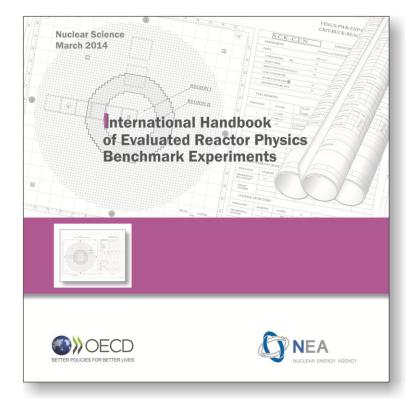
Current Benchmark Evaluation Efforts to Support Integral Nuclear Data

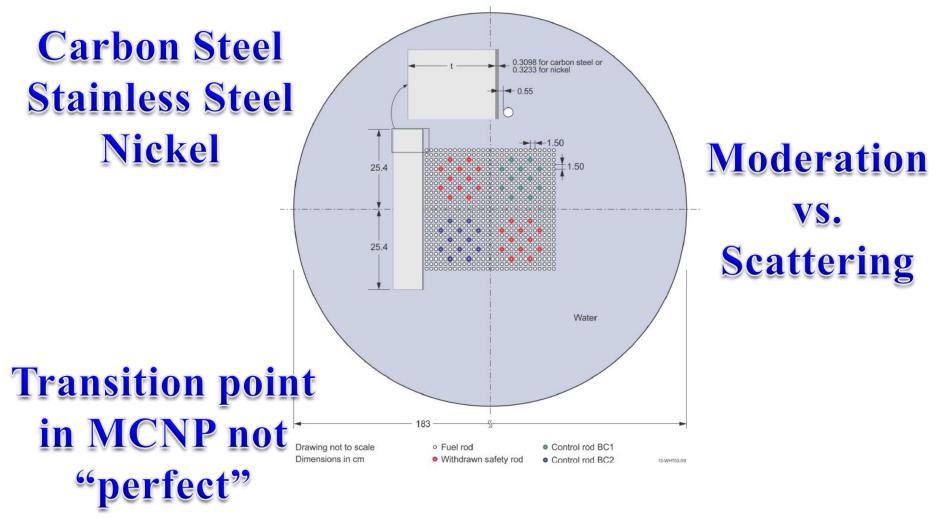
> Mini-CSEWG-2015 7 May 2015

John D. Bess Idaho National Laboratory (INL)

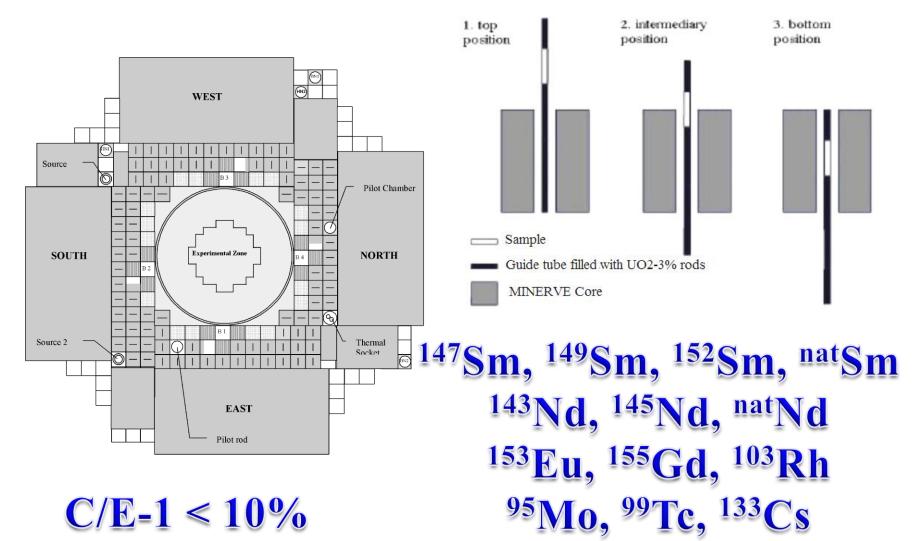

www.inl.gov

International Handbook of Evaluated Reactor Physics Benchmark Experiments

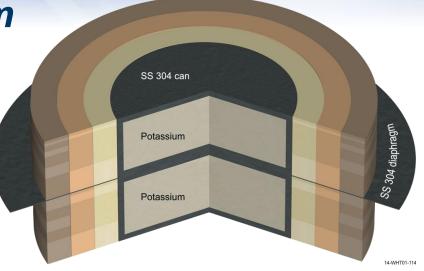
March 2015 Edition


- 20 Contributing Countries
- Data from 143 Experimental Series performed at 50 Reactor Facilities
- Data from 139 are published as approved benchmarks
- Data from 4 are published only in DRAFT form

http://irphep.inl.gov/ http://www.oecd-nea.org/science/wprs/irphe/

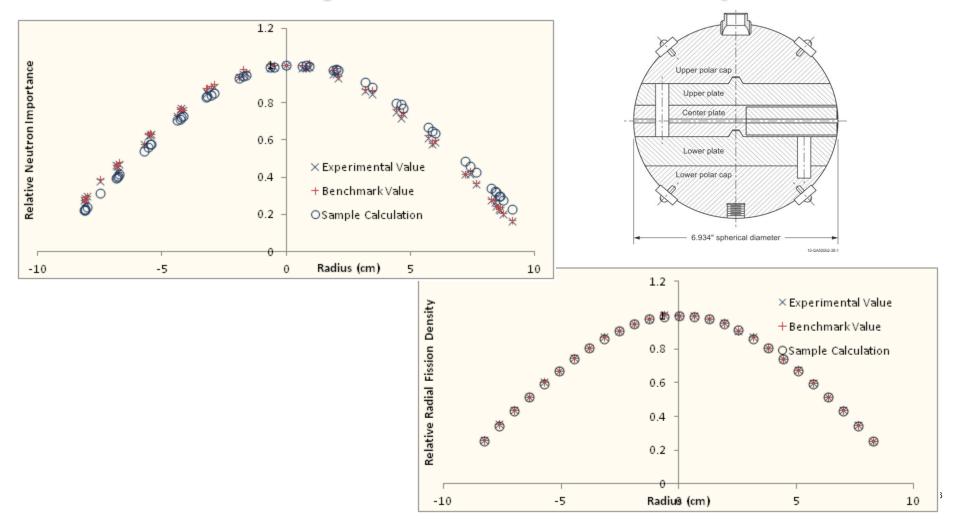

IPEN/MB-01 Heavy Metal Reflectors

4


MINERVE BUC Measurements (DRAFT)

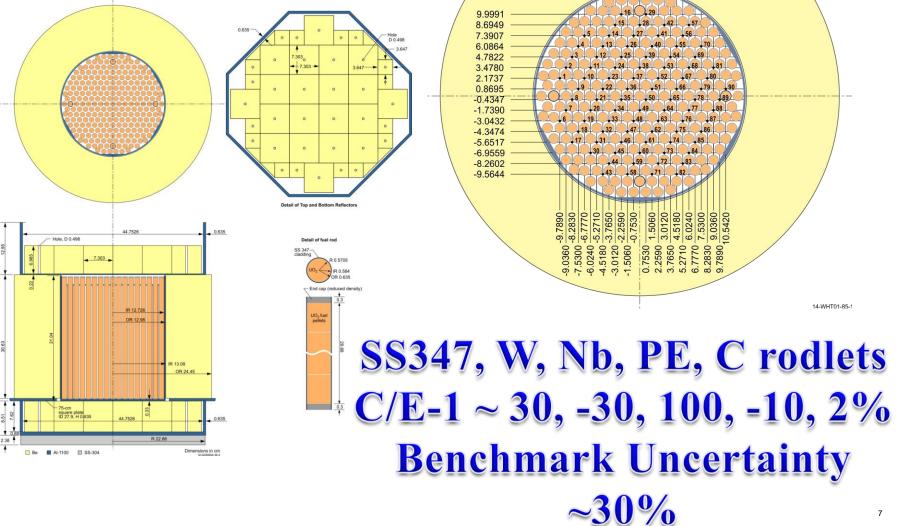
Potassium Fast-Spectrum Validation at ORCEF

 $C/E-1 \sim -70\%$

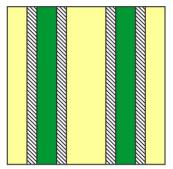


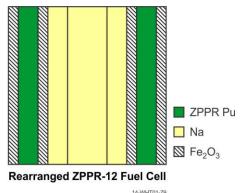
Analysis	Neutron Cross	Calculated		Benchmark Experiment		$\frac{C-E}{E}$ %			
Code	Section Library	ρ(¢)	±	σ	ρ (¢)	±	σ	E	
	ENDF/B-VII.1	3.8	±	0.4				-67 ± 5	
MCNP6	ENDF/B-VII.0	3.1	±	0.4	11.4		1.0	-73 ± 5	
	JEFF-3.1 2.3 ±	±	0.4	11.4	±	1.2	-80 ± 4		
	JENDL-3.3	2.4	±	0.4				-79 ± 4	

Additional ORSphere Measurements


Relative Neutron Importance and Fission Density Distributions

SCCA Reactivity Effects Measurements

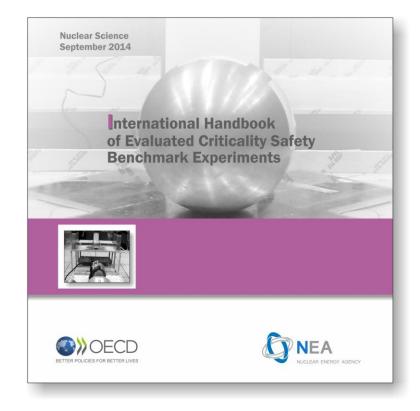

0 625



Sodium Streaming Effects in ZPPR-12: Mockup of Clinch River Breeder Reactor

Normal ZPPR-12 Fuel Cell

14-WH101-79


C/E-1... Results range from +125 to -940% One skeptical result -2400%

International Handbook of Evaluated Criticality Safety Benchmark Experiments

September 2014 Edition

- 20 Contributing Countries
- ~67,000 Pages
- 561 Evaluations
 - 4,839 Critical, Near-Critical, or Subcritical Configurations
 - 24 Criticality Alarm Placement/Shielding Configurations
 - 207 Configurations with Fundamental Physics Measurements
 - 829 Unacceptable Experiment Configurations

http://icsbep.inl.gov/

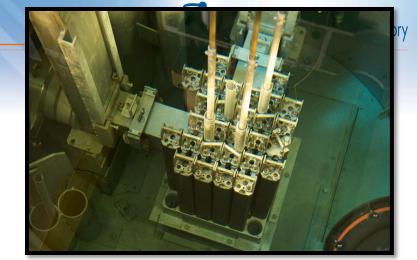
https://www.oecd-nea.org/science/wpncs/icsbep/

ICSBEP Meeting Next Week (11-12 May 2015)

- SCCA-003
 - Potassium Worth Measurement
- IPEN/MB-01 Reactor

 Criticality with Mo Rods
- SNL 7uPCX
 - U(6.9%)O₂ Rods in 19
 Critical Lattice
 Configurations

- SILENE Bare Pulse
 - Neutron Activation and TLD Responses
- U(37%)O₂F₂ Sphere
 IEU-SOL-THERM
- Oralloy Configurations
 - Bare Metal Annuli
 - Complex Metal Annuli
 - Bare Metal Annuli with Graphite Cores


Nuclear Data Points of Interest

- TRIGA Reactors

 UZrH or UErZrH Fuel
- Fast-Spectra Graphite – HEU-MET-FAST-071
- Thermal-Spectra Graphite
 - HTTR
 - HTR-PROTEUS

Neutron Radiography (NRAD) Reactor

Small Uncertainties

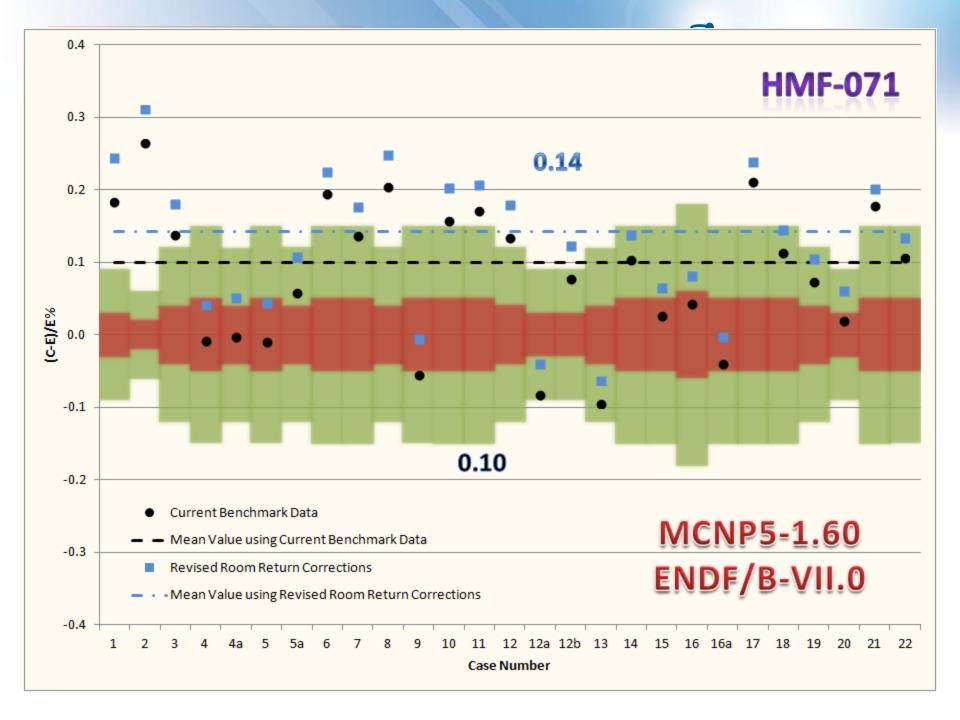
Summary of Experimental Uncertainties*

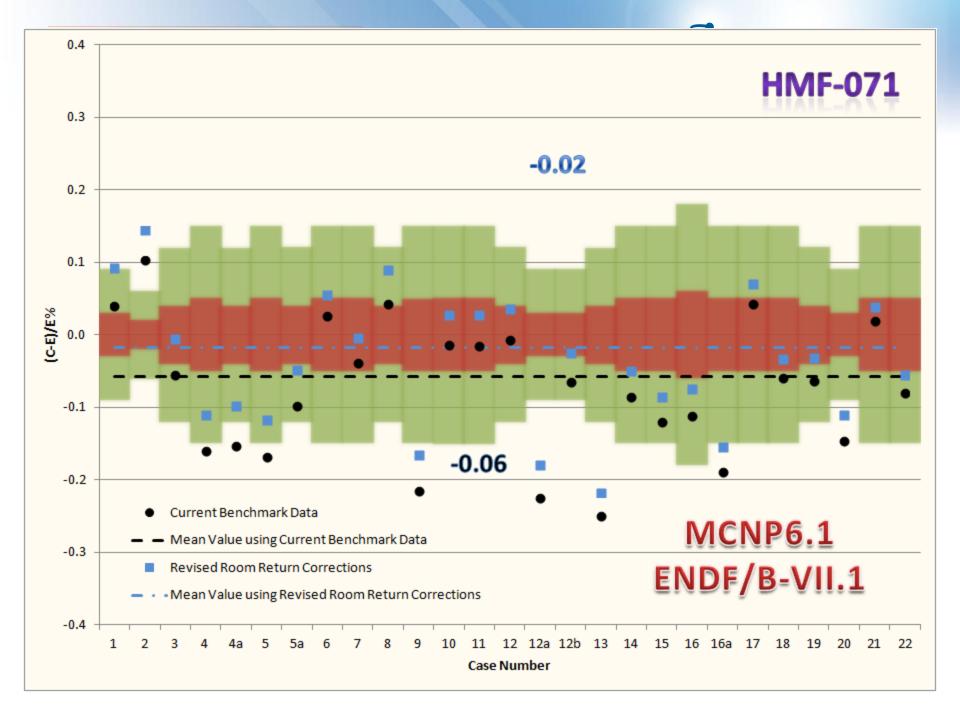
Parameter\Number of fuel elements	56	60	62	64
Mass of ²³⁵ U in fuel	18	18	18	18
²³⁴ U content in fuel	29	31	27	30
²³⁶ U content in fuel	43	46	49	48
Hydrogen-to-zirconium ratio in fuel	19	18	19	18
Erbium content in fuel	50	49	49	50
Manganese content in steel clad	71	68	65	70
Nickel content in steel clad	17	14	20	12
Impurities in steel clad	36	35	36	42
Impurities in boron carbide absorber	19	10	10	10
Graphite reflector block density	14	12	14	11
Graphite reflector block dimensions	14	14	19	15
Water saturation of graphite blocks	19	Negligible	Negligible	17
Assembly pitch in grid plate	16	18	15	17
Diameter of assembly holes in grid	13	14	12	13
Impurities in tank water	26	10	10	10
Placement of beam lines	11	14	12	Negligible
Total experimental uncertainties	122 (0.163 \$)	116 (0.155 \$)	116 (0.155 \$)	120 (0.160 \$)

Neutron Radiography (NRAD) Reactor

- Calculated k_{eff} ~1.4% (1.75 \$, 9σ) greater than benchmark k_{eff}
- Similar problems with other HEU and LEU TRIGA reactors including Slovenia TRIGA reactor benchmark
- Slovenian's believe due to ⁹¹Zr and thermal scattering data for ZrH
 - "Higher elastic scattering resonance integral increases thermal neutron flux by improving neutron thermalization"
- Minimal to no impact on control rod worth calculations

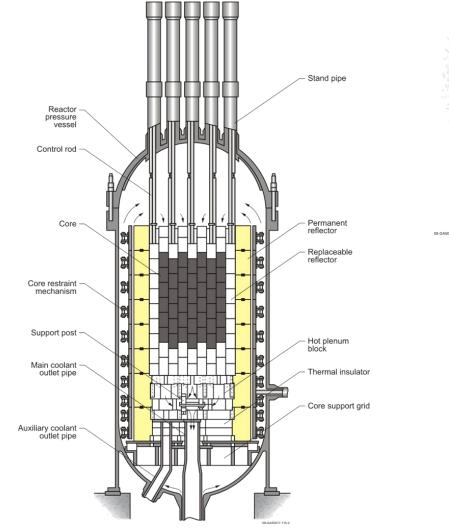
Number of Fuel	Calculated	Benchmark	$\frac{k_C - k_E}{k_E}(\%)$
Elements	$k_C \pm \sigma$	$k_E \pm \sigma$	k_E (70)
56 60 62 64	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1.29 1.29 1.35 1.36

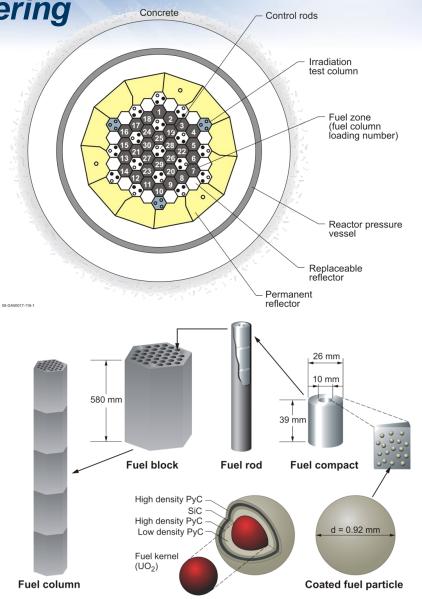

Comparison of Benchmark Experiment (k_E) and Calculated (k_C) Eigenvalues Using MCNP5 with ENDF/B-VII.0 Nuclear Data



Thin Graphite Reflected (1" and 2") (HEU-MET-FAST-071) revised

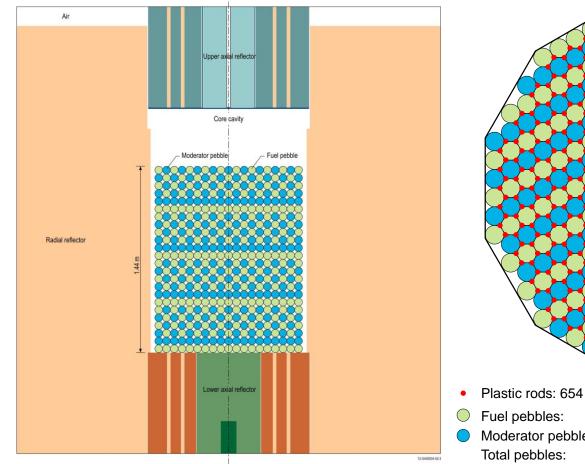
Experiment 6				
	Region (nominal)	Height (cm)	Average Gap (cm)	
	Fuel height, 22.86 cm ID, 27.94 cm OD region	8.037322	0.00150368	
	Fuel height, 27.94 cm ID, 33.02 cm OD region	8.049260	0.00194818	
	Fuel height, 33.02 cm ID, 38.10 cm OD region	8.050022	0.00906780	
	Graphite stack, 43.18 cm OD, 38.10 cm ID	18.177256	0.02658618	
	Graphite stack, 48.26 cm OD, 43.18 cm ID	18.186654	0.0445770	
	Graphite core	7.957312	0.00660400	
+ <u>(27.001/450,000</u> + <u>(27.001/450,000)</u> + (27.001/450,000) + (27.001/450,000) + (27.001/450,000) + (27.001/450,000) + (27.001/450,000) + (27.001/450,000) + (27.001/450,000) + (Graphite core	7.957312 43.178476 36.10762		40.2520900 20 20 40.2520900 20 40 20 47
1 270000 12 1270000 12 1270000 12 1270000 12 1270000 12 1270000 1275 1270000 127000000 127000000000000000000000000000000000000	4 (30.0872000) radoo (2000) 1950 ²⁰⁰⁰ 2760			
1 22 856 1392 44 5 000000 1 270 170 2751	* 50000 5000 2730	- 38.1076200 43.17/ 43	84720	
2 537400 2745 2 537400 2745 2 5405000 4 3.1794790 87 2 540000 4 3.1794790 87 87 87 87 87 87 87 87 87 87	* <u>50 0054000</u> 2735		10.1600000	49.2503890 49.107800 58
43.1784760 800 Bottom layer Dimensions in om Reference numbers (see Table 21) Part numbers (see Table 19)]	Thick	Variants
		To	Be In	vestigated


14



High Temperature Engineering Test Reactor (HTTR)

k _{eff} 's
High Bias
but
Large EBC
Uncertainty


HTTR

					-		
Case	Nuclear Data	Benchmarl	Experiment	Eigenvalue	Calculated Eigenvalue	$\frac{k_C - k_E}{k_E}$ (%)	
Number	Library	k_E	-1σ	$+1\sigma$	$k_C \pm 1\sigma$	k_E (10)	
1	ENDF/B-VI.8 ENDF/B-VII.0 ENDF/B-VII.1 JEFF-3.1 JENDL-3.3	1.0048	-0.0103	+0.0100	$\begin{array}{rrrr} 1.0267 \ \pm \ 0.0001 \\ 1.0276 \ \pm \ 0.0001 \\ 1.0143 \ \pm \ 0.0001 \\ 1.0280 \ \pm \ 0.0001 \\ 1.0222 \ \pm \ 0.0001 \end{array}$	2.17 2.27 0.94 2.31 1.73	
2	ENDF/B-VI.8 ENDF/B-VII.0 ENDF/B-VII.1 JEFF-3.1 JENDL-3.3	1.0040	-0.0100	+0.0092	$\begin{array}{r} 1.0289 \ \pm \ 0.0001 \\ 1.0297 \ \pm \ 0.0001 \\ 1.0173 \ \pm \ 0.0001 \\ 1.0301 \ \pm \ 0.0001 \\ 1.0241 \ \pm \ 0.0001 \end{array}$	2.48 2.55 1.32 2.60 1.99	
3	ENDF/B-VI.8 ENDF/B-VII.0 ENDF/B-VII.1 JEFF-3.1 JENDL-3.3	1.0035	-0.0078	+0.0084	$\begin{array}{r} 1.0243 \ \pm \ 0.0001 \\ 1.0249 \ \pm \ 0.0001 \\ 1.0141 \ \pm \ 0.0001 \\ 1.0257 \ \pm \ 0.0001 \\ 1.0198 \ \pm \ 0.0001 \end{array}$	2.07 2.13 1.06 2.21 1.62	
4	ENDF/B-VI.8 ENDF/B-VII.0 ENDF/B-VII.1 JEFF-3.1 JENDL-3.3	1.0032	-0.0080	+0.0074	$\begin{array}{r} 1.0284 \ \pm \ 0.0001 \\ 1.0287 \ \pm \ 0.0001 \\ 1.0191 \ \pm \ 0.0001 \\ 1.0298 \ \pm \ 0.0001 \\ 1.0239 \ \pm \ 0.0001 \end{array}$	2.52 2.54 1.59 2.65 2.07	
5	ENDF/B-VI.8 ENDF/B-VII.0 ENDF/B-VII.1 JEFF-3.1 JENDL-3.3	1.0029	-0.0068	+0.0075	$\begin{array}{rrrr} 1.0211 \ \pm \ 0.0001 \\ 1.0218 \ \pm \ 0.0001 \\ 1.0117 \ \pm \ 0.0001 \\ 1.0224 \ \pm \ 0.0001 \\ 1.0167 \ \pm \ 0.0001 \end{array}$	1.82 1.88 0.87 1.94 1.37	
6	ENDF/B-VI.8 ENDF/B-VII.0 ENDF/B-VII.1 JEFF-3.1 JENDL-3.3	1.0025	-0.0060	+0.0071	$\begin{array}{r} 1.0222 \ \pm \ 0.0001 \\ 1.0229 \ \pm \ 0.0001 \\ 1.0141 \ \pm \ 0.0001 \\ 1.0236 \ \pm \ 0.0001 \\ 1.0178 \ \pm \ 0.0001 \end{array}$	1.96 2.03 1.15 2.10 1.53	
6sub	ENDF/B-VI.8 ENDF/B-VII.0 ENDF/B-VII.1 JEFF-3.1 JENDL-3.3	0.6876	-0.0104	+0.0104	$\begin{array}{r} 0.7025 \ \pm \ 0.0001 \\ 0.6999 \ \pm \ 0.0001 \\ 0.7001 \ \pm \ 0.0001 \\ 0.7036 \ \pm \ 0.0001 \\ 0.6979 \ \pm \ 0.0001 \end{array}$	2.17 1.78 1.82 2.33 1.50	
7	ENDF/B-VII.0	1.0019	-0.0057	+0.0068	1.0195 ± 0.0001	1.75	
8	ENDF/B-VII.0	1.0024	-0.0057	+0.0067	1.0201 ± 0.0001	1.77	

*Calculations performed using MCNP5-1.51 except for ENDF/B-VII.1, which used MCNP6.1.

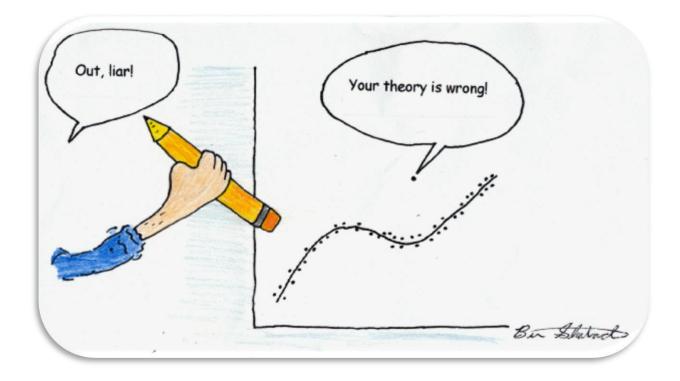
HTR-PROTEUS

Y X 184 Moderator pebbles: 177 361

11-GA50002-72-7

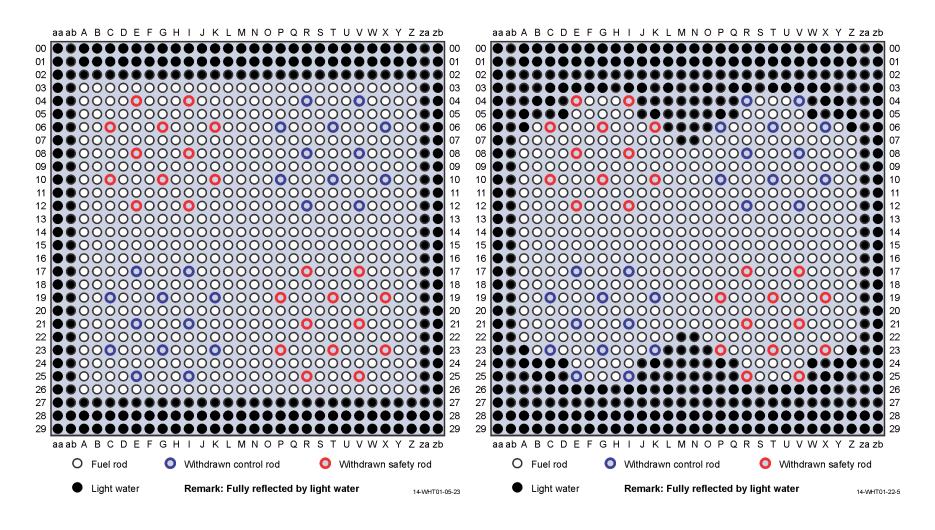
HTR-PROTEUS Calculations

	Benchmark Eigenvalue	Calculated Eigenvalue	$\frac{k_C - k_B}{k_B}$
Core Number	$k_B \pm 1\sigma$	$k_C \pm 1\sigma$	(%)
1 1A 2 3	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.58 0.60 0.75 0.90
4	1.0039 ± 0.0036	1.0174 ± 0.0001	1.34
5 6 7 8	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.47 0.51 0.69 0.51
9 10	$\begin{array}{rrrr} 1.0029 \ \pm \ 0.0036 \\ 1.0020 \ \pm \ 0.0037 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.38 0.54

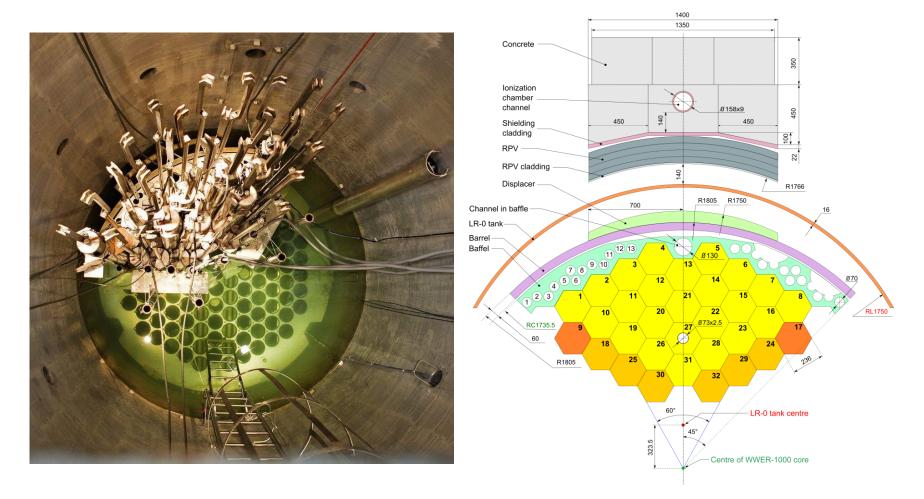

*Calculations were performed with MCNP5 and ENDF/B-VII.0.

	Benchmark Eigenvalue	Calculated Eigenvalue	$\frac{k_C - k_B}{k_B}$
Core Number	$k_B \pm 1\sigma$	$k_C \pm 1\sigma$	(%)
1 1A 2 3	$\begin{array}{r} 1.0048 \ \pm \ 0.0030 \\ 1.0034 \ \pm \ 0.0031 \\ 1.0029 \ \pm \ 0.0033 \\ 0.9999 \ \pm \ 0.0033 \end{array}$	$\begin{array}{r} 0.9989 \ \pm \ 0.0001 \\ 0.9970 \ \pm \ 0.0001 \\ 0.9969 \ \pm \ 0.0001 \\ 0.9978 \ \pm \ 0.0001 \end{array}$	-0.58 -0.64 -0.60 -0.21
4	1.0039 ± 0.0036	1.0026 ± 0.0001	-0.13
5 6 7 8	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$-0.93 \\ -0.37 \\ -0.33 \\ -0.80$
9 10	$\begin{array}{rrrr} 1.0029 \ \pm \ 0.0036 \\ 1.0020 \ \pm \ 0.0037 \end{array}$	$\begin{array}{rrrr} 0.9910 \ \pm \ 0.0001 \\ 0.9949 \ \pm \ 0.0001 \end{array}$	$-1.19 \\ -0.71$

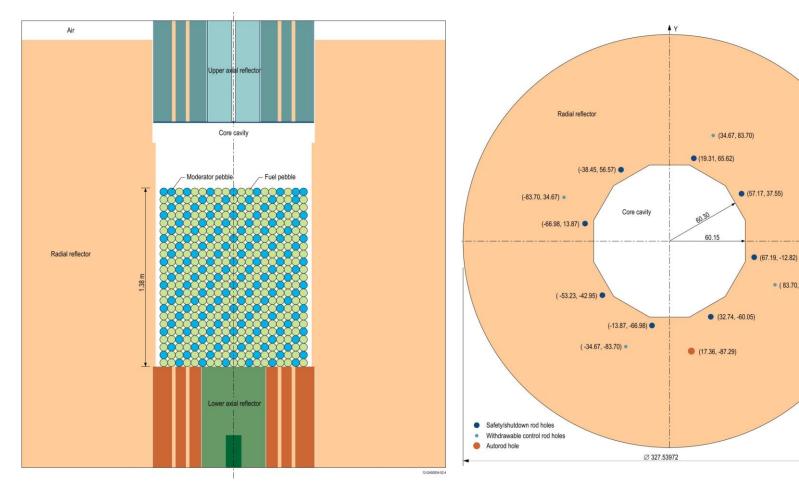
*Calculations were performed with MCNP6.1 and ENDF/B-VII.1.



EXTRA SLIDES

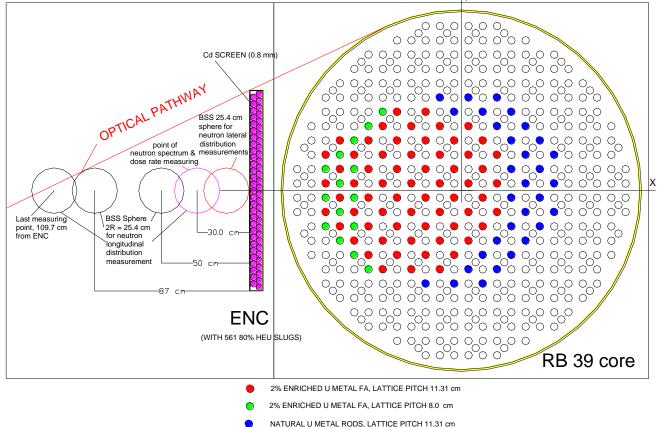


IPEN/MB-01 Subcritical Configurations


LR(0) VVER-1000 Mockup

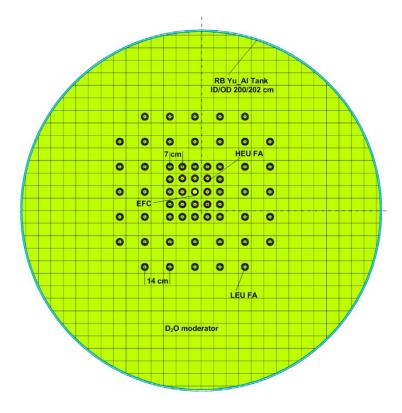
Currently k_{eff}; to evaluate reaction-rate and power distributions

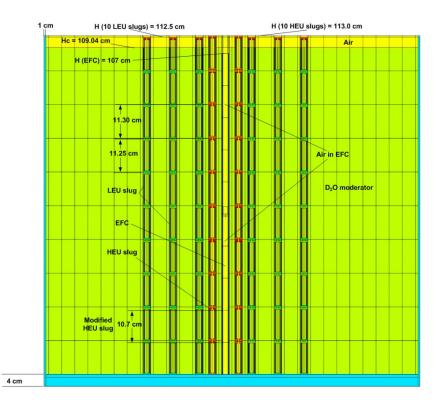
HTR-PROTEUS Cores 5-8 Rod Worth Measurements


X

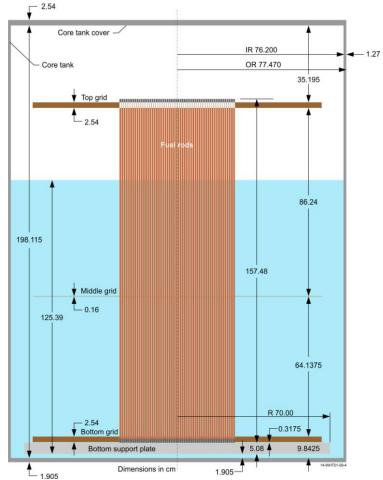
Dimensions in cm

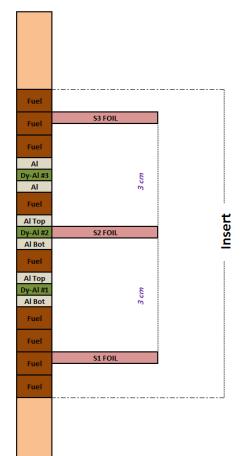
• (83.70, -34.67)


RB Reactor RB39/1978 – External Neutron Converter

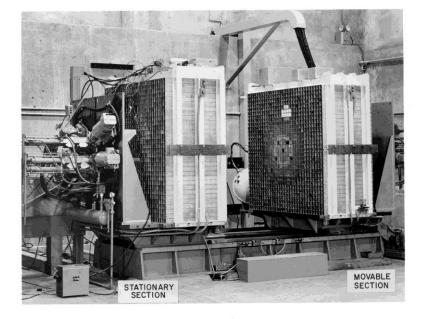


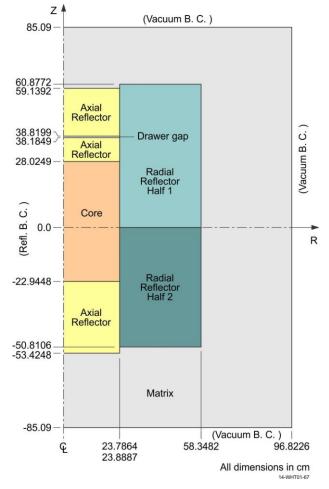
- O EMPTY POSITION IN LATTICE
- 80% ENRICHED URANIUM DIOXIDE SLUGS IN ENC


RB Reactor RB58/1982 – VINET: Experimental Fuel Channel



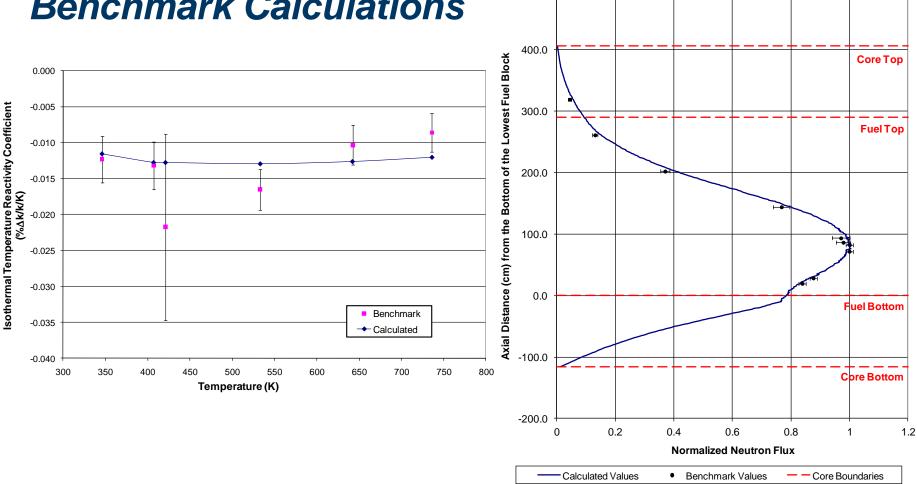
SSCR Spectral Measurements for Uranium-Thorium Rods in Heavy-Light Water Mixture





Thermal Disadvantage Factor: C/E-1 ~ 4%

ZPR-3/58: Pu-C Reflected by DU ZPR-3/59: Pu-C Reflected by Pb



HTTR – Additional Benchmark Calculations

Axial Neutron Reaction-Rate in the Instrumentation Columns of the Fully-Loaded HTTR Core

500.0

HTR-PROTEUS Calculations

Core			Benchmark Worth	Calculated Worth	$\frac{\rho_C - \rho_B}{\rho_B}$
Number	Measured Parameter	Method	$\rho_B \pm 1\sigma$	$\rho_C \pm 1\sigma$	(%)
4	Control rod 1 Control rod 2 Control rod 3 Control rod 4 Control rod bank	SP SP SP SP SP	$\begin{array}{r} -0.40 \ \pm \ 0.04 \\ -0.38 \ \pm \ 0.03 \\ -0.37 \ \pm \ 0.03 \\ -0.39 \ \pm \ 0.04 \\ -1.54 \ \pm \ 0.09 \end{array}$	$\begin{array}{r} -0.35 \ \pm \ 0.02 \\ -0.34 \ \pm \ 0.02 \\ -0.35 \ \pm \ 0.02 \\ -0.37 \ \pm \ 0.02 \\ -1.44 \ \pm \ 0.07 \end{array}$	$ \begin{array}{r} -13 \\ -11 \\ -5 \\ -5 \\ -6 \end{array} $
9	Control rod 1 Control rod 2 Control rod 3 Control rod 4 Control rod bank Partial bank insertion Autorod Safety/shutdown rod 5 Safety/shutdown rod 5 Safety/shutdown rod 7 Safety/shutdown rod 5+6 Safety/shutdown rods 5+6 Safety/shutdown rods 5+7 Safety/shutdown rods 5+8 Safety/shutdown rods 5+8 Safety/shutdown rods 5+6+7 Safety/shutdown rods 5+6+7	IK IK IK SP SP IK IK IK and PNS IK IK IK and PNS IK IK and PNS IK and PNS	$\begin{array}{c} -0.41 \pm 0.02 \\ -0.41 \pm 0.02 \\ -0.41 \pm 0.02 \\ -0.41 \pm 0.02 \\ -1.58 \pm 0.09 \\ -0.73 \pm 0.04 \\ -0.10 \pm 0.01 \\ -3.74 \pm 0.17 \\ -3.82 \pm 0.10 \\ -3.70 \pm 0.30 \\ -3.60 \pm 0.29 \\ -8.02 \pm 0.20 \\ -7.44 \pm 0.60 \\ -7.40 \pm 0.59 \\ -12.11 \pm 0.28 \\ -16.52 \pm 0.42 \end{array}$	$\begin{array}{c} -0.38 \pm 0.02 \\ -0.37 \pm 0.02 \\ -0.38 \pm 0.02 \\ -0.38 \pm 0.02 \\ -1.55 \pm 0.08 \\ -0.70 \pm 0.04 \\ -0.12 \pm 0.02 \\ -3.78 \pm 0.19 \\ -3.82 \pm 0.19 \\ -3.82 \pm 0.19 \\ -3.82 \pm 0.19 \\ -3.70 \pm 0.19 \\ -3.82 \pm 0.19 \\ -3.70 \pm 0.19 \\ -3.69 \pm 0.38 \\ -12.30 \pm 0.61 \\ -16.98 \pm 0.85 \end{array}$	$ \begin{array}{r} -7 \\ -10 \\ -7 \\ -7 \\ -2 \\ -4 \\ 20 \\ 1 \\ <1 \\ 3 \\ <1 \\ 4 \\ 4 \\ 2 \\ 3 \\ \end{array} $
10	Control rod 1 Control rod 2 Control rod 3 Control rod 4 Control rod bank Partial bank insertion Autorod Safety/shutdown rod 5 Safety/shutdown rod 6 Safety/shutdown rod 7 Safety/shutdown rod 8 Safety/shutdown rod 5+6 Safety/shutdown rods 5+6 Safety/shutdown rods 5+7 Safety/shutdown rods 5+8 Safety/shutdown rods 5+8 Safety/shutdown rods 5+6+7 Safety/shutdown rods 5+6+7+8	IK IK IK SP SP IK IK IK and PNS IK IK and PNS IK and PNS IK and PNS	$\begin{array}{c} -0.30 \pm 0.02 \\ -0.29 \pm 0.02 \\ -0.29 \pm 0.02 \\ -0.30 \pm 0.02 \\ -1.15 \pm 0.07 \\ -0.39 \pm 0.02 \\ -2.82 \pm 0.11 \\ -2.82 \pm 0.09 \\ -2.80 \pm 0.16 \\ -2.72 \pm 0.15 \\ -5.95 \pm 0.17 \\ -5.73 \pm 0.32 \\ -5.75 \pm 0.33 \\ -9.29 \pm 0.21 \\ -12.67 \pm 0.31 \end{array}$	$\begin{array}{c} -0.29 \ \pm \ 0.02 \\ -0.28 \ \pm \ 0.02 \\ -0.25 \ \pm \ 0.02 \\ -0.28 \ \pm \ 0.02 \\ -1.11 \ \pm \ 0.06 \\ -0.37 \ \pm \ 0.02 \\ -0.08 \ \pm \ 0.01 \\ -2.73 \ \pm \ 0.14 \\ -2.75 \ \pm \ 0.14 \\ -2.75 \ \pm \ 0.14 \\ -2.66 \ \pm \ 0.13 \\ -5.70 \ \pm \ 0.29 \\ -5.54 \ \pm \ 0.28 \\ -5.49 \ \pm \ 0.27 \\ -8.65 \ \pm \ 0.43 \\ -11.81 \ \pm \ 0.59 \end{array}$	$ \begin{array}{r} -3 \\ -3 \\ -14 \\ -7 \\ -3 \\ -5 \\ 10 \\ -3 \\ -2 \\ -2 \\ -2 \\ -4 \\ -3 \\ -5 \\ -7 \\ -7 \\ -7 \\ \end{array} $

Calculations of HTR-PROTEUS Rod Worth Measurements with MCNP5 and ENDF/B-VII.0

*For cores 4, 9, and 10, the calculated β_{eff} values are 694, 693, and 685 pcm, respectively.