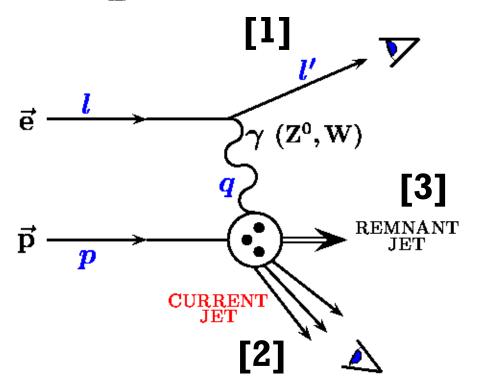
Measuring gluon polarization in the nucleon via open charm production at the EIC

Yuxiang Zhao (yxzhao@impcas.ac.cn)

Institute of Modern Physics, Chinese Academy of Sciences

Lei Xia

University of Science and Technology of China


Outline

•Introduction

Description of the simulation at the EIC

Results and discussions

Deep inelastic scattering and PDFs

$$egin{aligned} Q^2 &= -q^2 = sxy \ x &= rac{Q^2}{2p\cdot q} \ y &= rac{p\cdot q}{p\cdot l} \ s &= 4E_eE_p \end{aligned}$$

- Observe scattered electron/muon [1] → inclusive
- •Observe current jet [1]+[2] → semi-inclusive
- •Observe remnant jet as well [1]+[2]+[3] → exclusive

Experimental observables VS PDFs

Experimental observables

Unpolarized cross section

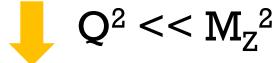
 $Q^2 << M_Z^2$

Unpolarized structure functions F_1 , F_2

Quark-Parton Model QPM

$$F_2(x) = 2xF_1(x)$$

Callan-Gross equation


PDFs

Unpolarized pdfs

$$f_1(x)=q^{\uparrow}(x)+q^{\downarrow}(x)$$

$$F_2(x) = x \sum_q e_q^2 (f_1^q(x) + f_1^{\bar{q}}(x))$$

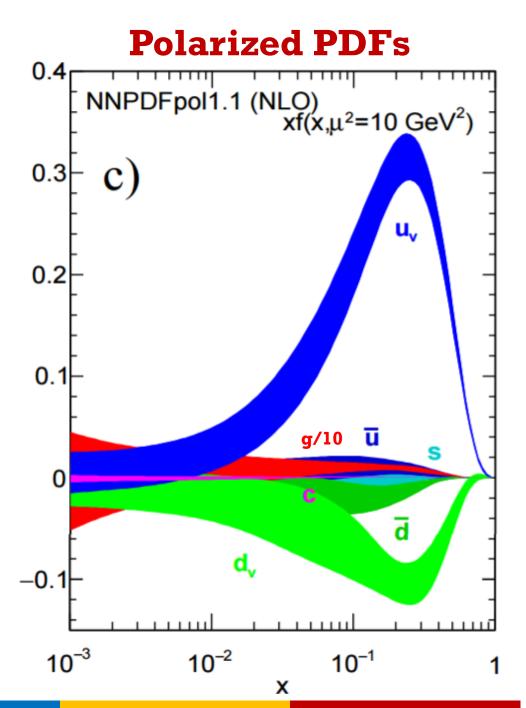
A_{LL} , A_{LT} (A_1, A_2)

Polarized structure functions

 g_1, g_2

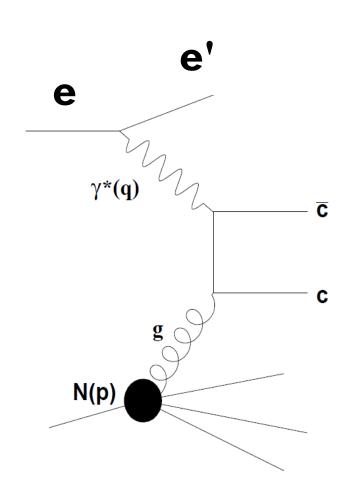
QPM

No g₂ interpretation in QPM


Polarized pdfs

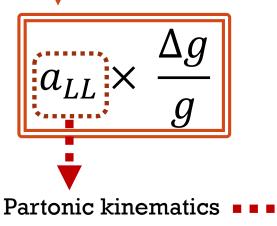
Helicity distribution

$$\Delta q = q^{\uparrow}(x) - q^{\downarrow}(x)$$


$$g_1(x) = \frac{1}{2} \sum_q e_q^2 \Delta q(x)$$

Unpolarized PDFs NNPDF3.0 (NNLO) 0.9 $xf(x,\mu^2=10 \text{ GeV}^2)$ 0.8 g/10 0.7 0.6 0.5 0.4 0.3 0.2 0.1 10⁻² 10⁻³ 10^{-1} Х

What "heavy flavor" production can contribute


Open Charm "SIDIS": e p→(e' & D0) coincidence + X

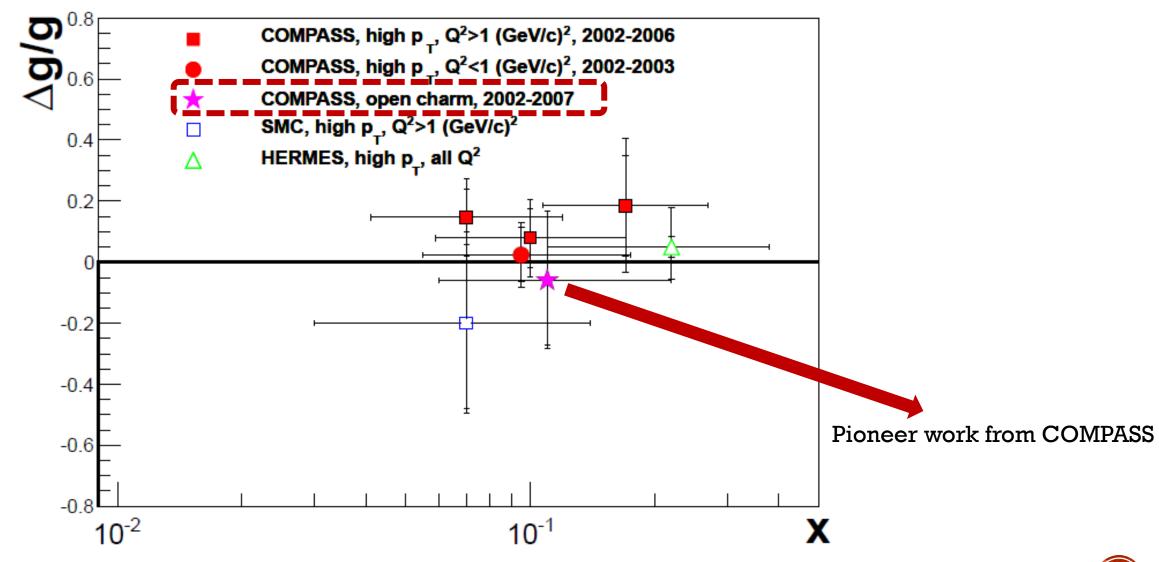
Experimental observable: Double spin asymmetry

$$A_{LL} = \frac{d\sigma^{++} - d\sigma^{+-}}{d\sigma^{++} + d\sigma^{+-}} = \frac{1}{P_e P_p} \frac{N^{++} - N^{+-}}{N^{++} - N^{+-}} = \frac{1}{P_e P_p} A_{measure}$$

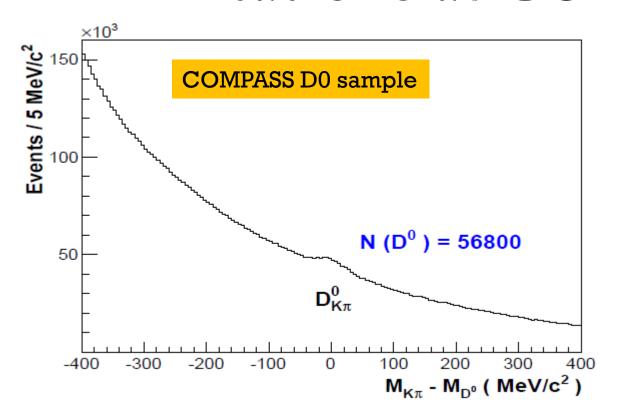
Leading order picture

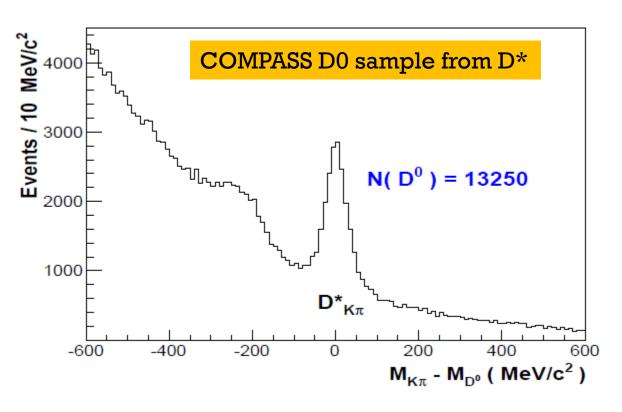
https://inspirehep.net/literature/1231266

$$\frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}\hat{\sigma}} = \frac{\alpha^{2}e_{q}^{2}\alpha_{s}}{xQ^{2}(\hat{s}+Q^{2})^{2}} \left\{ \left[2(1-y) + y^{2} \left(1 - \frac{2m_{l}^{2}}{Q^{2}} \right) \right] \left[\frac{Q^{4} + \hat{s}^{2}}{(\hat{s}+Q^{2})^{2}} \frac{\tilde{u}^{2} + \tilde{t}^{2}}{2 \ \tilde{u} \ \tilde{t}} + \right] \right\} + (5.8)$$


$$\frac{2m^{2}}{\tilde{u} \ \tilde{t}} \left(\hat{s} - Q^{2} + \frac{Q^{2}(\hat{s}+Q^{2})^{2}}{2 \ \tilde{u} \ \tilde{t}} \right) - \frac{2m^{4}(\hat{s}+Q^{2})^{2}}{\tilde{u}^{2} \tilde{t}^{2}} + 8(1-y)Q^{2} \left[\frac{\hat{s}}{(\hat{s}+Q^{2})^{2}} - \frac{m^{2}}{\tilde{u} \ \tilde{t}} \right] \right\},$$
and

$$d\Delta\hat{\sigma} = \frac{\alpha^2 e_q^2 \alpha_s}{x Q^2 (\hat{s} + Q^2)^2} y \left(2 - y - \frac{2y^2 m_l^2}{Q^2}\right) \frac{\tilde{u}^2 + \tilde{t}^2}{2 \tilde{u} \tilde{t}} \left[\frac{Q^2 - \hat{s}}{\hat{s} + Q^2} + \frac{2 m^2 (\hat{s} + Q^2)}{\tilde{u} \tilde{t}} \right], \quad (5.9)$$


Enable a $\frac{\Delta g}{g}$ measurement



First measurement from COMPASS

Limitations at COMPASS

- No vertex detector to take advantage of decay topology → large background
- Low luminosity and finite acceptance → limited statistics

Outline

Introduction

Description of the simulation at the EIC

Results and discussions

Strategy of the simulation

Events generated using PythiaeRHIC (Pythia 6.4)

Smear event by event according to the "detector matrix"

(Sooraj's "fastsim" at LBNL)

Search Pion&Kaon pair

$$D^0 \xrightarrow{3.89\%} K^-\pi^+$$

Reconstructed D0

First look at the sample: Cut flow study

(1)

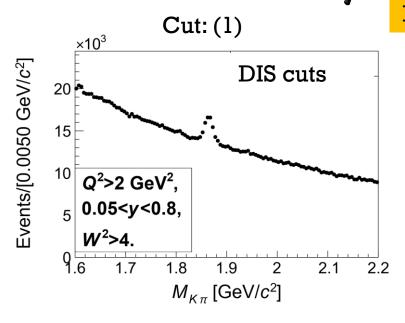
Q²>2GeV² 0.05<y<0.8 W²>4 GeV²

Truth PID
+
Charge selection
Pi+&K- or Pi-&K+

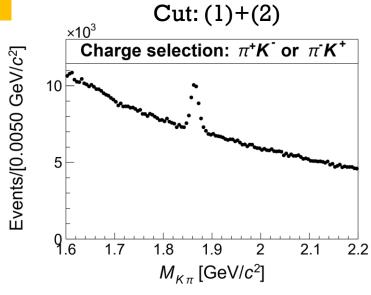
(2)

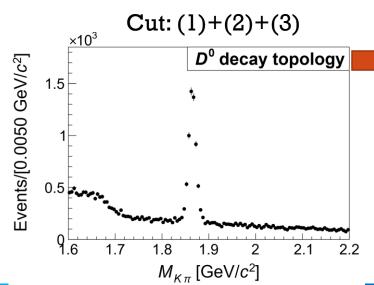
D0 decay topology

PID acceptance cuts

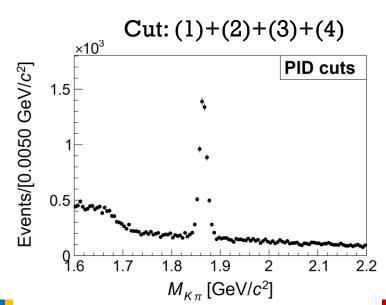

(4)

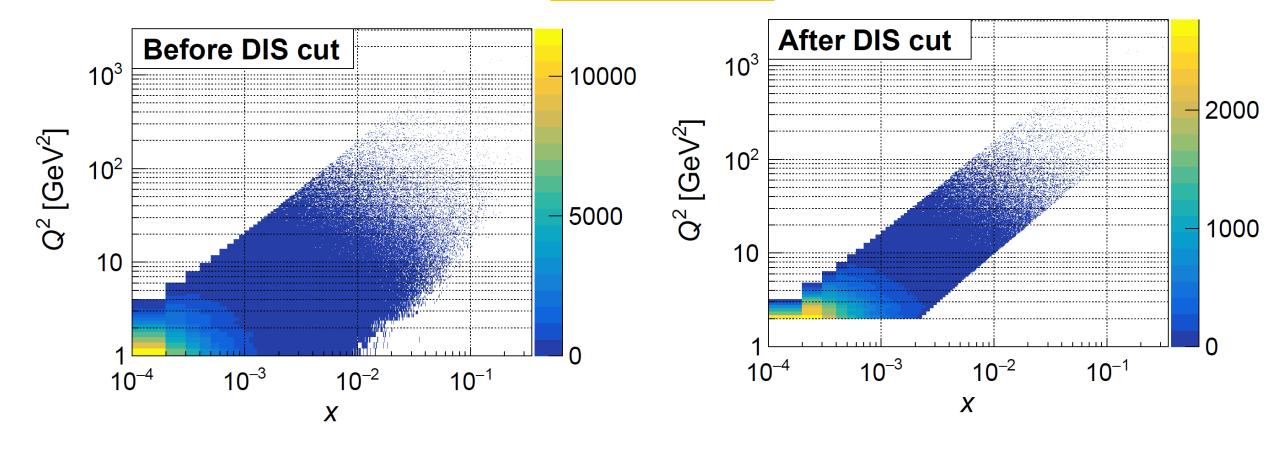
Refer to Sooraj's talk:

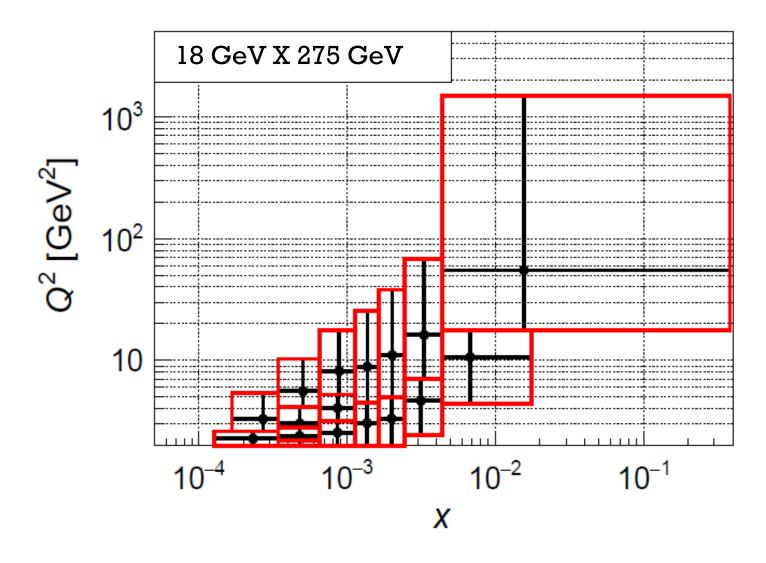

• Cuts on decay topology: $cos(\theta_{r\phi}) > 0.98$, $dL > 40 \mu m$, pair $d_0 < 150 \mu m$


Pseudo-rapidity region	PID Momentum upper limit (GeV)
<-1	7
[-1, 1)	5
[1, 2)	8
[2, 3)	20
Otherwise	Not analyzed yet

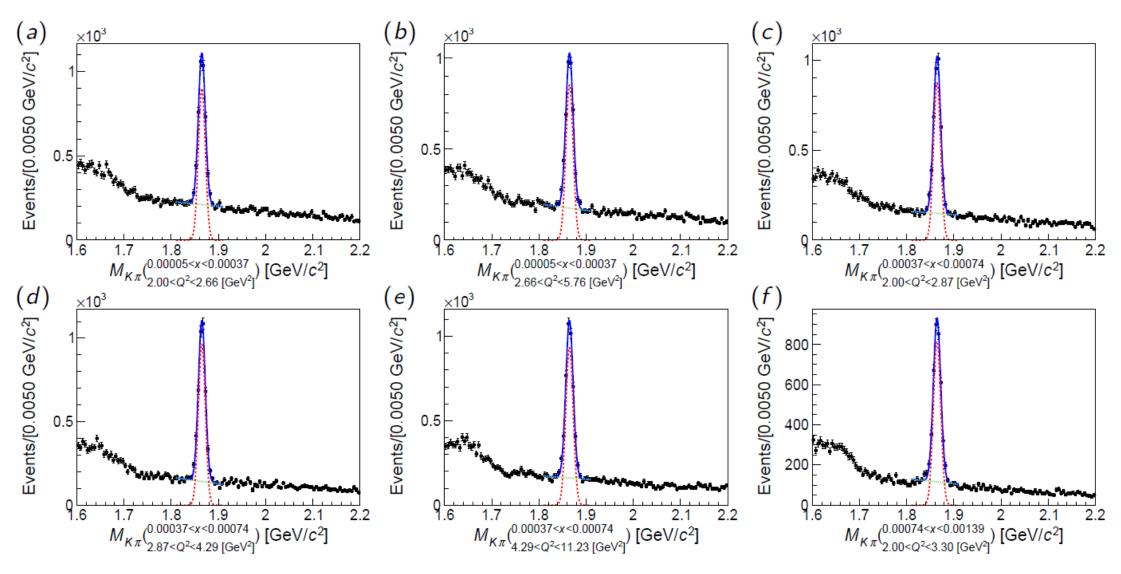
Cut flow study

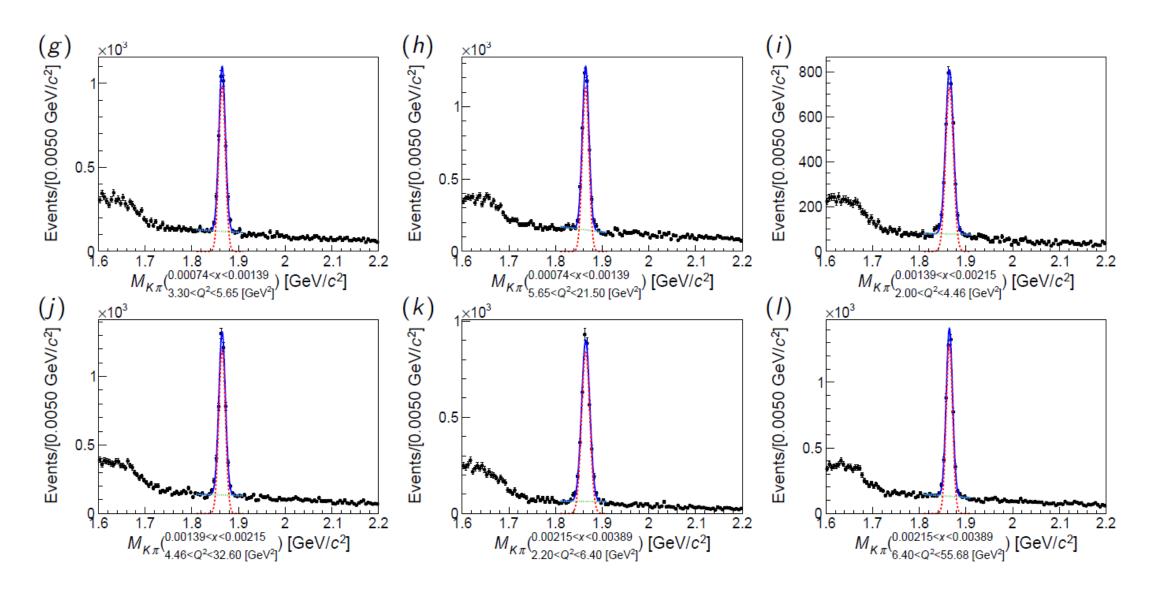


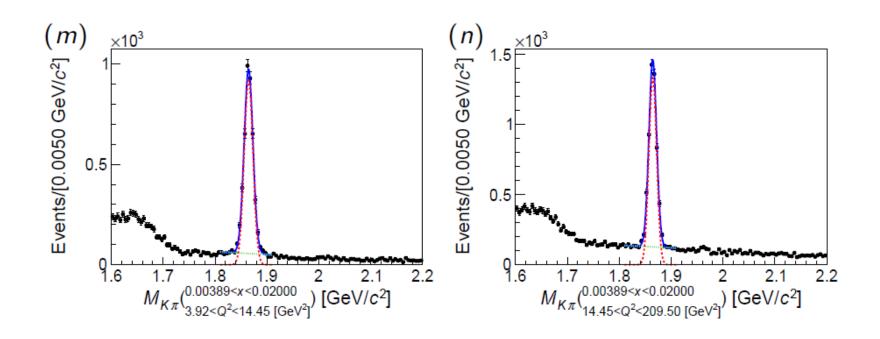




Bjorken x VS Q² coverage

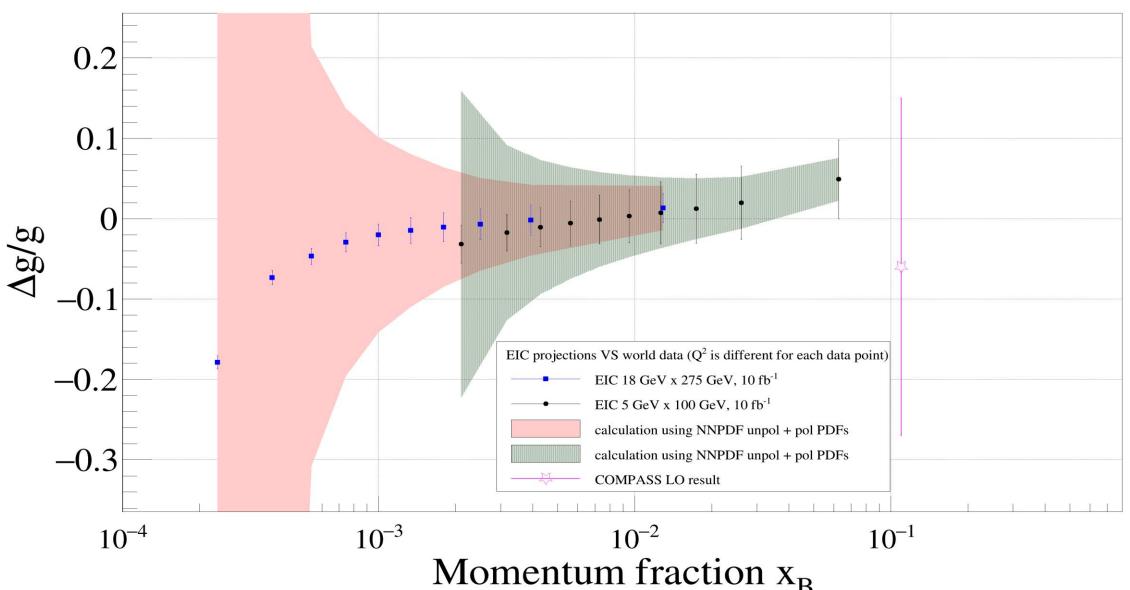

18 GeV x 275 GeV


Binning on x-Q²


Events in each bin (18 GeV x 275 GeV)

Events in each bin (18 GeV x 275 GeV)

Events in each bin (18 GeV x 275 GeV)

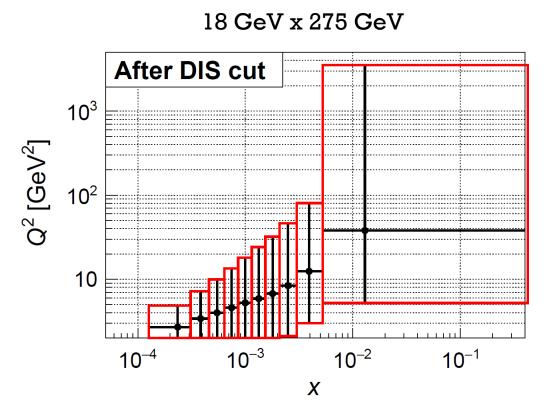


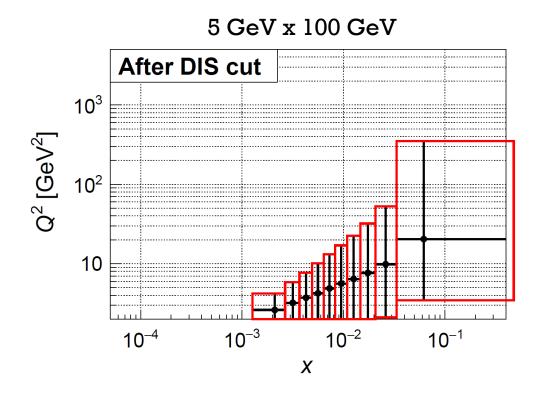
In general, signal is quite significant in each bin

Fitting results (18 GeV x 275 GeV)

x_{\min}	x_{\max}	Q_{\min}^2	$Q_{\rm max}^2$	N _{Signal}	$N_{ m Background}$	a _{LL}
0.00005	0.00034	2.00	2.62	2910^{+76}_{-75}	1653^{+208}_{-202}	-0.246
0.00005	0.00034	2.62	5.43	2866^{+74}_{-74}	1486^{+198}_{-194}	-0.431
0.00034	0.00065	2.00	2.82	$ 2934^{+71}_{-70} $	1206^{+176}_{-172}	-0.118
0.00034	0.00065	2.82	4.13	3082^{+72}_{-71}	$1144^{+\bar{1}7\bar{5}}_{-171}$	-0.199
0.00034	0.00065	4.13	10.27	3122^{+75}_{-74}	1333^{+188}_{-184}	-0.467
0.00065	0.00113	2.00	3.16	2698^{+68}_{-67}	954^{+164}_{-159}	-0.065
0.00065	0.00113	3.16	5.24	3094^{+68}_{-68}	920^{+153}_{-149}	-0.162
0.00065	0.00113	5.24	17.62	3494^{+75}_{-74}	1182^{+178}_{-174}	-0.410
0.00113	0.00164	2.00	4.46	2749^{+66}_{-65}	785^{+143}_{-146}	-0.055
0.00113	0.00164	4.46	25.47	3501^{+73}_{-71}	1008^{+161}_{-158}	-0.278
0.00164	0.00245	2.00	4.94	2918^{+68}_{-67}	700^{+148}_{-144}	-0.043
0.00164	0.00245	4.94	37.95	3674_{-73}^{+73}	975^{+157}_{-153}	-0.240
0.00245	0.00439	2.43	7.00	3218^{+68}_{-67}	542^{+136}_{-131}	-0.044
0.00245	0.00439	7.00	67.52	3952^{+76}_{-74}	958^{+156}_{-153}	-0.221
0.00439	0.38368	4.39	17.81	3863^{+71}_{-71}	552^{+132}_{-127}	-0.055
0.00439	0.38368	17.81	1560.12	4487 ⁺⁸² ₋₈₁	1195^{+178}_{-174}	-0.208

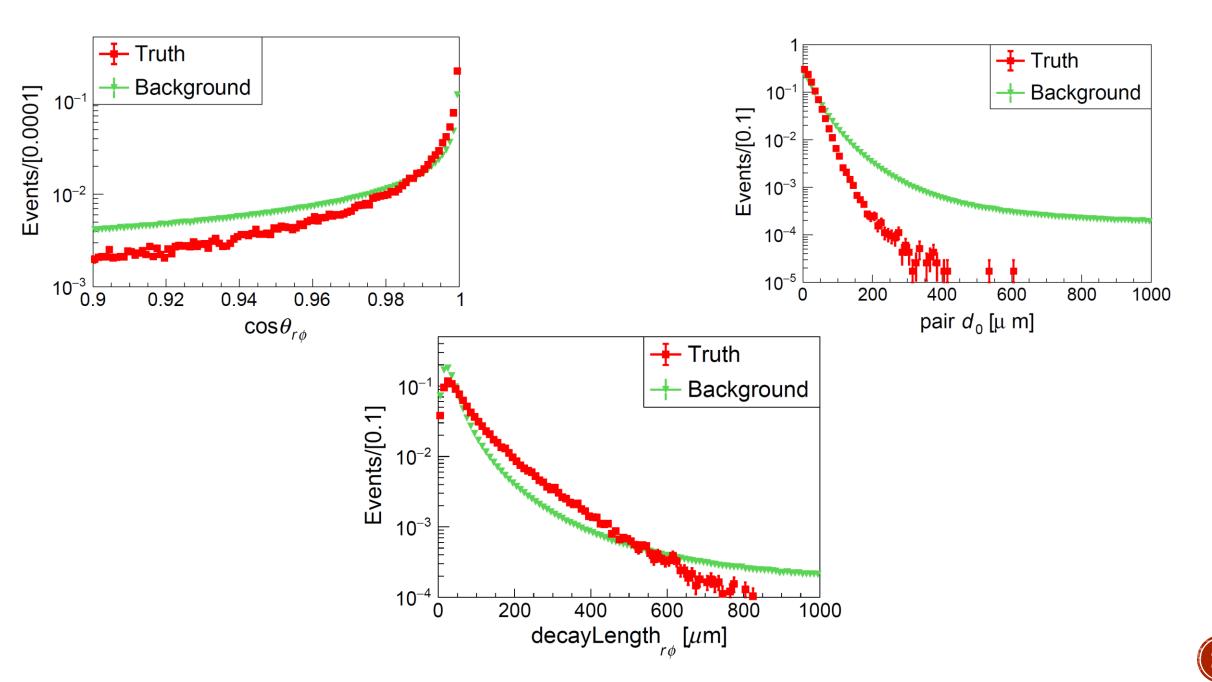
Projections VS existing knowledge on PDFs


Summary and discussions


- $\frac{\Delta g}{g}$ measurement is feasible at the EIC taking advantage of good vertex and PID detectors
 - ➤ Different from relying on QCD fits to inclusive and SIDIS double spin asymmetry measurements
- A LO projection study was done
- Double spin asymmetry in the e'&D0 coincidence channel can be nicely measured at the EIC, to interpret the data at LO or NLO depends on the theoretical inputs
 - ➤ I will be more than happy to discuss and collaborate with whoever is interested in this topic at the EIC

Backups

1D bining on Bjorken x



D⁰ reconstruction

Pseudo	rapidity range			Momentum resolution		vertex resolution	_	PID		
-3.5 to -3.0				<u>σ_p/p ~</u>	2.5% 2.55% 2.0.5% 2. ~5% or less X	TBD		π/K p-Range (GeV/c)	(/p Separation	
-3.0 to -2.5				0.1%⊕0.5%				p 1123.8c (001/c)	Separation	
-2.5 to -2.0			Backward Detector	<u>σ</u> p/ <u>p</u> <u>0.1%⊕0.5%</u>						
-2.O to -1.5				<u>op/p</u>						
-1.5 to -1.0				<u>0.05%⊕0.5%</u>						
-1.0 to -0.5			Detector Barrel	<u>а</u> р/ <u>р</u> ~0.05%×p+0.5%		σ _{xyz} ~ 20 μm, d _O (z) ~d _O (rΦ) ~ 20/p _T GeV μm + 5 μm		≤7 GeV <u>/c</u>		
-0.5 to 0.0		Central Detector								
0.0 to 0.5										
0.5 to 1.0										
1.O to 1.5				<u>op/p</u> <u>~0.05%×p+1.0%</u>				≤ 5 GeV/c	≥3σ	
1.5 to 2.0			Forward Detectors			<u>TBD</u>				
2.0 to 2.5								≤8 GeV/c		
2.5 to 3.0					<u>σ_p/p ~</u>				≤ 20 GeV/c	
3.0 to 3.5					0.1%×p+2.0%				≤ 45 GeV/c	

- How fastsim is implemented:
 - Smear the momenta of final state particles according to the momentum resolution in the above table
- Using the smeared momentum, smear the vertex position of tracks according to the vertex resolution given above
- Fold in the primary vertex resolution when reconstructing topological variables

