
Comparison of data formats

Jan C. Bernauer for the organizers

Streaming Readout VII, 2020



Thank you all for sending me the slides!

I Full slides are attached at the end. I'll show here some
selections of things I noticed.

2



CBM

I Byte aligned, padded to 8 bytes

I A microslice is part of a bu�er? (O�set?)

I CRC

3



COMPASS++/AMBER

I bit packed

I 2xCRC

4



MBS

5



RCDAQ

I short aligned, 32 bit padded

I no crc?

6



Take away / Questions

I Rarely footer (which might be nice for CRC in a streaming
setup?)

I Mostly byte aligned

I Typical �elds: Length (�rst?), event nr/timing, channel

I Length of all, or payload?

I Since we won't have �events�, how do we specify the time?

I Absolute wall clock time?
I Bunch Nr (+o�set for �ner timing? )

7



  

MBS subevent header (big endian representation):

typedef struct{

int l_dlen; /* Data length +2 in words */

short i_subtype; /* Subtype */

short i_type; /* Type number */

char h_control; /* Processor type code */

char h_subcrate; /* Subcrate number */

short i_procid; /* Processor ID [from setup] */

} s_veshe;

White Rabbit full timestamp header (WRTS):

int   sub-system id /* (32 bits, multiples of 0x100) */

short 0x03E1       /* (16 bit fixed code)*/

short WRTS_L16   /*  WRTS bits 00-15 */

short 0x04E1       /* (16 bit fixed code)*/

short WRTS_M16   /*  WRTS bits 16-31 */

short 0x05E1       /* (16 bit fixed code)*/

short WRTS_H16   /*  WRTS bits 32-47 */

 short 0x06E1       /* (16 bit fixed code)*/

short WRTS_X16   /*  WRTS bits 48-61 */

Custom hit messages with “local” timestamps (TS, relative to WRTS header)

…..

J. Adamczewski-Musch, N. Kurz, EEL, GSI

data packets from free running systems:
● free running data acquisition systems sends 

formatted MBS sub-events of hits
● each sub-event is headed by White Rabbit Time 

Stamp (WRTS) - 1 ns units, starting from 1970
● each sub-event contains data from “many” hits 

(MBS container)
● each hit has TS of variable size, but significantly 

smaller than WRTS
● each hit TS must have a sufficient correlation to 

full WRTS header
● hit data format inside MBS container has no 

dependency for time sorting and can be chosen 
freely by each detector/sub-system

Streaming readout for multi-purpose DAQ 
system MBS



 MicroSlice(μS) = self-contained data container from a 
single CRI and for a fixed period of time 
 Output of the CRI in CBM => generated in FW
 Constant length in experiment time
 Typical period of time: 10’s of μs to ms
 Length adapted to data format, data rate (beam 

condition), container efficiency and network 
performance

 TimeSlice(TS) = container collecting the μS of all CRI cards in the setup 
and for a given number of μS
 Assembled by FLESNET (CBM DAQ prototype) 

 generated in SW
 Typical number of μS per source: 10-1000 

 time range: ms to s
 Includes overlap μS to avoid analysis losses close to edge
 Length adapted to match memory ressource in processing nodes
 One TS for the full setup for each time interval
 Input unit for Online analysis: TS are distributed to the processing 

nodes for reconstruction, event building, physics analysis and 
selection

CBM: Data containers for transport and analysis



CBM: Data sources, Data Format and constraints on containers

• Data sources = ASICs and/or FPGAs, self-triggered and free-streaming
• Messages =  representation of the signals generated in data sources, not context free as optimized for best compromise 

between resolution and bandwidth usage
• Typical stream organization: Periodic context messages with MSB of timestamp + Hit messages with LSB & ADC, TOT, chan …
• MicroSlice(μS) = self-contained data container from a single CRI and for a fixed period of time, granularity of length choice 

depends on context messages interval
Example for Silicon Tracker prototype:

ASIC
DPB/CRI FLESNET Online Analysis

24b Frames
T – H – H –T –H …

32b
Messages

μS TS

Microslice format:



COMPASS++/AMBER FriDAQ Protocol

Timeslice Header/Trailer:

payload: Image Header/Trailer:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ImageID 14bit StationID 3bit ViewID 3bit DataType 6bit NU 4bit S

Payload 32bit

Payload 32bit

Payload 32bit

CRC 32bit

Benjamin Moritz Veit COMPASS++/AMBER DAQ 18. November 2020 1 / 1



1 Data Formats

1.1 The Packet Header

The composition of the full 16-byte header is shown in table 1.

Table 1: The Packet Header.
0151631

packet length
packet type packet id

padding hitformat
reserved/alignment reserved/alignment


Packet
Header

data
...

data

 Data

The length is measured in 32-bit units (DWords), which allows us to have packet
lengths of up to 16 GBytes, although most packets are substantially smaller. Each
packet is a multiple of 32bit units (so each data structure starts at least on a 32
bit boundary). We usually choose higher data alignment boundaries (64bit or even
128bit). Aligning the data blocks to the prevailing CPU data bus widths (64bit at
present) speeds up the processing of data.
The fields in the header are

packet length the overall length of the packet structure in Dwords

packet id a unique identifier for the packet that says which unit generated the
packet

packet type indicates the fundamental storage size in the packet, expressed in
bytes (1 (character data), 2 (16bit), 4 (32 bit),...). This field is also known
as the “swap unit” in case the data payload has to be byte-swapped for a
different CPU architecture. It also gives the unit for the padding value.

hitformat This value identifies an algorithm to decode the data payload so the
decoded data can be accessed by a set of standard APIs.

padding The amount of additional data added to bring the packet size to the
desired alignment boundary.

2 reserved/alignment fields Those fields can hold 2 16bit values as needed to
verify the proper alignment of various data blocks. They are set to 0 if unused.

1



0151631

packet length = 6
type = 2 id = 1001

padding = 1 hitformat = 3002
0x3A 0x79CE


Packet
Header

40 20
0 55

}
Data

Table 2: An example of a (fictitious) 64-bit aligned packet that holds the three
16bit values 20, 40,and 55, and a combined alignment value of 0x3A79CE.

078151631

Event length

reserved event type

Event Sequence

Run Number
Time/Alignment 0
Time/Alignment 1
Luminosity Block

reserved



Event
Header

data
...

data

 Data

Table 3: The structure of an Event Header.

Table 2 shows the composition of a (fictitious) packet with id 1001 that holds three
16-bit values (so it has the packet type 2) 20, 40, and 55. In order to maintain
the 64bit alignment of the data, an additional 16bit word is added, which gives a
padding value of 1.

1.2 The Event Header

While in transit between components, for example between a SEB and a Buffer
Box, a number of packets is preceded by a Event Header, sometimes also called the
Frame Header.
Table 3 shows the structure of the event header. The event length is again given in

2



078151631

0x0000890c event length = 0x890c = 35084

0x00000002 0x000000 type = 2

0x00000002 Event Sequence = 2

0x00001051 Run Number= 0x1051 = 4177
0x00000000 Time field 1 = 0
0x5be1e129 Time field 2 = 0x5be1e129 = 1541529897
0x00000000 Luminosity Block = 0

0x00000000 reserved = 0



Event
Header

packet data
...

packet data

 Data

Table 4: A hex-dump of an actual Event Header and its structure. The event
type 2 denotes streaming data. Because the first time field is 0, the 2nd word is
interpreted as a Unix time (1541529897). This corresponds to a date of Nov 6, 2018,
13:44:57, when the data were taken.

DWords (32bit length).
The Event header structure has two general-purpose time and alignment fields. If
the first alignment field is 0, the second field is interpreted as a Unix time (32bits).
Else the two fields are interpreted as system-specific alignment data.

3


