

acific MicroCHIF

Pacific MicroCHIP

32 Channel ASICs for Detector Signal Digitizing and Processing

SBIR Awards: DE-SC0017213 DE-SC0018566

Pacific MicroCHIF

Pacific MicroCHI

Dalius Baranauskas Anton Karnitski Reza Ramezani Gytis Baranauskas

Presentation Outline

- The Company, Its Specialization/Expertise
- ASIC Development Motivation
- Relevance to the NP Program
- Project Goals
- ASIC #1 12-bit 32 Ch 500MS/s ADC
- Chip Specifications and Architecture
- Comparison to ADCs Available on the Market
- Chip Carrier and Packaging
- Testing Results
- Future Plans
- ASIC #2 Event Driven Backen with 12-bit 32 Ch 200MS/s ADC
- Chip Specifications and Architecture
- Digital Backend Implementation
- Chip and Its Packaging
- Testing Results
- Future Plans

The Company

- Pacific MicroCHIP Corp. was incorporated in 2006.
- It is headquartered in Culver City, California.
- Main focus of the Company providing IC/ASIC design services and turnkey solutions.

Office in Culver City, CA

Our Offerings

IC/ASIC Design Services:

- Circuit Design (analog, RF/mixed, digital)
- Simulation
- Physical Design
- Chip Assembly

Turnkey Solutions:

- ASIC Design
- Chip Fabrication Logistics
- Package Development (involving a 3rd party)
- Chip Packaging (involving a 3rd party)
- PCB Development for Testing/Eval. (involving a 3rd party)
- Testing/Characterization (an in-house lab)
- Delivery of Chips, Parts and Board Level Solutions

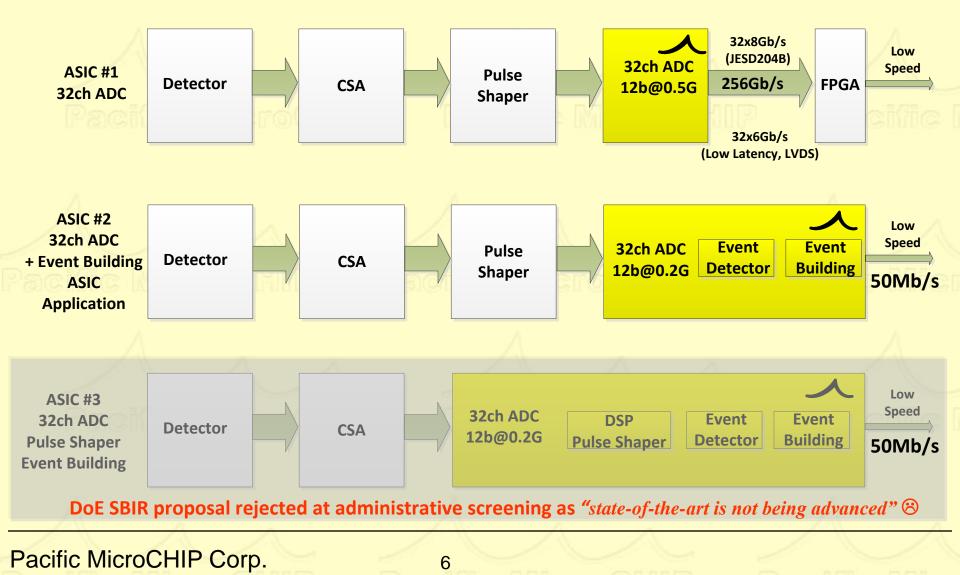
SBIR Funded Development of ASICs for Detector Signal Processing

ASIC #1: 32 Ch 12-bit 0.5GS/s ADC ASIC #2: 32 Ch 12-bit 0.2GS/s ADC + Event Driven Back-end

5

Pacific MicroCHIF

Pacific MicroCHII


Pacific

Where the ASICs Fit

acinic Microchill?

Relevance to the NP Needs

Modern detectors include thousands of signal processing channels Need for digitizing channels to:

- Shrink in size our ASICs combine 32 independent ADCs per chip.
- Reduce power consumption 25mW (ASIC #1), 6mW (ASIC #2) per channel.
- Reduce wire congestion:
 - . ASIC #1 and ASIC #2 a serial interface can be shared between 2, 4 or 8 ADCs.
 - . ASIC #2 Event Driven Back-end greatly reduce interface data rate.

Other requirements:

- Digitizing accuracy our ADC features 12-bit resolution.
- Adequate sampling speed our ADC features up to 0.5GS/s (ASIC #1).

7

• Low conversion latency - we offer down to 8ns (ASIC #1).

ASIC Development Project Goals

- To design chips.
- To fabricate the chips.
- To develop a special chip carrier.
- To package the chips.
- To develop a test PCB and a DUT socket.
- To develop a GUI and a test bench.
- To test and characterize ASICs.

ASIC #1 12-bit 32 Channel 500MSps Low Latency ADC

9

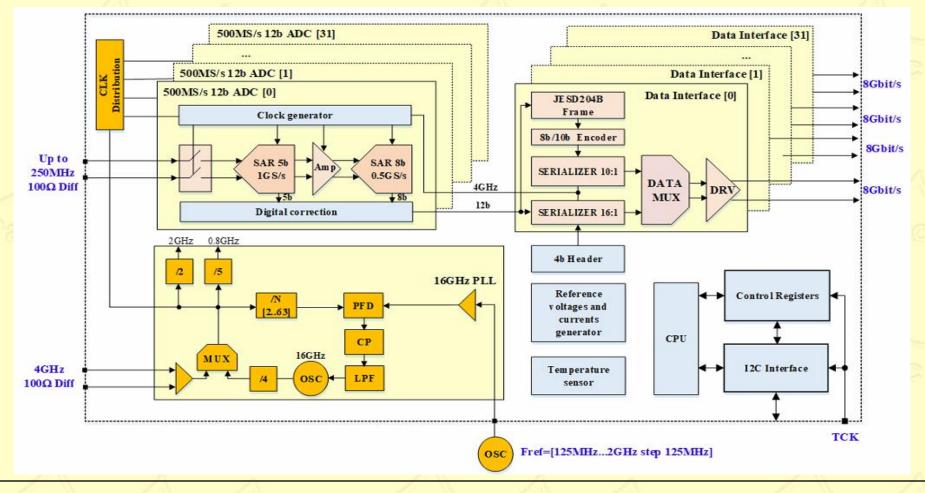
Pacific MicroCHIP Pacific MicroCHIP F

acific MicroCHIF

Pacific

ASIC #1 12-bit 32 Channel 500MSps Low Latency ADC

Specifications (expected performance):


- 32 independently operated ADC channels
- 500 MS/s sampling rate
- 0.6Vpp differential input swing
- 10-bit ENOB
- 250MHz input signal bandwidth
- -40C..+125C temperature range
- 25mW/channel power consumption (with an interface)

- JESD204B output data interface
- 8ns latency (direct ADC data output mode)
- 32x8Gb/s output data rate
- I2C interface for ASIC control
- 7.7mm² ASIC layout footprint
- A solder bumped die in a BGA package
- 28nm CMOS technology

12-bit 32 Channel 500MSps Low Latency ADC

ASIC Block Diagram

Pacific MicroCHIP Corp.

US Patent Pending

Comparison to ADCs Available on the Market

#	Vendor	# of Channels	Sample Rate, MS/s	Power Cons. per Channel	Architecture & Latency
1.	TI 12-bit ADS52J90	32	40	41mW	Pipeline 2.5us
2.	TI 12-bit ADS5403IZAYR	1	500	1W	Pipeline 240ns
3.	TI 12-bit ADS54T04IZAYR	2	500	1.15W	Pipeline 240ns
4.	ADI 12-bit AD9234BCPZRL7	2	500	1.5W	Pipeline 240ns
5.	Pacific Microchip Corp. 12-bit*	32	500	25mW	SAR/Pipeline 8ns

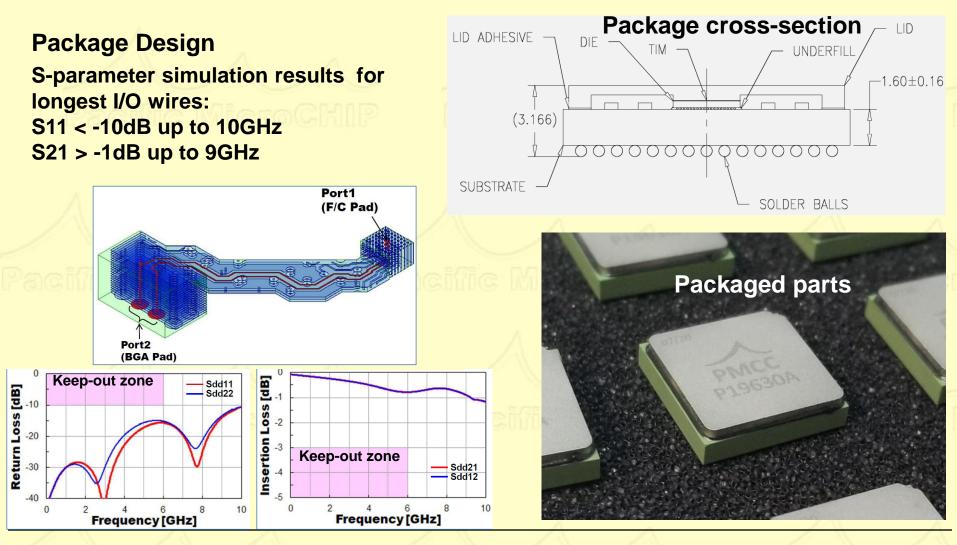
* Expected performance

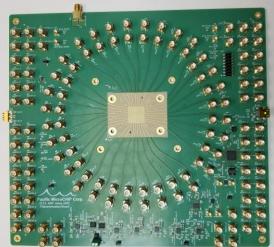
Fabricated Chips

ADC Channel (1 out of 32)

> • PLL Temperature Sensor CPU for Calibration I2C Control Interface

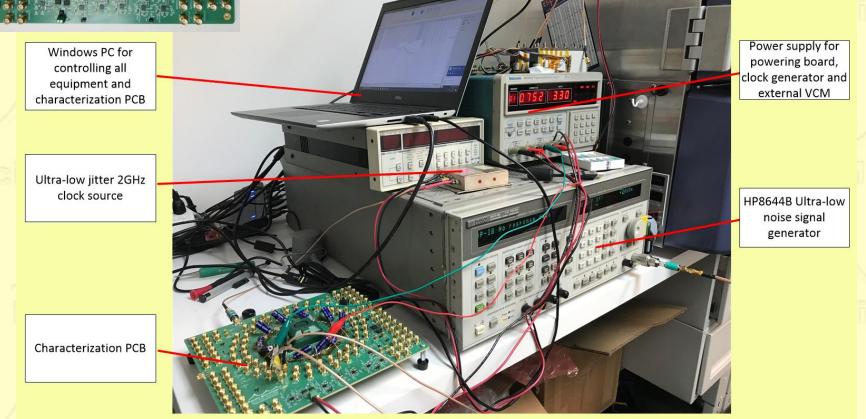
60 Output Data Buffer Digital Registers Sub-ADC1 Sub-ADC2 10 60 **Offset Cancelation** 1 6 1 **Common Block With:** 1 01 -61 6 (1)1 6 6 00 1111 0 6 60 0 6 6 1 6 6 0 (1) 6 ÓD 1


Pacific MicroCHIP Corp.


US Patent Pending

Chip Packaging

BGA 15.2 x 15.2 mm, 18 x 18 balls, 0.8mm ball pitch

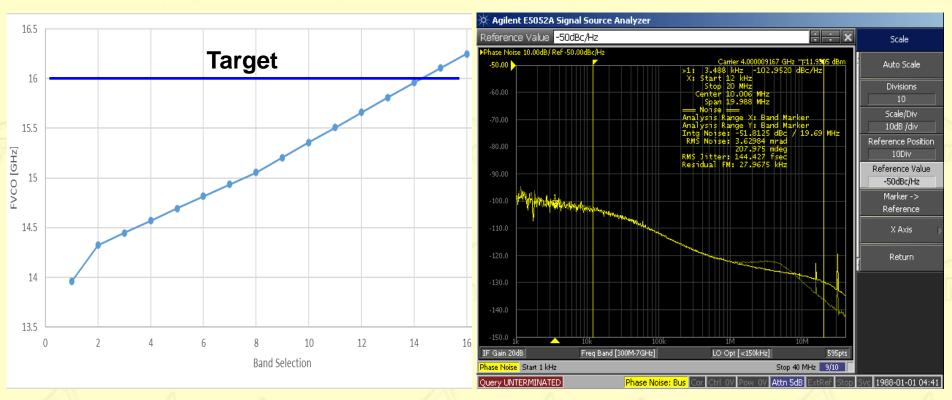


Testing Setup

← Test Board

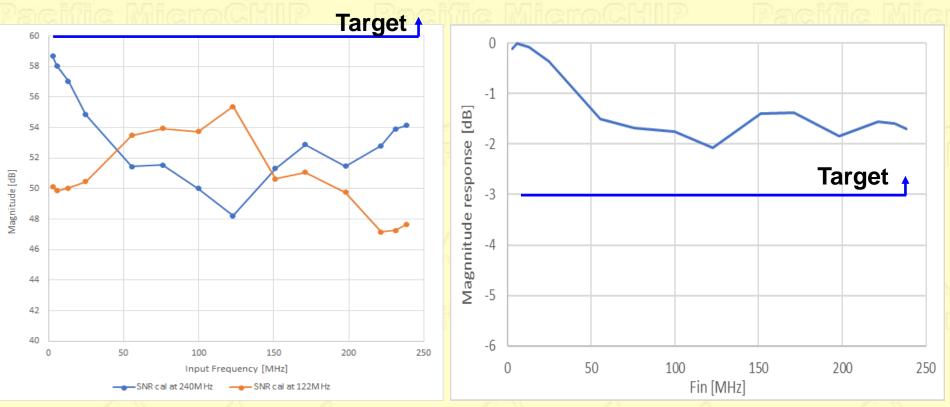
- Exposed area in the center for DUT socket
- 32 differential inputs in a circle for delay equalization
- 32 differential outputs at the PCB's edge (less critical to PCB losses)

Power Consumption


Supply	V [Volts]	l [mA]	P [mW]
VDDD	0.9	445	400.5
VDD18	1.8	9	16.2
VDDA	0.9	88	79.2
VDD12	1.2	564	676.8
PLL	0.9	60	54.0
Total:			1226.7
Per Channel:			38.3

Notes: Power of the JESD204B interface is included. An input signal is applied only to a single ADC out of 32. The VDDD consumption is expected to increase when a signal is applied.

PLL Performance


Targeted frequency achieved on the 14th band. It will be tuned up in the 2nd prototype. Phase noise tested at 16GHz/4. 144fs RMS jitter (12K-20MHz range). Jitter does not depend significantly on PLL BW.

17

ADC Performance

ENOB vs. Input signal frequency.

When the ADC is calibrated at 240MHz: 9.5 ENOB @ 5MHz

8.6 ENOB @ 250MHz (Nyquist)

Pacific MicroCHIP Corp.

When the ADC is calibrated at 122MHz: 8.8 ENOB @ 122MHz

Future Plans for ASIC #1

- To finish testing the chip's 1st prototype (End of Ph II).
- Transition to Phase IIB to redesign the chip, increase its performance, fix issues identified during testing.
- To fabricate the final chip.
- To test/evaluate it.
- To prepare the chip description and datasheets.
- To organize the ADC ASIC design as an IP block and advertise it.
- To provide the chip to the DoE community and commercial customers.

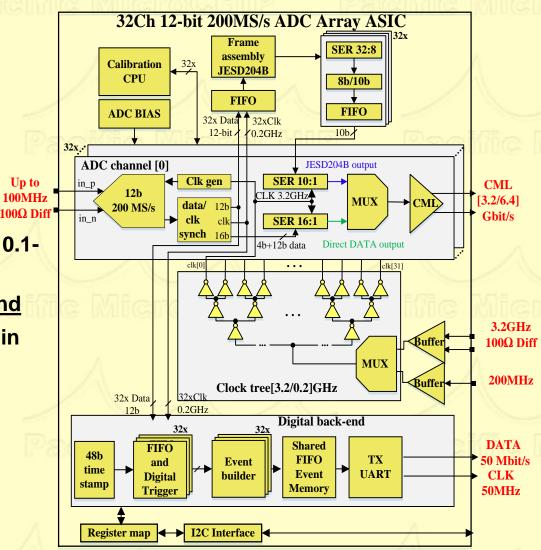
Pacific MicroCHIP

Pacific MicroCHII

ASIC #2 12-bit 32 Channel 200MSps ADC With Event Driven Back-end (Digital part developed in collaboration with the LBNL)

Pacific MicroCHIF

Pacific MicroCHII


Pacific MicroCHIP Corp.

20

ASIC #2 Specifications/Features

- 32 independent ADC channels
- Programmable sampling rate of 200/100/50 MS/s
- Synchronous clock/reset for 32 ADC channels
- ENOB > 10-bit
- 1Vpp differential input signal
- Programmable input signal bandwidth 0.1-0.3 GHz
- Integrated Event Driven Digital Back-end
- JESD204B output data interface (used in the ADC mode)
- Low power consumption
 5 mW / channel (w/o interface)
- I2C interface for ASIC control
- Integrated CPU for ADC calibration
- Integrated temperature sensor

Pacific MicroCHIP Corp.

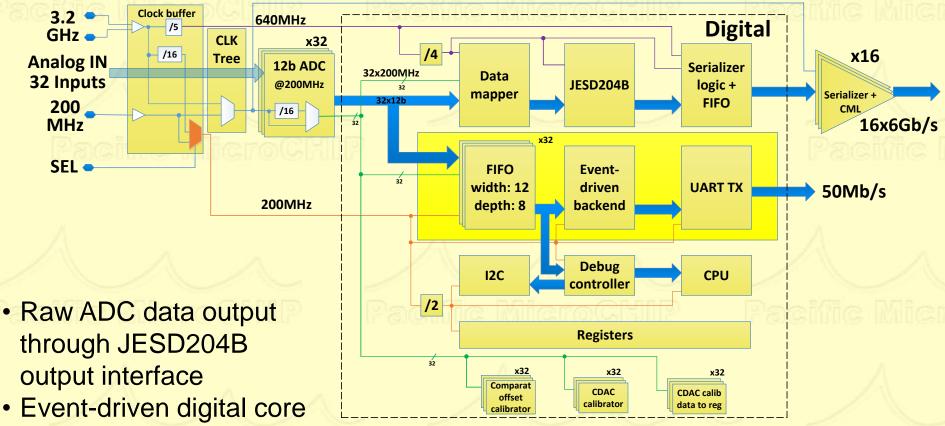
US Patent Pending

Raw ADC Data Output

Mode	JESD 204B Ianes	ADC per lane	Lane data rate	ADC data rate	
Full speed	16	2	6.4Gbps	200MS/s	3
Half speed	8	4	6.4Gbps	100MS/s	
Quarter speed	4	8	6.4Gbps	50MS/s	

- Programmable ADC sampling rate of 200/100/50 MS/s
- Constant JESD204B output data rate of 6.4Gbps
- Shared JESD204B output data interface between 2/4/8 ADCs reduces the number of interface lines, allowing high system integration density

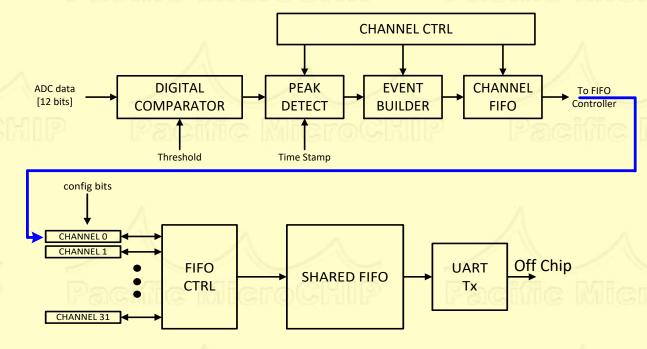
ADC Power Consumption



Block	Analog supply current, mA @ 0.9V	Digital supply current, mA @ 0.9V	I/O supply current, mA @ 1.2V	Ground, mA @ 0V
ADC CHANNEL	1.65	7.82	14.88	25.03
ADC CORE 12b@200Ms ps	1.46	1.62	N/A	3.73
JESD204B PHY	N/A	4.58	14.88	19.48

Typical power consumption of ADC w/o DATA interface: **5mW / ch** Typical power consumption of ADC with DATA interface: **15.7mW / ch** (*One JESD204B output data lane used per 2 ADCs operates at 200Msps*)

Digital Part



- Event-driven digital core output through UART interface
- I2C interface for ASIC control registers programming
- Built-in calibration FSM / CPU for calibration purposes

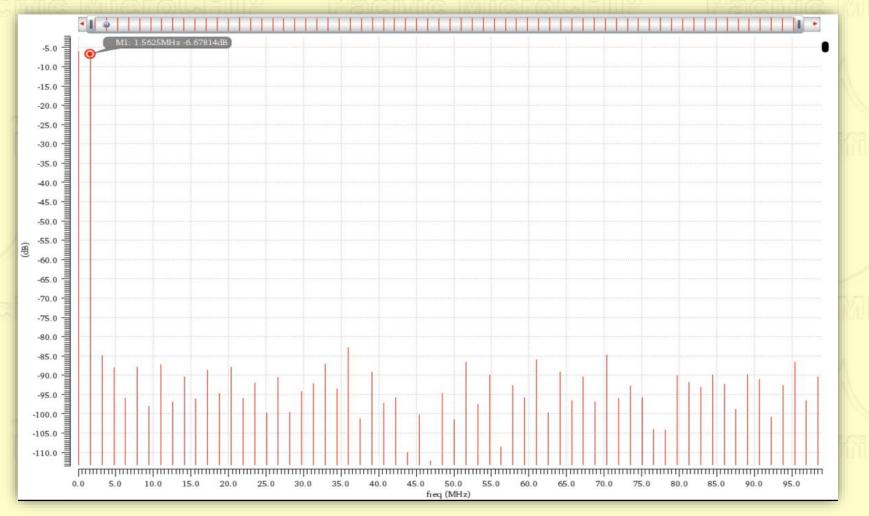
Event–Driven Digital Back-end

- This ADC output is monitored by a digital comparator with a programmable threshold
- When the ADC input exceeds threshold, a timestamp is assigned, and the peak value of the incoming ADC data is recorded.

Event-driven digital back-end was built in collaboration with the LBNL. We want to thank Dr. Carl Grace for his efforts.

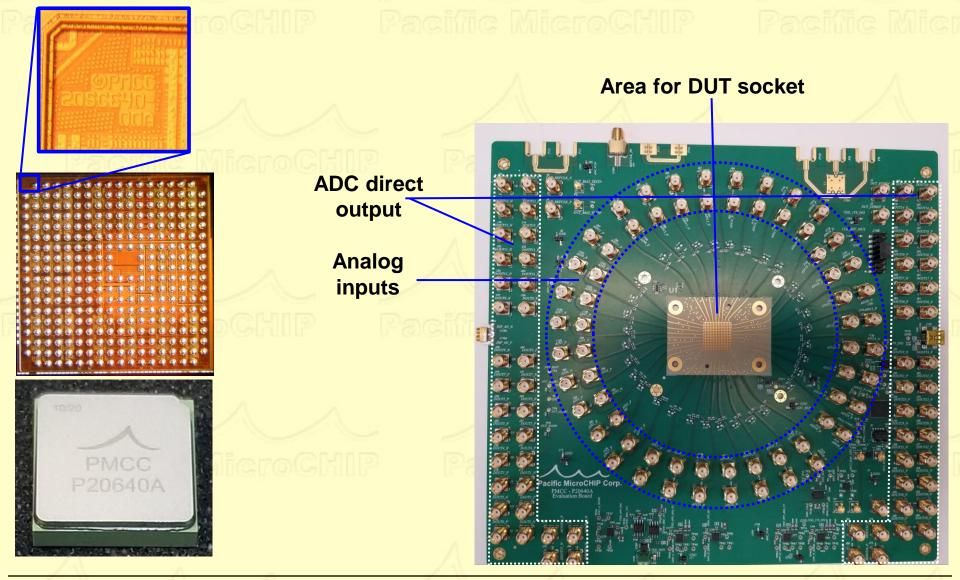
 When the event is completed, the relevant information is assembled into a packet at the block's back-end. When the shared FIFO is ready, events stored in the channel FIFO are read out.

Output Data Frame


Bits	Field Name	Comment
[123]	Parity	Used to monitor integrity of data transmission.
[122]	Event Declaration	0 → test event (see text), 1 → normal
[121:109]	Window Interval	Determines the number of ADC samples to examine looking for a peak.
[108:104]	Channel ID	5-bit unique identifier.
[103:56]	TOA (Time of Arrival)	The timestamp of where the ADC value passed the threshold. Covers ~16 days at a 200 MHz clock rate.
[55:44]	TOP (Time of peak)	Supports shaper peaking times of up to 20 μ s at a 200 MHz clock rate.
[43:32]	TOT (Time over Threshold)	Supports shaper pulse widths of up to 40 μ s at a 200 MHz clock rate.
[31:20]	Peak Value	12-bit peak value recorded in the event.
[19:8]	Channel Threshold	12-bit threshold value used during this event.
[7:6]	Channel FIFO usage	For diagnostics and debugging.
[5:0]	Shared FIFO usage	For diagnostics and debugging.

50Mbps / 124bit / 32ch ≈ 12.6k/s events per channel

ADC Output Spectrum vs. Input Signal Frequency (Simulated)



Typical performance: SFDR > 74dB, ENOB > 10.4-bit for Fin<100MHz

Chip, Assembled Part, Test Board

SNR within 56dB to 57dB => ~9-bit ENOB Target is >10-bit ENOB BW depending on LPF coefficients: 40MHz to 60MHz @ -1dB 80MHz to >100MHz @ -3dB

Fin, MHz -3 58 Digitized Signal Magnitude [dBFS] 20 80 100 120 40 60 -3.5 57 -4 56 -4.5 SNR [dB] 55 .2 -5 [dB] 54 -5.5 -3 딮 -6 53 -6.5 52 -7 51 -6 -7.5 0 10 20 30 40 50 60 70 80 90 100 Input signal frequency [MHz] -8 ← LPF C0 ← LPF C4 ← LPF C7 - SNR - SNR Comp. - Magnitude

29

Future Plans for ASIC #2

- To finish testing the chip's 1st prototype (by May'21).
- Transition to SBIR Phase IIA or IIB to redesign the chip, increase its performance, fix issues identified during testing.
- To fabricate the final chip.
- To test/evaluate it.
- To provide the chip to the DoE community and commercial customers.

Pacific MicroCHII

THANK YOU!

acific MicroCHIP Pacific MicroCHIP Pacific

Application ideas for presented ASICs are appreciated!

Unanswered questions? Please email: <u>dalius@pacificmicrochip.com</u>