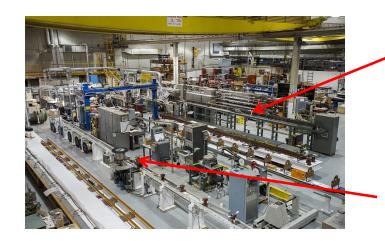
LARP, LPP-Collider, g-2 Inflector

(LPP, where L = large, includes CERN, Chinese efforts)

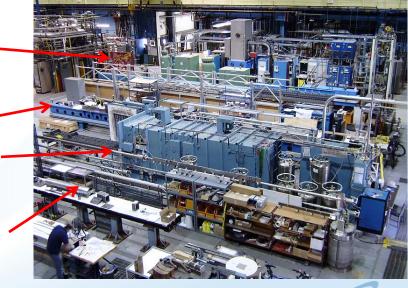
Peter Wanderer Head, Superconducting Magnet Division January 12, 2015


a passion for discovery

LARP Common Activities – BNL, FNAL

- LARP (R&D) and US-HiLumi (Project) magnets:
 - 4 steps in coil production process: wind, cure, react, impregnate
 - R&D: Fermi wind & cure, BNL react and impregnate
 - *Production*: Two (nearly) coil identical production lines
- Nb₃Sn, HTS conductor test and evaluation:
 - Strand testing in solenoid field (4.5K, 1.9K)
 - Evaluate tests vs specs (Ghosh, Cooley)

Facility for LARP + Lpp-Collider Magnets



10m coil cure fixture

10m fixtures to be shortened for LARP

10m coil winding fixture

Vertical Test (1.9K), 24kA Quad Assembly 4.5m Reaction Oven 4.5m Impregnation

3

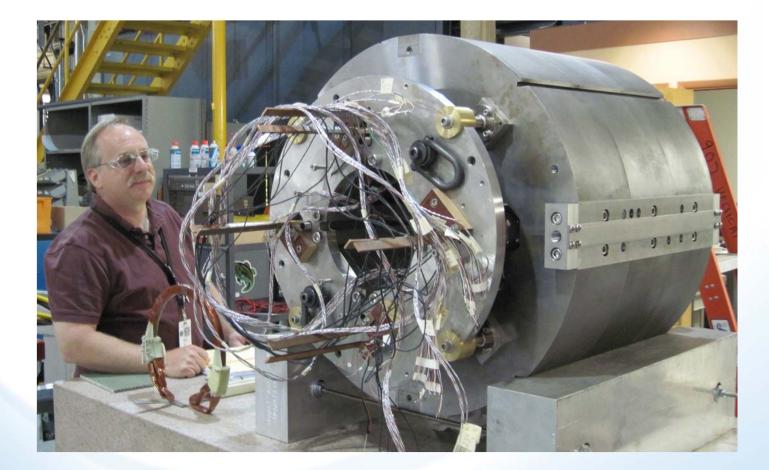
Magnet testing: BNL, FNAL

- Vertical dewar:
 - Fermilab cold masses up to ~ 3.4m long, 4.5K, 1.9K
 - BNL cold masses up to ~ 4.2m long, 4.5K, 1.9K (in progress)
 - Will test LARP and US-HiLumi cold masses
- Magnet (cold mass in cryostat), L_{max} > 10m:
 - Fermilab 4.5K, 1.9K
 - Will test LARP and US-HiLumi magnets
 - BNL 4.5K, 10kA,... not planned for use

Vertical Test Facility

LHC-HL magnet length not yet set. Careful review of suspension, dewar, etc. to match LHC-HL magnet length.

Brookhaven Science Associates

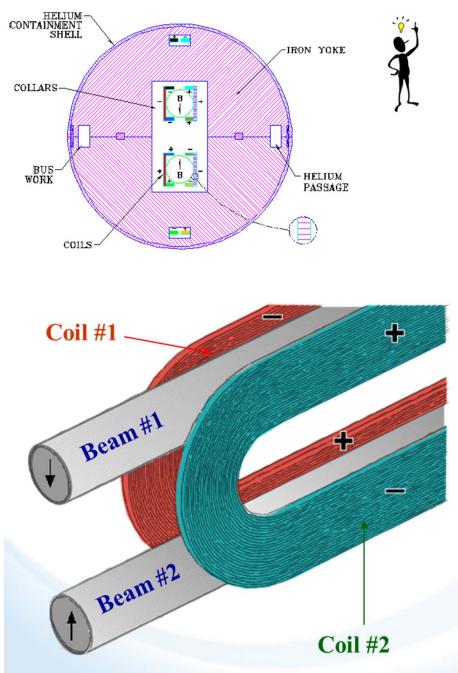

5

Lpp-Collider Magnets

- BNL: ReBCO (tape) Ramesh Gupta, HTS PI
 - Have sensitive quench detection
 - Have built accelerator magnet (FRIB), medium field
 - Have built high field solenoids (15T +...)
- Fermilab et al: Bi2212 (round strand, Rutherford cable)
- For ~ 20T, need magnets using high temperature superconductors (HTS), including hybrid magnets (HTS + Nb₃Sn). Common coil design uses racetrack coils, which are relatively simpler to build.
- Need open midplane dipoles for synchrotron radiation.

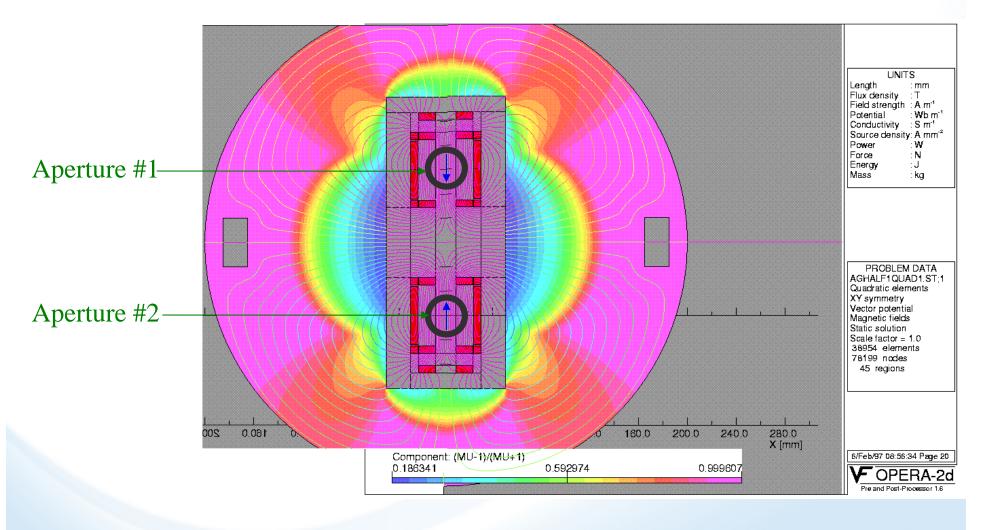
FRIB HTS Fragmentation Quadrupole

BROOKHAVEN


Superconducting Magnetic Energy Storage – ARPA-E

46 pancakes in coil. Magnet achieved 12.5 T (27 K), 350 A.

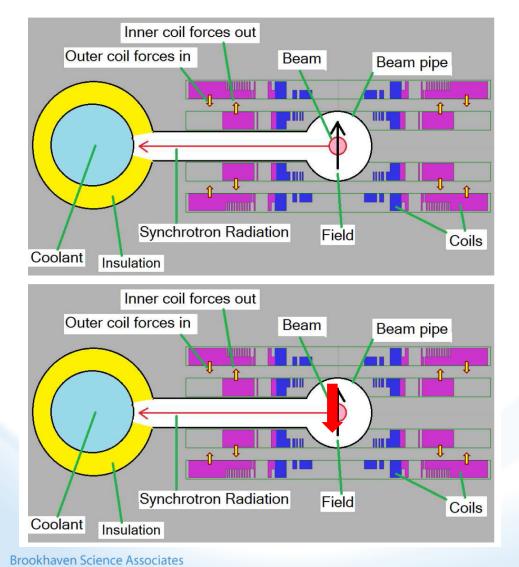
Quench detection threshold ~ 1 mV


Common Coil Design (The Basic Concept)

- Simple 2-d geometry with large bend radius (no complex 3-d ends)
- Conductor friendly (suitable for brittle materials – can do both Wind & React and React & Wind)
- Compact (compared to single aperture LBL's D20 magnet, half the yoke size for two apertures)
- Block design (for large Lorentz forces at high fields)
- Efficient and methodical R&D due to simple & modular design
- Minimum requirements on big expensive tooling and labor
- Lower cost magnets expected

Brookhaven Sci Main Goils of the Common Coil Design

9


Concept for 15T HTS Common Coil dipole

Yoke diameter << yoke for single aperture dipole

Concept for Common Coil open midplane hybrid dipole

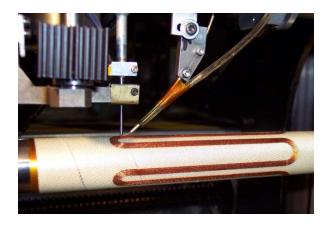
Features:

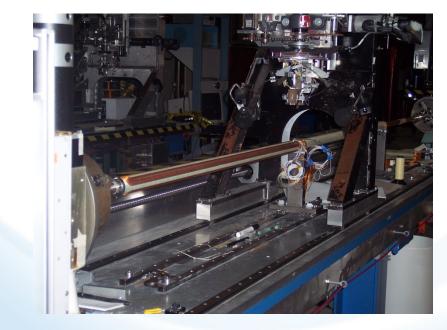
- Common coil design
- Balance of forces on inner and outer coils → open midplane
- HTS + LTS coils

11

Issue:

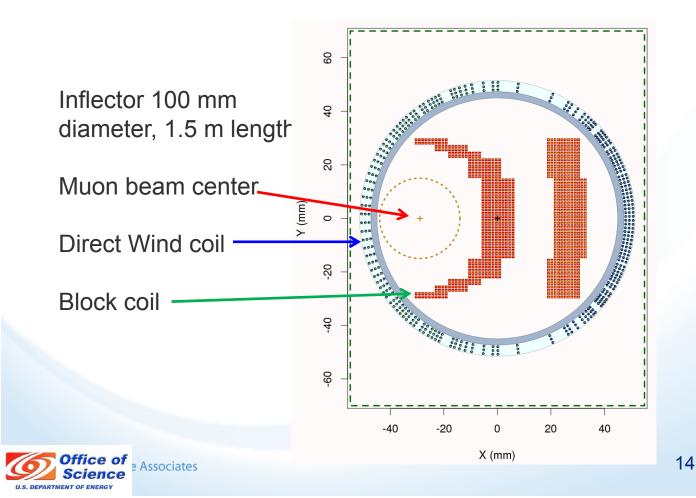
Effect of coil end fields


Direct Wind facility ILC prototype IR magnets, g-2 inflector concept


- Semiautomatic machine for winding single strand and small NbTi cables on cylindrical support tubes.
- Ultrasound used to bond insulated wire to support tube.
- Software to translate full 3D coil design to wire locations on support tube.
- 11 parameters in wiring file
- Essential: skilled technicians.
- Direct Wind coils at BNL, DESY, CERN, IHEP, KEK, JPARC, ILC R&D.

12

Direct Wind machines (2)



Brookhaven Science Associates

IONAL LABORATORY

g-2 Inflector Magnet Design

Alternative to baseline design (design used at BNL). Goal: factor of two increase in # of muons transferred to storage ring. Conceptual design, cost estimate completed – waiting for CD-2 review.

Concept: *external* field of the block coil adds to the field of the Direct Wind coil to produce ~1.5 T at the beam center; fields cancel outside the Direct Wind coil.

Design: Brett Parker

ILC model final focus magnet system

Cryo interface to IR coils Status: construction 95% complete, asking for funds to complete, test

Brett Parker: optics, coil design, machine-detector interface

15

2m IR coils

Summary

- LARP magnets: Coil manufacture, material specifications and testing, test of cold masses
- LARP SCRF: crab cavities (in C-AD)
- LPP-Collider magnets
 - Key concepts: common coil, open midplane dipole
 - Extensive experience with ReBCO material, magnets
- g-2 inflector concept to increase muon flux

