Update on Nuclear Data Research at RPI

Report to CSEWG November, 2015

Y. Danon, E. Liu, E. Blain, A. Daskalakis, B. McDermott, K. Ramic, C. Wendorff *Rensselaer Polytechnic Institute, Troy, NY, 12180*

and

D. Barry, R. Block, J. Burke, T. Donovan, B. Epping, G. Leinweber, M. Rapp *KAPL, Bechtel Marine Propulsion Corporation, Schenectady, NY*,12301-1072

Mini CSEWG meeting, May 7-8, 2015 at BNL

Measurements Completed/in Progress

Italics= in progress

Transmission

- H_2O 0.5-20 MeV, 250m flight path
- ²³⁶U 5.45 eV resonance
- ¹⁸⁶W 1- 5 keV in support or ORNL evaluation
- Capture
 - Fe 500 eV 500 keV, 45m flight path
 - Ta 4eV 20 eV, 500 eV 1 MeV, 45m flight path
- Scattering
 - Pb 0.5 20 MeV
 - Zr <0.5 MeV in development
- Thermal Scattering
 - Quartz at temperatures of 20, 300, 550, 600 °C.
 - Polyethylene at temperatures of 295 K and 5 K.

Planned Measurements

Scattering

- Pb complete measurement and analysis
- Zr for E<0.5 MeV continue development
- Hf resonance scattering (for MC physics models)

Transmission

- W 0.5 to 20 MeV
- Capture
 - ⁹⁵Mo, 45m station 1 keV to 500 keV.
 - If unavailable, one of the following ^{92,94}Mo, ^{nat}Zr, ^{nat}Hf

Data Analysis

Measure	Sample	Status
High Energy	Fe, Ti, Ta, Cu, Zr, 92/94,95,96,98,100,natMo	High energy (0.5-20MeV) transmission, publication in preparation
RRR and URR	Cs, Rh , Re, Fe, Ta ^{161,162,163,164} Dy ²³⁶ U ^{155,156,157,158,160} Gd ^{153,nat} Eu ^{92/94,95,96,98,100,nat} Mo	Resonance analysis in progress Resonance analysis in progress, ¹⁶⁴ Dy - publication in internal review ²³⁶ U - publication submitted to progress in nuclear energy Gd isotopes – published, NSE Vol. 180, Number 1, May 2015. Eu – published , Annals of Nuclear Energy, Vol. 69, pp. 74-89, 2014. ⁹⁵ Mo URR - Accepted to Phys. Rev. C
Scattering	²³⁸ U Fe	 ²³⁸U – published, Annals of Nuclear Energy, Vol. 73, pp. 455-464, 2014. Fe – analysis in progress
Thermal Scattering	H_2O , polyethylene, quartz	Analysis in progress

Re – Thermal Transmission and Capture Measurements

- Multiple sample thicknesses 1-100 mils
- Corrected for gamma attenuations (density=12.02 g/cm³)
- SAMMY fit of all data sets.
- Capture corrected for gamma attenuation (2nd densest element)
- MS Thesis completed.

Rensselaer

Re - Summary

• Small change to thermal values and 3% increase in resonance integral for ¹⁸⁵Re

Energy [eV]

	Energy Range of This Work	Thermal σ _t [b]		Resonance Integral [b]		R` [fm]
Isotope	N/A	Re-185	Re-187	Re-185	Re-187	(Combined fit of both isotopes)
BMPC/RPI	thermal – 1 keV	120	80	1800	310	9.3+/-0.2
ENDF/B-VII.1	RRR ends at 2 keV	121	87	1738	301	8.7*

* Use the same R' for both isotopes. This is the value from Mughabghab, ENDF/B-VII.1 has a value of 7.9 fm which was acknowledged by NNDC as a typo.

²³⁶U is an important isotope within the ²³⁵U fuel cycle

- High yield build-up product
- Strong resonance at 5.467 eV with total cross section over 13,000 barns
 - Difficult to measure since it is hard to make a "thin" ²³⁶U sample
 - Used liquid sample
 - Last transmission measurements for ²³⁶U was prior to 1960

The ²³⁶U Transmission Measurement

Evaluation	E [eV]	Γ _γ [meV]	Γ _n [meV]	σ _t [barns]
JENDL40	5.45	24.5	2.30	15070
ENDF71	5.45	24.5	2.24	14665
Mughabghab (2006)	$5.45 \\ \pm 0.03$	24.7 ± 0.6	2.19 ± 0.08	14316
JEFF32	5.45	24.5	2.16	14152
RPI2014	5.467 ± 0.01	27 ± 1	2.13 ± 0.04	13571

- New results indicate lower cross section compared to evaluations
 - Uncertainties found by using
 Monte Carlo approach to data
 fitting

The ²³⁶U results show a lower neutron capture resonance integral relative to evaluations

- Method developed to preserve ENDF71 thermal cross sections
- Effect on benchmarks is being assessed

Evaluation	RI [barns]		
JENDL40	353		
ENDF71	342		
Mughabghab	345 ± 15		
JEFF32	346		
RPI2014	330 ± 5		

Transmission of ¹⁸⁶W

- Experiment was designed to provide data in the energy range from about 2-4 keV (Na fixed filter at Geel)
- Sample provided by ORNL
 - 3 discs, 0.01169 atoms/barn
 - ²³⁸U sample for determination of the energy resolution
- Data was collected for 3.5 days.
 - 35 m flight path
 - Pulse width of 10 ns
- Co and Al fixed notches were used for background determination

¹⁸⁶W Transmission results

Rensselaer

- Transmission was
 measured in the energy
 range from a 10 eV to
 400 keV
- The region of interest is highlighted in green
- On this scale seems like good agreement with JENDL 4.0
- ENDF/B-VII.1 seemed to
 have some issue with
 extra resonances (not shown).

¹⁸⁶W Transmission results: 2.5 – 3.2 keV

- Energy resolution was fitted to the ²³⁸U sample
- ¹⁸⁶W shows energy shifts which are not visible in the ²³⁸U
- Data were delivered to ORNL

Mid-Energy Capture Detector System Overview

- 4 C₆D₆ detector modules manufactured by Eljen Technology
- Low mass, low neutron sensitivity design
- Located at 45m flight path in newly constructed flight station
- Measurements made from 1 eV to 1 MeV

Mid-Energy Capture Detector System Overview

Sample Changer •

Velmex BiSlide linear translation table w/ stepper motor and magnetic position encoder

Data Acquisition

8-channel SIS3305 digitizer w/ 10-bit, 1.25GHz functionality

Beam Flux Monitoring •

8-Channel MDGG-8 Flexible Delay/Gate Generator & Scaler

Detector Bias

2 Dual-channel 3kV NHQ-203M high voltage supplies

Software

Custom C/C++ libraries for system control, data acquisition, visualization and data analysis

Mid-Energy Capture Detector Principle of Operation

Uses the "Total Energy" detection principle:

- 1. Detect only a **single photon per capture** cascade
- 2. Assert that the detection **efficiency is proportional** to the incident photon energy
- 3. Given 1 and 2, it can be shown that the total efficiency to detect a capture event is proportional to the total excitation energy of the compound nucleus, and insensitive to the cascade.

Requires a weighting function

^{nat}Fe Capture measurment

- ^{nat}Fe was used as a test to compare with evaluations and other measurements
 - The RPI data (45m flight path) has good energy resolution compared to the Spencer ORELA data (40m flight path)
 - The RPI data provide information above 700 keV (next slide)

^{nat}Fe Capture Cross Section above 847 keV

- New capture data obtained above 847 keV and 1409 keV inelastic states in ⁵⁶Fe and ⁵⁴Fe
- Capture signal separated from inelastic scattering signal by postprocessing digitized waveforms with different energy deposition cutoffs
- Good agreement with other experiments
- The data are lower than the evaluations above 1400 MeV

¹⁸¹Ta Iron Filtered Beam Capture Measurement: Method

- Count rates for Ta and B₄C samples were summed under each filter transmission peak.
- Pb scattering sample used to confirm negligible neutron background

¹⁸¹Ta Iron Filtered Beam Capture Measurement: Normalization

- Unfiltered run performed to determine normalization factor from 4.2 eV saturated resonance
- Normalization factor determined from the ratio of B_4C to Ta counts at the location of the saturated resonance $(Y_\gamma \approx 1)$
- A refinement of the normalization is based on a SAMMY calculations

¹⁸¹Ta Iron Filtered Beam Capture Measurement: Cross Section

- As expected a thick sample requires larger corrections
 - Self shielding correction is large
 - Multiple scattering correction is large
 - Need to work on better understanding of the weighting function and its validity
- Thin sample data support the JEFF-3.1/3.2 evaluation
- Possible contamination from inelastic scattering apparent in ENDF/B-VII.1

Feasibility of ¹⁶O total cross section measurement using H₂O

- Measurements of 2cm and 5cm H₂O in thin windows quartz optical cells
- Used 250m TOF and 10 ns pulse width for the feasibility test
- Used 3 fission chambers as beam monitors.
 - The experiment requires good monitor normalization
- In the ¹⁶O "hole" at 2.34 MeV only H₂ is measured
 - Provides verification of the normalization to about 1.5%
- Used carbon for energy calibration

To compare the experiment with evaluation both were grouped

- Grouping reduces the statistical uncertainty
- Grouping preserves the number of neutrons transmitted through the sample
- Grouping can be done in two ways:
 - Group the cross section
 - Group the transmission and then compute the effective cross section
- Both options gave similar results
 - The grouped cross section is shown

¹⁶O C/E

- Overall the evaluations are higher than the experiment
- Between 3-6 MeV ENDF/B-VII.1 matches the experiment best (ENDF is ~0.5% lower)
- It is feasible to provide new information on ¹⁶O
 - Normalization of the experiment is critical
- H normalization is better than 1%

Neutron Energy [MeV]

Summary

Publications since the last CSEWG meeting

- Gd isotopes published, NSE Vol. 180, Number 1, May 2015.
- Eu published, Annals of Nuclear Energy, Vol. 69, pp. 74-89, July 2014.
- ²³⁸U published, Annals of Nuclear Energy, Vol. 73, pp. 455-464, November 2014.
- Mo URR Accepted to Phys. Rev. C

Analysis in progress

- High energy (0.5-20 MeV) transmission: Fe, Ti, Ta, Cu, Zr and ^{92/94,95,96,98,100,nat}Mo
- RRR (capture/transmission) : ^{161,162,163,164}Dy, Cs, Rh, Re, Fe,
- URR capture: Ta,
- ^{nat}Fe neutron scattering
- Thermal scattering H₂O, polyethylene, quartz

Measurements since the last CSEWG meeting

- Transmission: H_2O , ²³⁶U, ¹⁸⁶W
- Capture: Fe, Ta

Planned/in progress measurements

- Scattering: Pb, Zr
- Capture: ⁹⁵Mo

