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Motivation 

1. For systems with a significant thermal neutron population, calculated system response parameters 

can be very sensitive to the supplied thermal neutron scattering cross section data. 

 

2. In these situations, any assessment of the impact of nuclear data uncertainties on system response 

parameter uncertainties is incomplete without accounting for uncertainties and correlations in the 

supplied thermal scattering cross section data. 

 

3. For inelastic scattering, differential and integral thermal scattering cross sections are typically 

calculated by numerical integration of the double-differential thermal scattering law, S(α,β), tabulated 

in ENDF File 7.   

 

4. Published ENDF File 7 S(α,β) data is calculated theoretically based on fundamental scattering 

physics models.  In particular, S(α,β) is conventionally calculated based on a supplied excitation 

mode energy spectrum for the material’s interatomic structure.                

 

5. Currently, no published ENDF File 7 libraries contain covariance data.  Furthermore, no accepted 

procedure exists for quantifying or representing covariances for theoretically generated S(α,β) or for 

handling the associated differential and integral cross section covariances.   
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Objectives 

1. Assess the (future) requirements for thermal neutron scattering covariance information in nuclear 

system simulation uncertainty and sensitivity analysis codes.  

   

 

2. In many solids, interaction with phonons (or vibrational modes) is the only consequential mechanism 

for energy exchange in the neutron scattering process at thermal energies.  In this case, the material 

phonon energy spectrum, ρ(ε), is typically the fundamental parameter determining S(α,β). 

 

       Establish a general mathematical formalism for expressing and calculating uncertainties in ρ(ε), 

which is a probability density function of the available phonon mode population.  These uncertainties 

must reflect the particular methodology and physics models employed in generating ρ(ε). 

 

 

3. Demonstrate the Monte Carlo production of a covariance matrix for S(α,β), as well as for associated 

differential and integral scattering cross sections, by sampling perturbed phonon spectra.  Hexagonal 

graphite is used as an example material for demonstrating the methodology.  
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Requirements for Thermal Scattering 
Covariance Data 

 Various internal nuclear data library formats are 

utilized by nuclear system simulation and/or 

sensitivity and uncertainty analysis codes. 

 

 Regardless of the data format or structure, the 

differential and integral thermal inelastic 

scattering cross sections employed are generally 

determined by some method of integration over 

ENDF File 7 S(α,β). 

 

 In principle, uncertainties and correlations among 

all tabulated differential and integral cross 

sections at all incident energies are required for 

completeness. 

 

 Differential cross sections are coupled in energy 

and angle.  However, for many nuclear 

engineering applications, dσ(E)/dE′ is of much 

greater importance than the angular distribution 

of scattered neutrons.  

double-differential cross section 

momentum transfer factor energy transfer factor 

differential cross section in energy 

integrated inelastic cross section 

ρ(ε) 
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• S(α,β) is tabulated over discrete evaluator-defined α and β grids for specified T.    
 

• Let the vector y represent the set of all calculated differential and integral cross sections, and let the 

vector x represent the set of all tabulated S(α,β) for specified T.  Therefore,  
 

 

 

 

• The summation limits are determined by the α and β grids and by the physical limits of α and β for 

particular j.  The intervals Δαa and Δβb are defined by the grids.  Linear interpolation is applied as 

required.  For differential cross sections, the summation is over one variable with the appropriate Δ. 

                              

    

 

 

• Since the terms of M can be calculated as needed, it is not necessary to store M for specific cross 

section library formats.  Consequently, Vx is the only information required to determine covariances for 

any set of differential and integral thermal scattering cross section data.     

Utility of the S(α,β) Covariance Matrix  

defines the covariance matrix for y in terms of the covariance matrix for  

x with the terms of the sensitivity matrix M given by the constant factors 

 

(Terms of M for non-physical or unused α and β combinations are ZERO.) 
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Thermal Scattering Theory  

•    The double-differential thermal neutron scattering cross section may be written in general form as: 

 

 

 

 

 

   

•    Randomly oriented polycrystalline structure applies for most nuclear engineering applications: 

 

 

 

   

•    The impact of coherent interference on integral scattering cross sections is negligible for many  

      materials at temperatures of concern, and the incoherent approximation is traditionally applied: 

 

 

 

•    Ss is a function of only ρ(ω) and T.  Since thermal displacements of atoms from their equilibrium positions are  

      generally small, S(α,β) may be calculated by a harmonic phonon expansion in terms of ρ(ε) = ρ(ω)/ħ.  
 

•    In this case, the uncertainty in theoretically calculated S(α,β) depends directly on the uncertainty in the supplied   

      phonon energy spectrum ρ(ε). 

 

•    If desired, the coherent interference term may be calculated using dispersion relations and added to S(α,β) to  

      adjust for the bias.  This has been done successfully for graphite in other works [Hawari et al., PHYSOR-2008].  
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Example Phonon Energy Spectrum 

This is the phonon energy spectrum incorporated in the currently published ENDF/B-VII 

thermal scattering law evaluation for graphite.  It is based on Young et al., “Phonon 

Spectrum of Graphite,” Journal of  Chemical Physics, 42 (1965).   

 

The spectrum is calculated using a lattice dynamics model with four force constants for 

perfect hexagonal graphite fitted to thermodynamic data for porous reactor grade graphite.    

The bins are represented by pd=1,2,3,…,D 

d = 11 d = 20 

7 



• Probability density function of the available vibrational mode population in a given material 
structure.  

 

• Generally defined as a normalized piecewise step function over uniformly distributed energy 
bins. 

 

• In this case, ρ(ε) may be described by a set of parameters (or random variables) pd, where d = 
1 … D, or by the vector p.  
 

• For any method of arriving at the phonon energy spectrum (whether based on theory, 
experiment, or some combination), the features of the spectrum will be distorted to some extent 
in energy and magnitude with respect to the ideal phonon spectrum. 

 

• In principle, these spectral shape uncertainties may be described by a joint probability density 
function (which must be estimated by the evaluator) for the parameters pd . 

 

• Uncertainties in the phonon spectrum will depend on the particular material structure and 
temperature as well as the physics models and methodology employed to generate it. 

 

Properties of the Phonon Energy Spectrum 
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Hexagonal Graphite as a  
Demonstration Material 

•   Graphite is a layered material with highly 

     anisotropic interatomic forces. 
 

•   In the parallel (in-plane) and perpendicular 

    (out-of-plane) directions, graphite has distinct    

    material properties and distinct partial phonon   

    spectra, where                          . 

    

•   In this work, the phonon spectrum for graphite is  

     produced using the ab initio density functional  

     theory code VASP and the lattice dynamics code  

     PHONON.  

 

 

•   The material, method of producing the phonon  

     spectrum, and the associated uncertainty analysis in this   

     work are selected to demonstrate the application of a 

     generalized methodology for thermal neutron scattering  

     covariance data.   

 

     It is not the intent of this work to produce a full evaluation for 

     graphite with covariance data for ENDF publication.  
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Directional Properties of the  
Phonon Spectrum for Graphite 

Total Phonon Energy Spectrum Directional Partial Phonon Energy Spectra 

•   The total phonon energy spectrum for graphite (left) and each directional partial phonon energy spectrum   

     for graphite (right) calculated with VASP/PHONON in this work. 
 

•   For the partial spectra on the right, the in-plane parallel spectrum (blue) is normalized to 2/3 and the out- 

     of-plane perpendicular spectrum (black) is normalized to 1/3. 
 

•   In the low-energy region, phonon modes perpendicular to the plane are highly dominant.  The low-energy  

     perpendicular mode population is heavily influenced by the weak interplanar forces in graphite.    
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•   The phonon energy spectrum maps the distribution of  

     available phonon modes as a function of energy.  It  

     does not provide information about the likelihood that a  

     particular phonon mode will interact with a scattering  

     neutron (independent of the population density). 
 

•    For a phonon mode with energy ε, the thermal average  

     of the phonon occupation number is  
 

                                                               . 

 

•    P(ε) = C < n > ρ(ε) gives an estimate of the relative  

     probability that a neutron with incident energy E will  

     absorb a phonon with energy ε in a thermal scattering  

     event.  This is plotted to the right in red as a function of  

     temperature.  
 

•    P(ε) provides a view of the regions of the phonon  

     spectrum that thermal cross sections are expected to  

     be sensitive to and informs an uncertainty analysis that  

     focuses on the physics of the sensitive regions.    

    

Phonon Scattering Probability 
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Phonon spectrum (black) for  

hexagonal graphite vs. P(ε) (red).   
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•   The phonon energy spectrum maps the distribution of  

     available phonon modes as a function of energy.  It  

     does not provide information about the likelihood that a  

     particular phonon mode will interact with a scattering  

     neutron (independent of the population density). 
 

•    For a phonon mode with energy ε, the thermal average  

     of the phonon occupation number is  
 

                                                               . 

 

•    P(ε) = C < n > ρ(ε) gives an estimate of the relative  

     probability that a neutron with incident energy E will  

     absorb a phonon with energy ε in a thermal scattering  

     event.  This is plotted to the right in red as a function of  

     temperature.  
 

•    P(ε) provides a view of the regions of the phonon  

     spectrum that thermal cross sections are expected to  

     be sensitive to and informs an uncertainty analysis that  

     focuses on the physics of the sensitive regions.    

    

Phonon Scattering Probability 

Phonon spectrum (black) for  

hexagonal graphite vs. P(ε) (red).   
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•   The phonon energy spectrum maps the distribution of  

     available phonon modes as a function of energy.  It  

     does not provide information about the likelihood that a  

     particular phonon mode will interact with a scattering  

     neutron (independent of the population density). 
 

•    For a phonon mode with energy ε, the thermal average  

     of the phonon occupation number is  
 

                                                               . 

 

•    P(ε) = C < n > ρ(ε) gives an estimate of the relative  

     probability that a neutron with incident energy E will  

     absorb a phonon with energy ε in a thermal scattering  

     event.  This is plotted to the right in red as a function of  

     temperature.  
 

•    P(ε) provides a view of the regions of the phonon  

     spectrum that thermal cross sections are expected to  

     be sensitive to and informs an uncertainty analysis that  

     focuses on the physics of the sensitive regions.    

    

Phonon Scattering Probability 

Phonon spectrum (black) for  

hexagonal graphite vs. P(ε) (red).   
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Modeled Sources of Uncertainty 
in the Graphite Phonon Spectrum 

•   Statistical uncertainty from 106  

     random samples of phonon wave  

     vectors in the reciprocal space   

     of the first Brillouin zone.  
      

                 (top graph) 

 

 

•   Selected parameter-based physics  

     model uncertainty within the VASP/  

     PHONON simulation process. 
      

              (bottom graph)  

 

 

•   Low-energy region uncertainty 

     based on incomplete modeling of 

     interplanar forces. 
      

                 (next slide)      

14 



Uncertainty in the Low-Energy Region 
of the Phonon Spectrum for Graphite 

•   The phonon dispersion relations for graphite predicted by VASP using density functional theory match experimental   

     dispersion relations data very well except for very low energy phonons propagating in the out-of-plane direction.   
 

•   Density functional theory does not account for Van der Waals forces, and low-energy perpendicular phonon modes  

     are influenced significantly by Van der Waals forces. 
 

•   To assess the uncertainty in the low-energy phonon mode population, different sets of experimental dispersion  

     relations data were examined, and the range of low-energy phonon spectra resulting from this experimental data  

     was calculated geometrically and compared to the reference VASP/PHONON result. 
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Describing a Joint-PDF for the Phonon Spectrum 
Parameters by Monte Carlo Sampling 

•   Specific aspects of uncertainties in the shape of ρ(ε) may be described by one or more reshaping functions  

     that operate, independently or dependently, on any number of the parameters pd .   

 

•   For example, statistical uncertainties could be described by randomly revaluing each pd according to  

     Gaussian distributions with known standard deviations. 

 

•   Bounds may be established for the possible shift of features in energy.  This shift may be energy-dependent  

     (e.g., for modeling the effect of uncertainty in lattice constants). 

 

•   Alternatively, bounds may be established for the possible variation in magnitude of the phonon spectrum in a  

     particular energy region while maintaining features coupled (e.g., when a comparison is made to other  

     calculated spectra or experimental data). 

 

•   In general, any number of non-redundant reshaping functions may be defined which operate on p.  Any  

     appropriate sampling scheme (e.g., Gaussian or flat) may be used to randomly revalue p according to each  

     reshaping function.   

 

•   After the sequential application of all reshaping functions, the perturbed p must be renormalized.  This entire  

     process constitutes one Monte Carlo trial. 

 

•   Applying reshaping functions to a parameterized phonon spectrum allows a geometric description of statistical  

     and systematic uncertainties in ρ(ε) in the physical context of phonon mode density regardless of the  

     methodology employed in generating ρ(ε).   
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Uncertainty Calculation Methodology 

Flowchart demonstrating the 

methodology for calculating 

uncertainties and covariances 

in the phonon energy spectrum 

and in differential and integral 

scattering cross sections. 

 

 

Calculations for the phonon 

spectrum are on the left side 

and calculations for cross 

sections are on the right side. 
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•   Reshaping functions are applied to p to    

     account for statistical uncertainties,    

     selected VASP/PHONON parameter   

     uncertainties, and uncertainties in the  

     low-energy region of the spectrum  

     resulting primarily from an incomplete  

     description of interplanar forces. 

 

•   500 Monte Carlo trials were carried out,  

     resulting in 500 normalized phonon   

     spectra representing the expected  

     range and probable distribution of  

     spectral shapes for the phonon energy  

     spectrum of graphite. 

Uncertainty Results in the Phonon 
Spectrum for Graphite 
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Correlation Matrix for the Graphite 
Phonon Spectrum 
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Uncertainty in Ssym(α,β) for α = 0.2  

•   All results are for the symmetric scattering 

    law, Ssym(α,β), conventionally  tabulated 

    in ENDF File 7. 
 

•   For most materials, the principle of    

     detailed balance implies the relationship   

 
 

     between upscattering and downscattering 

     processes. 

 

•   Therefore, a symmetric scattering law can 

     be defined such that 

 

 

 
 

•   This allows the full thermal scattering law 

     to be tabulated in terms of positive β only. 

 

•    All plots are at 293.6 K and in terms of 

     energy transfer (eV), instead of β, for  

     more intuitive comparison to ρ(ε). 
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Correlation Matrix for Ssym(α,β) for α = 0.2  

•   The zero-correlation region 

     for high energy transfer (or 

     for high β) is manually set to 

     zero for Ssym(α,β) < 1*10-10 to 

     highlight the extremely low 

     sensitivity of differential and  

     integral cross sections to  

     this region.  

 

•   This also demonstrates one 

     method for greatly reducing 

     the Ssym(α,β) covariance data  

     required for storage.  The 

     1*10-10 threshold can be set  

     much higher without  

     significant loss of  information. 
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Uncertainty in Ssym(α,β) for β = 0.4  
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Correlation Matrix for Ssym(α,β) for β = 0.4  
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Uncertainties in Integral Inelastic 

Scattering Cross Sections 

•   Theoretically calculated integral inelastic 

     thermal scattering cross sections are always  

     very highly correlated.   

 

     Any perturbations in the phonon energy  

     spectrum tend to adjust all integral cross  

     sections in the same direction. 

 

•   Uncertainties in the integral inelastic cross 

     sections (due to phonon spectrum  

     uncertainties) will always go to zero in the  

     limit of high incident energy.   

 

     Integral cross sections always converge to  

     the free cross section in the high-energy limit 

     regardless of the features of the phonon  

     spectrum. 

 

     In this case, uncertainty in the nuclear cross  

     section is the only significant remaining 

     uncertainty (typically on the order of 1%).   

 

•   Almost all of the integral uncertainty (in this 

     example) is the result of uncertainties in the  

     low-energy region of the phonon spectrum due  

     to the modeling of weak interplanar forces.  
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Storage Issues for an Ssym(α,β)  

Covariance Matrix  

•   For a 100 × 100 α and β grid, the number of elements in the covariance matrix is 108.  This is likely to be 

    too large to be of any practical use. 

 

•   There are several possible methods for massively reducing the quantity of stored data without suffering 

     significant loss of uncertainty information fidelity at the differential and integral cross section level.  Three  

     general approaches will be listed. 

 

     1.  Similar to the procedure for collapsing fine energy-group covariance data to a coarse-group structure 

          in the resonance energy region, a group averaging procedure may be applied where the Ssym(α,β) 

          covariance matrix is subdivided into a coarse block structure with resolution based on magnitude and 

          variation of Ssym(α,β).  For example, collapsing to a 20 α and 40 β point covariance grid structure  

          would reduce storage requirements by more than 99%.  The Ssym(α,β) matrix itself is not affected.  

 

     2.  A low-threshold cutoff  for the magnitude of Ssym(α,β) could be defined, below which all covariances  

          are set to be zero and not stored.  Integral cross sections have significant sensitivity to only a  

          narrow range of Ssym(α,β) points and are quite insensitive to the majority of Ssym(α,β) points.  The  

          full Ssym(α,β) matrix is needed only for full convergence of the integrated cross sections.  

 

     3.  The covariance data for Ssym(α,β) may be supplied as a covariance matrix for the phonon spectrum, 

           which may then be propagated with a temperature and grid-dependent sensitivity matrix.  Additionally, 

           a coarse phonon spectrum bin structure could be used accounting for the magnitude and variation of  

           ρ(ε) as well as the varying sensitivity to different energy regions.   
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Summary / Conclusions 

 An S(α,β) covariance matrix allows the calculation of uncertainties and correlations (or 

corvariances) for all secondary neutron energy distributions, coupled energy-angle distributions 

and integral inelastic cross sections (for any data structure). 
 

• Published ENDF File 7 libraries, by convention, contain S(α,β) generated theoretically in the 

incoherent approximation.  In this case, for most materials, the phonon energy spectrum is the 

fundamental parameter describing the S(α,β) scattering law.  
 

 The phonon spectrum is a probability density function that can be described by a set of random 

variables pd .  A Monte Carlo process of generating perturbed phonon spectra by operating on pd 

with reshaping functions allows a geometric description of particular aspects of uncertainty in the 

phonon spectrum.  This allows the calculation of an S(α,β) covariance matrix.  
  

 The reshaping function and Monte Carlo processes are general and may be applied to describe 

any source of uncertainties in the phonon spectrum, regardless of how the spectrum was 

generated (theoretically or experimentally).   
 

 The success of the procedure will be limited only by how well reshaping functions can be defined 

to accurately capture the systematic and statistical uncertainties in the spectrum.  These will 

depend on the particular physics of the material structure and on the physics models and 

methodology utilized to arrive at the spectrum.     
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