between any 2
payload banks.

J’_e,ff.;r%on Lab

CODA Tools (jeviodmp)

Jevio Event Tree

File View Diaa Event Filter

Event # ’ 6:— Event Q Limit E event source /daqgfs/scratch/data/test_Srocs_2dc_1703.evt.0
< prev next > clear Size 19867 dictionary
EVIO event tree : 1 2 3 4 5
¢ [<Event> has BANKs: tag=65392(0xff70) num=40(0x28) datalen=16796 children=6 0x56T7e628 0x58dce704 0x42T2e628 0x4542e512 0x2h9a1540
9 [CJ BANK of SEGMENTS: tag=65313(0xff21) num=5(0x5) datalen=589 children=7 0x2e7b1540 0x315¢1540 0x343e1540 0x37111540 0x33001540
D SEGMENT of LLONGS4s: tag=0(0x0) dtalen-62 [Ouabisrsio] ohaeza1sioOxsiobisio] Oxsaedisio Oxsscersio
. _ _ : X X4aesa X XJse Xobce
[SEGMENT of USHORT165: tag=0(0x0) datalen=20 : 0x59af1540 0x5c911540 0x5721540 0x62531540 0x65351540
[} SEGMENT of UINT32s: tag=0(0x0) datalen=160 : 0x68161540 0x6af71540 0x6dd91540 0x70bal540 0x739b1540
[() SEGMENT of UINT32s: tag=2(0x2) dataLen=80 0x767d1540 0x795e1540 0x7c3F1540 0x77211540 0x02021540
) SEGMENT of UNT325: tag-7(0x7) datalen-80 [Oursiaisaoouisabisio]Ox1oodisdoOctbeersdo oaberisio
. _ _ i X a X X X1lbee x1lbe
() SEGMENT of UINT32s: tag=1(0x1) datalen=80 : 0x1ed01540 0x21b11540 0x24921540 0x27741540 0x2a551540
[) SEGMENT of UINT32s: tag=3(0x3) datalen=80 : 0x2h211508 0x2d361540 0x30181540 0x32791540 0x35db1540
9 [CJ BANK of BANKs: tag=0(0x0) num=40(0x28) datalen=4071 children=2 0x38bc1540 0x3b9d1540 0x3e7T1540 0x41601540 0x44411540
[7) BANK of UINT32s: tag=5(0x5) num=40(0x28) datalen=4004 0x47231540 0x4a041540 0Ox4ce51540

DIBANK of UINT32s: tag=10(0xa) num=40(0x28) datalen=63

¢ [CJ BANK of BANKs: tag=2(0x2) num=40(0x28) datalen=4006 children=1
DBANK of UINT32s: tag=5(0x5) num=40(0x28) dataLen=4004

¢ [CJ BANK of BANKS: tag=7(0x7) num=40(0x28) dataLlen=2706 children=1
DBANK of UINT32s: tag=5(0x5) num=40(0x28) datalen=2704

¢ [CJ BANK of BANKS: tag=1(0x1) num=40(0x28) datalen=2706 children=1
DBANK of UINT32s: tag=5(0x5) num=40(0x28) datalen=2704

¢ [CJ BANK of BANKs: tag=3(0x3) num=40(0x28) datalen=2706 children=1
DBANK of UINT32s: tag=5(0x5) num=40(0x28) dataLen=2704

structure BANK tag 10 length 256 bytes

data type UINT32 number 40 description 777

.ggﬁ';gon Lab

Some Comments on Endianness

e A typical situation in the current CODA Framework:

VMEBUS (Big Endian) ==» ROC (Little Endian) =% JAVA EB/ER (Big Endian) == FILE (Big Endian) ==» Analyzer (Little Endian)

!

Monitor (Little Endian)

* To try and minimize the issues with Endianness, when we convert a EVIO Data Block BIG to
LITTLE or visa—versa we only swap the headers and built banks.

 The Raw User Data Banks are not touched (Except for the Bank and Segment Headers).

e This allows all the CODA EVIO tools to be used, but the User is responsible for knowing what

the original Endianness of the raw data was when it was readout and wrapped up in the
Bank.

JLAB VXS FADC in “Streaming Mode”

Streaming data can be thought of as Triggered mode where the trigger is a fixed Frame Rate (internal trigger)
and you keep all the data for a single or multiple channels in the current frame (Time Slice).

The JLab 250 MHz FADC generates a 12 bit sample every 4ns. That’s 3 Gb/s for one channel. A 16 channel
module is 48 Gb/s. That is over twice the available VXS slot bandwidth. But we don’t need ALL the data.

Readout Time Slice TS TS2 TS3 TS4
RO l ROI ROI \ ROI l
Chan 1 Winiiin y TN AT | T
= A w W
Fine : i : i |
Time Stamp ::3 ﬁ:: :E: >re :i
: " RO | ROI | ROI i
! | T ! [T | (T |
Chan 16 Y - S J_

Within the FPGA we keep only the data around a Region of Interest (ROI) from
each channel, along with a fine time stamp in each time slice window.

Depending on hit rates and available bandwidth , We can keep the individual
samples or just compute a sum. —

Triggered vs Streaming

Triggered Mode (Current FADC) Streaming Mode (Proposed) _ .

RO ROI ROI Ex.ternal | Ti e.S||Ce
T T, (] Trigger (TS} | Ro RO RO (time stamp)
! :ﬂ'l'l'l'l'l'l'l'l'l'l'] CEELTTERTTTR (TP
e e i T [

EQ 511 (Sample #) i ETH './ TH n,/ TH './ i
. PTW (0-2ps) § i i i
) PL (0-8jus) g 59 Fine time stamp (250 MHz) @i(Max Sample #)

>

1 Frame = N Clocks (16bits -> up to 262 ps for a 4ns clock)

PL: Programmed Lookback PTW: Time window _
(Each FADC can self trigger at the desired Frame Rate)

Data we get on a trigger:

ADC Vval Threshold S le #, Tri Ti St . . .
AES, TREshOId Sampie 7, Trigeer Time stamp For a given Time Slice we can create a new bank of data:

For a given Block of Triggers we create a bank of data:

Length (words) Tag includes: Module ID/Status
S y Stream Header |: Tag | DT | M DT: Bank of Banks
Length (words Tag includes: ROC ID/Status M: # of ADC Channels
ROC Header |: Tag | OT | M DT: Bank of Banks o
M: # of Events in the Block Timing Segment Timing Bank includes:
. Time Slice Value (in # clocks)
Trigger Bank Trigger Bank includes: Time stamp
(For M Events)
Trigger Time stamps
Event #s D(aFta Banks in(cj:lulde:'vI o o
' D Bank or one module - annels
Data Banks include: ata Ba (S) ADC Values or integrals
Data Banks (For M Events) Sample #s/Thresh time
ADC Values or integrals
Sample #s/Thresh time —>
For ALL Modules in the Crate Jefferson Lab
o—

Triggered vs Streaming Blocks

In the GlueX Experiment at JLAB the L1 trigger creates about 100 kHz Event
rate (~10 us/trigger). This means that we would need to define a Streaming

time slice of 10 us to, on average, get one good event in the data.
—How much more junk data will be in this time slice?

GlueX already blocks 40 events for transport from the ROC.

— It seems reasonable we should make time slices even larger?
— A 65 pus time slice corresponds to ~6-7 events and a very managable 15 kHz “Frame”

rate.

The larger the time slice —the more efficient DAQ becomes.
—Less overhead in the data formatting — e.g. more data with fewer headers

— Larger blocks of data moved more efficiently in the back-end
—Making sure there are multiple "Events” in the slice can make processing more efficient

as well (smaller % of boundary events).

Jefferson Lab

Stream “Building” Considerations

« AFrame has a number (like an Event #) but also an absolute Time stamp based on a system clock.

Raw streams can have a unique bit/byte structure until they reach the 15t Aggregation point.
— First opportunity to process and/or filter a Frame and combine with other stream Frames for a given “Time Stamp”.

Raw stream data can be wrapped in a bank structure (Raw Stream Bank — RSB)

Multiple streams will be wrapped in an additional Bank (Aggregate stream Bank — ASB)
— It will be an Bank containing Banks. The Tag will contain the Aggregation ID. This should be unique to the experiment
— Include Time Stamp Segment-TSS (analogous to the Trigger bank).
— Then perhaps an Aggregation Info Segment - AlS)

Subsequent Aggregation of ASBs (secondary aggregation points)

— Since Aggregation IDs must be unique for the the system, we can now simply build new ASBs that are just a collections of ASB
Banks with an Aggregated TSS (just like built trigger banks) as well as an aggregated AlS.

— Original TSS can be removed.

Jefferson Lab

Stream Aggregation

Aggregate Stream Banks (ASB)

Raw Stream Bank (RSB)

15t Aggregation Subsequent Aggregations

Length (words)
Length (words) Length (words) ASB Header |:
RSB Header [[t il ASB Header | [=8l Tag [DT | %
TSS — Time Stamp Segment
TSS (holds Time slice number A-TSS
Raw Stream and time stamp for first
Data for one aggregation point).
Time slice
AlIS AIS — Aggregation Info Segment A-AIS
(holds number of RSBs that follow).
Tag: Local Stream ID — Unique just to the 1st Aggregation point RSB 1 For subsequent aggregations the ASB1
Detector/Channel info? ASB .
s are simply appended and
DT: Data Type — User specified RSB 2 ply app ASB 2
SS: Stream Status — Raw Bank, Did data get dropped? Clock info, the TSS and AlS are updated to
Error? hold all Time stamp info and
Total number of ASBs.
RSB N (In principle we could dump the
TSS in each of the original ASBs)
Tag: Aggregation Point ID — Unique to the whole system
DT: Data Type — Bank of Banks (0x10)
SS: Stream Status — Aggregate Bank, 15t Aggregation
Did data get dumped in any of the streams?
get aump Y ASB M
c 2

JLAB VXS Architecture

Raw Stream
Blocks

Aggregation Issues

FADC (16 Channels) SSP (32 Channels)

FPGA

Aggregate Stream
Blocks (1t Level)

Aggregate Stream
Blocks (Higher Levels)

FPGA

N

o

VTP

Up to four
10Gb Ethernet links

Up to 16 Modules (VXS 10-20 Gb/s)

CODA_SRO
Software Aggregation

Initial stream aggregation will almost always
happen in firmware (FPGAS)

Stream Aggregation points should have a
well defined Data Loss algorithm
— There is no “trigger” to disable but do we
need to disable the whole system at the front-
end by a “busy”?
— Backpressure to an individual stream source
may not be practical.

— Better to drop data from a "hot” channel
before it is aggregated.

Provide configurable Frame buffering for
both inputs and outputs to mitigate
network/software latencies.

Jefferson Lab

Back-End Considerations

Implementation of a new data encapsulation standard for
CLAS12 offline analysis called HIPO -- High Performance
Output prompted efforts to keep CODA EVIO format as
consistent as possible with the new standard. Version 4
was too limited.

New version of EVIO (Version 6) recently developed that
provides a compatible File and Data transport header for
both EVIO and HIPO.

Support is also included for data compression as well as
optional User headers and index array pointers to help
provide more efficient file skimming.

These new features can be useful in the streaming model
for the Back-End processing.

EVIO (Version 4)

Block Length
Block Number

Header Length = 8

Event Count

Reserved 1

Bit Info Version

—

Reserved 2

Magic Number

Payload Bank

Payload Bank

Payload Bank [

Jﬁfégon Lab

10

11

12

13

14

EVIO (Version 6) and HIPO Support

EVIO/HIPO General Header Format

Uncompressed Format

Compressed

ID Word / Block Length (Words)

File # / Record #

Header Length (Words) >=8

Record / Block Index Count

Index Array Length (Bytes)

Bit Info/Status Version

User Header Length (Bytes)

Magic Number (0xcOda0100)

Data Record/Block Length (Bytes)

Type(4bits)

Compressed Length (Words)

General Register 1

General Register 2

Original
EVIO 4
Header

General Header

General Header

Index Array (32 bit unsigned ints)

User Header

i Pad 1

Data Record/Block

Compressed Record

Pad 3

Pad 2

Summary

Standardizing on a consistent data encapsulation format from the front-

end to the back-end is critical to providing common tools for efficient DAQ
systems debugging and analysis.

New consideration for the increased requirements of Back-end
processing in the streaming model need to be made to help facilitate
processing efficiency.

For JLab, we see a path forward by adapting the existing CODA EVIO
data and file formats to the new streaming readout architecture.

However, if the community can agree on some common standard, JLab is
In the best position now to adopt and continue to develop with this
standard in place for SRO.

Jgj_ﬂ;-gon Lab

