- We compare the generation of purely DVCS events in MILOU with GK and KM20 @ EIC beam energies
- Generation parameters as follows:

BASES integration parameters

& range to be optimized case by case

Number of x & Q² & t points in the amplitudes grid NXGRID 60 NQGRID 60 NTGRID 60

of Generated Events: 500k /configuration

Kinematical cuts at generation level

- $10^{-4} < x < 0.9$
- 1.0 < Q2 <100 GeV²
- 0.01 < |t| < 1.6 GeV²
- 0.01 < y < 0.95 [inelasticity]
- $E^{el}_{min} = 0.5 \text{ GeV}$

Photons at forward rapidity

- In Pawel's plot DVCS photons extended to forward rapidity
- There was some discussion on this withing the Y.R., as it seemed to contrast with expectations from W.P. and plots with MILOU
- After investigation we found that this is driven by the lower inelasticity cuts (commonly assumed to be y>0.01)
- Optimizing the cut? See Pawel's update

Gaps in Q²

- It was reported several times, e.g. see Jinlong's many updates, that MILOU plots often show weird gaps in the Q² (and large |t|) distribution
- This seems to be due to BASES/SPRING integration package

10⁵ 18x275 GeV 10⁴ 10^{3} 10² 10 80 90 0 50 60 70 100 20 30 40 Ω^2 (GeV²)

Photon virtuality

* * * * * *	BBBBBBB BB BB BBBBBBBB BBBBBBBB	AAAA AA AA	SSSSSS	FEEEE	5555		*
* * * * *	BB BB BB BB BBBBBBB BBBBBBBBBBBBBBBBBB	AAAA AA AA	222222				T
* * * *	BB BB BBBBBBB BB BB		55 55	FF	SS	55	*
* * *	BBBBBBB	AA AA	SS	EE	SS	55	*
* *		AAAAAAAA	SSSSSS	EEEEEE	SSSS	SS	*
*	DD DD	AA AA	SS	EE		SS	*
	BB BB	AA AA	SS SS	EE	SS	SS	*
*	BBBB BB	AA AA	SSSSSS	EEEEEE	SSSS	SS	*
*							*
*		BASE	S Version 5	5.1			*
*	code	d by S.K	awabata KE	K, March	1994		*
	Parameters for	BASES	>>				
(1) ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	Parameters for Dimensions of # of dimension # of Wilds # of sample po # of subregion # of regions # of Hypercube About the inte	BASES integrat s : N ints : N s : N s : N es : N gration	>> ion etc. dim = wild = call = g = region = cube = variables	3 3 18522(1 42 / 21 / 9261	(50 (15 real) /varia /varia	at max. at max. 20000 ble ble	.) .) Ø(given)
(1) ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	Parameters for Dimensions of # of dimension # of Wilds # of sample po # of subregion # of regions # of Hypercube About the inte i XL	BASES integrat s : N bints : N s : N s : N egration .(i)	<pre>>> ion etc. dim = wild = call = g = region = cube = variables +</pre>	3 3 18522(1 42 / 21 / 9261	(50 (15 real) / varia / varia	at max. at max. 20000 ble ble Wild	.) .) Ø(given)
(1) 	Parameters for Dimensions of # of dimension # of Wilds # of sample po # of subregions # of regions # of Hypercube About the inte i XL 	BASES integrat s : N ints : N is : N s : N egration .(i) 000E-04	>> ion etc. dim = wild = call = g = region = cube = variables +	3 3 18522(r 42 / 21 / 9261	(50 (15 real) / varia / varia / content / co	at max, at max, 20000 ble ble Wild ves	.))) Ø(given) - -
(1) 	Parameters for Dimensions of # of dimension # of Wilds # of sample po # of subregions # of regions # of Hypercube i XL 	BASES integrat s : N ints : N s : N s : N egration .(i) 000E-04 000E+00	>> ion etc. dim = wild = call = g = region = cube = variables +	3 3 18522(r 42 / 21 / 9261	(50 (15 real) / varia / varia / uaria / uaria / uaria / uaria	at max, at max, 20000 ble ble Wild yes yes	.))) Ø(given) - -

Optimization of BASES grid

Dare: 2020/ 3/22 TO:TT

Convergency Behavior for the Grid Optimization Step

<- F	Resul	t of	each iterat	tion ->	<pre><- Cumulative Result Estimate(+- Error)order</pre>	> <-	CPU time >
IT	Eff	R_Neg	Estimate	Acc %		Acc % (H: M: Sec)
1	88 71	0.00	1.930E-01	17.864	1.929769(+-0.344729)E-01 3.957869(+-0.048508)E-01	17.864	0:16:54.40
3	80	0.00	4.138E-01	0.215	4.132092(+-0.008751)E-01	0.212	0:43:27.87
4	82	0.00	4.158E-01	0.246	4.142973(+-0.005349)E-01	0.160	0:57:25.92
5	81	0.00	4.145E-01	0.217	4.143823(+-0.005349)E-01	0.129	1:10:55.50
6	81	0.00	4.149E-01	0.236	4.145101(+-0.004693)E-01	0.113	1:25: 4.36
7	81	0.00	4.162E-01	0.231	4.148287(+-0.004218)E-01	0.102	1:38:50.89
8	81	0.00	4.163E-01	0.285	4.149889(+-0.003975)E-01	0.096	1:52:32.91
9	80	0.00	4.137E-01	0.210	4.147629(+-0.003614)E-01	0.087	2: 6:41.37

^L

D

Date: 2020/ 9/25 18:11

<	(- F	Resul	t of	each iterat	ion ->	Cumulative Result Catimate() Cancer Leader	-> <	CPU time >
_	тı 	<u> </u>	R_Neg	EStimate	ACC %		ACC % (п: м: Sec)
	1	81	0.00	4.138E-01	0.252	4.138218(+-0.010420)E-01	0.252	2:20:12.01
	2	81	0.00	4.151E-01	0.239	4.145102(+-0.007181)E-01	0.173	2:33:51.18
	3	81	0.00	4.154E-01	0.238	4.148119(+-0.005810)E-01	0.140	2:47:26.93
	4	81	0.00	4.160E-01	0.252	4.150840(+-0.005084)E-01	0.122	3: 1: 8.49
	5	81	0.00	4.150E-01	0.242	4.150684(+-0.004536)E-01	0.109	3:15:25.60
	6	81	0.00	4.163E-01	0.241	4.152770(+-0.004135)E-01	0.100	3:29:39.94
	7	81	0.00	4.143E-01	0.229	4.151176(+-0.003791)E-01	0.091	3:43:39.38
	8	81	0.00	4.157E-01	0.273	4.151712(+-0.003595)E-01	0.087	3:57:55.32
	9	81	0.00	4.163E-01	0.239	4.153046(+-0.003382)E-01	0.081	4:11:32.34
	10	81	0.00	4.135E-01	0.235	4.151063(+-0.003194)E-01	0.077	4:25:47.40

Histogram (ID = 1) for	r x		b		
x d(Sigma)/dx	Linear Sc 0_0F+00	ale indicated 3.8F+01	Dy "*" 7.5E+01	1.1F+02	
+	+	+	+	+	+
I E -2 I 0.000	E 0I				Ι
I 0.010 I 1.250+-0.001	21******	****	******	**********	Ι
I 0.260 I 2.231+-0.003	11********	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000000	Ι
I 0.510 I 9.149+-0.028	01****000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000	Ι
I 0.759 I 3.839+-0.025	01**00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00	Ι
I 1.009 I 1.979+-0.024	E 0I*00000000	000000000000000000000000000000000000000	00000000000		Ι
I 1.259 I 1.256+-0.024	E 0I*00000000	000000000000000000000000000000000000000	000000000		Ι
I 1.509 I 7.428+-0.171	E -1I*000000000	000000000000000000000000000000000000000	0000000		Ι
I 1.758 I 4.911+-0.232	E -1I*000000000	000000000000000000000000000000000000000	000000		Ι
I 2.008 I 2.524+-0.193	E -1I*000000000	000000000000000000000000000000000000000	0000		Ι
I 2.258 I 3.037+-0.178	E -1I*000000000	000000000000000000000000000000000000000	0000		Ι
I 2.508 I 2.030+-0.143	E -1I*000000000	000000000000000000000000000000000000000	000		Ι
I 2.757 I 1.200+-0.103	E -1I*000000000	000000000000000000000000000000000000000	0		Ι
I 3.007 I 9.444+-0.839	E -2I*00000000	000000000000000000000000000000000000000			Ι
I 3.257 I 7.481+-0.692	E -2I*00000000	000000000000000000000000000000000000000			Ι
I 3.507 I 3.492+-0.584	E -2I*00000000	0000000000			Ι
I 3.756 I 3.378+-0.648	E -2I*00000000	0000000000			Ι
I 4.006 I 6.158+-1.924	E -2I*00000000	000000000000000000			I
I 4.256 I 7.091+-1.435	E -2I*00000000	000000000000000000000000000000000000000			I
I 4.506 I 2.333+-0.712	E -2I*00000000	00000000			I
I 4.755 I 4.548+-1.532	E -2I*00000000	0000000000000000			I
I 5.005 I 1.389+-0.761	E -2I*00000000	000000			Ι
I 5.255 I 1.729+-0.503	E -2I*00000000	0000000			Ι
I 5.505 I 1.098+-0.392	E -2I*00000000	00000			Ι
I 5.754 I 9.939+-0.870	E -3I*00000000	00000			Ι
I 6.004 I 1.966+-0.533	E -2I*00000000	0000000			Ι
I 6.254 I 5.538+-1.434	E -3I*00000000	0000			I
I 6.504 I 1.371+-0.409	E -2I*00000000	000000			I
I 6.753 I 2.333+-0.859	E -2I*00000000	00000000			I
I 7.003 I 4.075+-1.127	E -3I*00000000	000			I
I 7.253 I 7.760+-2.381	E -3I*00000000	00000			Ι
I 7.503 I 8.198+-2.912	E -3I*00000000	00000			Ι
I 7.752 I 8.436+-1.753	E -3I*00000000	00000			Ι
I 8.002 I 3.242+-1.321	E -3I*00000000	00			Ι
I 8.252 I 3.775+-1.165	E -3I*00000000	000			I
I 8.502 I 5.408+-1.364	E -3I*00000000	0000			Ι
I 8.751 I 2.698+-0.752	-3I*00000000	00			Ι
I 9.001 I 2.517+-1.765	E -3I*00000000	0			I

~

Optimization of BASES grid

- The integration variables (x, Q2, t) bust be samples properly (right interval in the steering cards)
- Number of calls and number of steps for grid optimization must yield an acceptable accuracy
- Tuned grids (bases.data files) can be later reused for generation

Comparison: (5 x 41) GeV

Comparison: (18 x 275) GeV

- Deep in Q² and t distribution: related to optimization of BASES integration grid/parameters
- Different behavior vs Bjorken's x of GK and KM20 Sep 28, 2020

S. Fazio - BNL

Comparison: (5 x 100) GeV

- Deep in Q² distribution disappears.
- Very different t-dependences at large |t|> 0.65 GeV2 for GK (exponential) and KM20 (dipole-like)
- Behavior 2030 Bjorken's x of GK and KM20 becames more similar in the tails

Outlook

 The code is now in good shape, ready to be used for impact and detector studies

In the near term, we should consider to:

- Include CFFs of light nuclei
- Include polarization (beam helicity)