
JLAB Data Formats for DAQ
(and proposals for Streaming)

Streaming Readout VII – Virtual Meeting
Nov 16-18, 2020

David Abbott - FEDAQ Group
Jefferson Lab – Physics Division

Data Acquisition at JLab
• Historically the DAQ group (in Physics Division) has existed at Jefferson Lab from

the very beginning
҆The CODA toolkit has been supported and expanded through 3 generations so far.

҆All 4 Experimental Halls are using some version of CODA for data acquisition.

• One aspect of the CODA toolkit is a data format standard we call EVIO (Event I/O)

҆ It defines simple data structures at the Front-End for encapsulating raw data from digitizers/ASICs

҆ Also defined is a file format block structure. This structure is also useful for blocking up data for
transport over a network or shared memory between CODA software components.

• The CODA tool kit also has useful EVIO libraries and applications

҆ C, C++ and JAVA APIs for reading/writing with EVIO Files

҆ GUI utility (jeviodmp) for viewing and/or debugging EVIO Files as well as spying on active data
streams.

• We are currently looking to adapt EVIO to support Streaming Data architectures.

EVIO Primitive Data Structures
• EVIO data formats are based on 32 bit words

Front-End (ROC) Data
• The CODA Readout Controller

(ROC) is responsible for
collecting raw data from
digitizers as well as trigger and
timestamp information and
wrapping it up for transport.

• There is always a Trigger Bank
followed by a User definable
number of Data Banks.

• Note that Banks can contain
Banks or Segments which can
further encapsulate information
for the User.

• Lengths in the headers facilitate
finding the start of the next bank
or segment.

CODA Data Transport and Files

CODA Tools (jeviodmp)

Some Comments on Endianness

VMEBUS (Big Endian) ROC (Little Endian) JAVA EB/ER (Big Endian) FILE (Big Endian) Analyzer (Little Endian)

• A typical situation in the current CODA Framework:

• To try and minimize the issues with Endianness, when we convert a EVIO Data Block BIG to

LITTLE or visa–versa we only swap the headers and built banks.

• The Raw User Data Banks are not touched (Except for the Bank and Segment Headers).

• This allows all the CODA EVIO tools to be used, but the User is responsible for knowing what

the original Endianness of the raw data was when it was readout and wrapped up in the

Bank.

Monitor (Little Endian)

JLAB VXS FADC in “Streaming Mode”

TS1

0 N

ROI

TH

ROI

TH

ROI

TH

ROI

TH

TS2 TS3 TS4

ROI

TH

ROI

TH

ROI

TH

Fine

Time Stamp

Chan 1

Streaming data can be thought of as Triggered mode where the trigger is a fixed Frame Rate (internal trigger)

and you keep all the data for a single or multiple channels in the current frame (Time Slice).

The JLab 250 MHz FADC generates a 12 bit sample every 4ns. That’s 3 Gb/s for one channel. A 16 channel

module is 48 Gb/s. That is over twice the available VXS slot bandwidth. But we don’t need ALL the data.

Chan 16

Readout Time Slice

Within the FPGA we keep only the data around a Region of Interest (ROI) from

each channel, along with a fine time stamp in each time slice window.

Depending on hit rates and available bandwidth , We can keep the individual

samples or just compute a sum.

.

.

.

Triggered vs Streaming
External
Trigger (TS)

PL (0-8µs)

PTW (0-2µs)

ROI

TH

0 511 (Sample #)

For a given Block of Triggers we create a bank of data:

PL: Programmed Lookback PTW: Time window
Data we get on a trigger:

ADC Values, Threshold Sample #, Trigger Time Stamp

ROC Header

Trigger Bank

Data Banks

Length (words)
Tag DT M

Tag includes: ROC ID/Status
DT: Bank of Banks
M: # of Events in the Block

Trigger Bank includes:
(For M Events)
Trigger Time stamps
Event #s

Data Banks include:
(For M Events)
ADC Values or integrals
Sample #s/Thresh time

For ALL Modules in the Crate

Triggered Mode (Current FADC) Streaming Mode (Proposed)
Time Slice

(time stamp)ROI

TH

0 N (Max Sample #)

For a given Time Slice we can create a new bank of data:

1 Frame = N Clocks (16bits -> up to 262 µs for a 4ns clock)
(Each FADC can self trigger at the desired Frame Rate)

Stream Header

Timing Segment

Data Bank(s)

Length (words)
Tag DT M

Tag includes: Module ID/Status
DT: Bank of Banks
M: # of ADC Channels

Timing Bank includes:
Time Slice Value (in # clocks)
Time stamp

Data Banks include:
(For one module - M Channels)
ADC Values or integrals
Sample #s/Thresh time

ROI

TH

ROI

TH

ROI

TH

ROI

TH

Fine time stamp (250 MHz)

Triggered vs Streaming Blocks

• In the GlueX Experiment at JLAB the L1 trigger creates about 100 kHz Event
rate (~10 µs/trigger). This means that we would need to define a Streaming
time slice of 10 µs to, on average, get one good event in the data.
҆How much more junk data will be in this time slice?

• GlueX already blocks 40 events for transport from the ROC.
҆It seems reasonable we should make time slices even larger?
҆A 65 µs time slice corresponds to ~6-7 events and a very managable 15 kHz “Frame”

rate.

• The larger the time slice –the more efficient DAQ becomes.
҆Less overhead in the data formatting – e.g. more data with fewer headers
҆Larger blocks of data moved more efficiently in the back-end
҆Making sure there are multiple ”Events” in the slice can make processing more efficient

as well (smaller % of boundary events).

Stream “Building” Considerations
• A Frame has a number (like an Event #) but also an absolute Time stamp based on a system clock.

• Raw streams can have a unique bit/byte structure until they reach the 1st Aggregation point.

҆ First opportunity to process and/or filter a Frame and combine with other stream Frames for a given “Time Stamp”.

• Raw stream data can be wrapped in a bank structure (Raw Stream Bank – RSB)

• Multiple streams will be wrapped in an additional Bank (Aggregate stream Bank – ASB)

҆ It will be an Bank containing Banks. The Tag will contain the Aggregation ID. This should be unique to the experiment

҆ Include Time Stamp Segment-TSS (analogous to the Trigger bank).

҆ Then perhaps an Aggregation Info Segment - AIS)

• Subsequent Aggregation of ASBs (secondary aggregation points)

҆ Since Aggregation IDs must be unique for the the system, we can now simply build new ASBs that are just a collections of ASB

Banks with an Aggregated TSS (just like built trigger banks) as well as an aggregated AIS.

҆ Original TSS can be removed.

Stream Aggregation

RSB Header

Raw Stream
Data for one

Time slice

Length (words)
Tag DT SS

Tag: Local Stream ID – Unique just to the 1st Aggregation point
Detector/Channel info?

DT: Data Type – User specified
SS: Stream Status – Raw Bank, Did data get dropped? Clock info,

Error?

Raw Stream Bank (RSB) Aggregate Stream Banks (ASB)

ASB Header Length (words)
Tag DT SS

RSB N

RSB 1

RSB 2

…

TSS

AIS

Tag: Aggregation Point ID – Unique to the whole system
DT: Data Type – Bank of Banks (0x10)
SS: Stream Status – Aggregate Bank, 1st Aggregation

Did data get dumped in any of the streams?

TSS – Time Stamp Segment
(holds Time slice number
and time stamp for first
aggregation point).

AIS – Aggregation Info Segment
(holds number of RSBs that follow).

ASB Header Length (words)
Tag DT SS

ASB M

ASB 1

ASB 2

…

A-TSS

A-AIS

For subsequent aggregations the
ASBs are simply appended and
the TSS and AIS are updated to
hold all Time stamp info and

Total number of ASBs.
(In principle we could dump the
TSS in each of the original ASBs)

1st Aggregation Subsequent Aggregations

Aggregation Issues
• Initial stream aggregation will almost always

happen in firmware (FPGAs)

• Stream Aggregation points should have a
well defined Data Loss algorithm
҆There is no “trigger” to disable but do we

need to disable the whole system at the front-
end by a “busy”?
҆Backpressure to an individual stream source

may not be practical.
҆Better to drop data from a ”hot” channel

before it is aggregated.

• Provide configurable Frame buffering for
both inputs and outputs to mitigate
network/software latencies.

FADC (16 Channels)

FPGA

…

FPGA ARM

Up to four
10Gb Ethernet links

VTP

CODA_SRO
Software Aggregation

…
Up to 16 Modules (VXS 10-20 Gb/s)

…Raw Stream
Blocks

Aggregate Stream
Blocks (1st Level)

Aggregate Stream
Blocks (Higher Levels)

JLAB VXS Architecture

SSP (32 Channels)

FPGA

…

Back-End Considerations
• Implementation of a new data encapsulation standard for

CLAS12 offline analysis called HIPO -- High Performance
Output prompted efforts to keep CODA EVIO format as
consistent as possible with the new standard. Version 4
was too limited.

• New version of EVIO (Version 6) recently developed that
provides a compatible File and Data transport header for
both EVIO and HIPO.

• Support is also included for data compression as well as
optional User headers and index array pointers to help
provide more efficient file skimming.

• These new features can be useful in the streaming model
for the Back-End processing.

EVIO (Version 4)

EVIO (Version 6) and HIPO Support

Original
EVIO 4
Header

Summary
• Standardizing on a consistent data encapsulation format from the front-

end to the back-end is critical to providing common tools for efficient DAQ
systems debugging and analysis.

• New consideration for the increased requirements of Back-end
processing in the streaming model need to be made to help facilitate
processing efficiency.

• For JLab, we see a path forward by adapting the existing CODA EVIO
data and file formats to the new streaming readout architecture.

• However, if the community can agree on some common standard, JLab is
in the best position now to adopt and continue to develop with this
standard in place for SRO.

