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Introduction

• Jets and their structure 
o Correlations in momentum, charge and flavor :  leading and next to leading particles in a jet
o access to the dynamics of fragmentation and color entanglement in QCD  

• Observable 
o Charge asymmetry and connection to dihedron fragmentation function

• Pythia event studies on the observable and PID limits
o Acceptance of Jets with with limits in PID  
o Charge asymmetries for two different PID limits in central region

• Summary 
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Jets at DIS 

Leading momentum particles in the jet − 𝐾, �̅�
Particles in Jet  : 

Px       Py Pz PID
-7.64  -4.41   -4.21    321
-2.06  -1.89   -1.40   -2212
-1.44  -0.87  -0.69    -211
-1.07  -0.08   0.04    2212
-0.58  -0.45  -0.53   -211

-0.70   -0.39  - 0.39   -211
-0.65  -0.52  -0.04     211

Scattered-electron
+ve particles
-ve particles
Neutral particles

Charged Jet – anti-kt R = 0.7  (pT-jet > 8GeV) 310/2/20



lead

next-lead

Jet

(partic
les)

Jets :  What they teach us Ø Looking in the nonperturbaDve aspect of 
jet fragmentaDon

Ø Dynamics that led to fragmentaDon of 
various parDcle species in certain ways

Ø PaEern in charge and flavor separaDon : 
they can inform in future theoreDcal 
development

410/2/20

leading particle (L)  = highest momentum  particle
next-to-leading (NL) = second highest momentum  particle



Momentum-charge correlations 

10/2/20 5

q Leading particle (L) and next-to-leading (NL) are both pions generated in two pictures 

i) “random” picture : L is fixed and NL is random and both L and NL pions are charged

A few notes on momentum-charge correlations

• Consider jets in which the leading particle (L) and next-to-leading (NL)
are both pions.

• If the charges of these pions are random (or if L is fixed and NL is
random) then for those events where both L and NL pions are charged,

N random
CC = N random

CC =
N random

2
(1)

where CC indicates opposite charges, CC, same charge.

• Now consider an “alternating” picture: perturbative shower gives qL
followed by q̄

0
NL, which form pions by sharing a soft pair:

qL + q̄NL ! qL + (q̄s + qs) + q̄
0

NL ! ⇡(qL, q̄s) + ⇡(qs, q̄
0

NL) (2)

Then we get

Nalternating

CC
= Nalternating ,

Nalternating
CC = 0 , (3)

and all pairs of L and NL charged pions have opposite charges.

• Suppose every event results from one of these two processes, with no
interference. If a is the percentage of “alternating” events and 1� a of
“random” events

rasy ⌘ NCC � NCC

NCC + NCC

=
1� a

2
�

✓
1� a

2
+ a

◆
= �a . (4)

In this (classical) picture a measurement of rasy is a measurement
of the fraction of hadronizations that are “string-like”, alternating be-
tween quark and antiquark. This is surely too simple, but this mea-
surement has information.

• Measurements of r can be made di↵erentially in fractions zL and zNL in
a jet, and in terms of a variety of “transverse” kinematic variables: rel-
ative transverse momentum, pair invariant mass, pair formation time,
etc, including polarization where applicable. These can serve as bench-
marks for a future theory of hadronization.
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C"C indicates opposite charges
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q The observable :  

Ø rasy is a measurement of the fraction of hadronizations that are “string-like”, alternating between quark and antiquark 

ü provided every event results from one of these two processes, with no interference
ü percentage of “alternating” = a; and percentage of random events = 1-a

CC same charge

(classical picture)



18x275 GeV

PYTHIA-6 :   
Q2 > 65 GeV

Jet ReconstrucLon :
anL-kt R = 0.7
Jet pt > 8GeV
pt-tracks  > 0.2GeV
track |eta| < 3.5
Jet |eta| < 2.8

610/2/20

q Construct  rasy with particle compositions with various parameters
ü Leading particle  (𝝿) and next leading particles (𝝿/K/p)
ü Leading particle  (K) and next leading particles (K/ 𝝿 /p) 
ü Leading particle  (p) and next leading particles (p/𝝿/K) 

q Looking via
ü Momentum-next lead particle/momentum of leading particle
ü Faction of jet momentum carried by leading particle
ü Angle between the leading  and next to leading particles (∆𝜃 )
ü relative transverse momentum (kperp)
ü pair invariant mass
ü Formation time : [2z(1-z) P] / kperp2

PL
PNL

kperp
kperp

𝑃𝐿
𝜃

𝑃𝑁𝐿
�⃗�

z = PNL/(PNL+PL)
PL = (1-z)P
PNL = zP

leadingnext-le
ad

Jet
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Acceptance
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Momentum cuts on tracks  for  approximate PID requirement at EIC at 
different 𝝶 regions (currently we made one hard limit at certain momentum)
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- average

𝝶 - range Momentum 
cut (GeV/c2)
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The effect of momentum cuts in pseudorapidity acceptance of jets 
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“random” events

rasy ⌘ NCC � NCC

NCC + NCC

=
1� a

2
�

✓
1� a

2
+ a

◆
= �a . (4)

In this (classical) picture a measurement of rasy is a measurement
of the fraction of hadronizations that are “string-like”, alternating be-
tween quark and antiquark. This is surely too simple, but this mea-
surement has information.

• Measurements of r can be made di↵erentially in fractions zL and zNL in
a jet, and in terms of a variety of “transverse” kinematic variables: rel-
ative transverse momentum, pair invariant mass, pair formation time,
etc, including polarization where applicable. These can serve as bench-
marks for a future theory of hadronization.
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𝜏form < 1fm 𝜏form > 10 fmImportant 
region

Formation time, 𝜏form = [2z(1-z) P] / kperp2

11

Important region to study in data 𝜏form = "a few fermi" and "a few dozen fermi",  kperp= “a few GeV” 
to “several hundred MeV”

𝜏form < 1fm  : L and NL particles seem to separate after a very short time, which might decorrelate their 
hadronization
𝜏form > 10 fm (Kperp< 200 MeV) : nonperturbative transverse momenta in the jet, and we don't think that 
going to longer 𝜏form or smaller kperp leads to new dynamics
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Different PID limits at Barrel region : a comparative study
𝝶 - range Momentum cut (GeV/c2)

-1.0 to  1.0 No limit
-1.0 to  1.0 10
-1.0 to  1.0 5
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𝝶 - range Momentum cut 
(GeV/c2)

-1.0 to  1.0 10

𝝶 - range Momentum cut 
(GeV/c2)

-1.0 to  1.0 5

Acceptance in x-Q2

𝝶 - range Momentum cut 
(GeV/c2)

-1.0 to  1.0 No limit 

0.1 % 10 fb-1

Q2> 65 GeV
Jet pT > 8 GeV/c

0.1 % 10 fb-1

Q2> 65 GeV
Jet pT > 8 GeV/c

Covers wider x-Q2 phase with high momentum PID
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Momentum cut for PID  (-1.0 < 𝝶 < 1.0) : 
5 GeV/c2,  10 GeV/c2, no momentum cuts

pT,Jet and z reach for different PID limits at Barrel region

Momentum cut for PID  (-1.0 < 𝝶 < 1.0) : 
5 GeV/c2,  10 GeV/c2, no momentum cuts

• PID up to 10 GeV/c2 impose significant limitation in small z and high pT,Jet reach
• However, increasing PID performance  up to 10 GeV/c2 would  :

ü significantly cover small z 
ü enhance pT,Jet limit od measurement 

z = PNL/(PNL+PL)
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Summary
• Correlations in momentum, charge and flavor of leading particles in jet carry information 

of non perturbative aspect of jet fragmentation
• At EIC this can be measured with high momentum PID capabilities compared to the 

experiments in HERA

• PID with 5 GeV/c momentum limit keeps much of the important region inaccessible

• Enhancing momentum reach 10 GeV/c is very useful in  reaching the very important 
inaccessible region
ü Covers wider x-Q2 phase space
üAccess smaller z region 
ü enhance pT,Jet limit of measurement 

• Such studies going in very forward region

1710/2/20
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Measurements of rasy and expressing in terms of di-hadron 
fragmentation functions

• differentially in fractions zL and zNL in a jet, 
• “transverse” kinematic variables: 

ü relative transverse momentum 
ü pair invariant mass
ü pair formation time
ü including polarization where applicable 
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generalized di-hadron fragmentation functions for any hadrons h1, h2 : 

• We may consider a constellation of such measurements based on gener-
alized dihadron fragmentation functions for any hadrons h1, h2 . . . like

D>
hL,hNL

(zLzNL) , (5)

in terms of numbers

N>
hL,hNL

=
Z 1

0
dzL

Z min(zL,1�zL)

dzNLD
>
h1,h2

(zL, zNL, Q) . (6)

When zL and zNL are large enough, this is the usual dihadron distri-
bution

D>(x1, x2, Q) = D(x1, x2, Q) when x2 > 1� x1 � x2 . (7)

In these terms, the ratio above is:

rS =

P
h1,h22S Qh1Qh2 N

>
h1,h2P

h1,h22S |Qh1Qh2 |N>
h1,h2

. (8)
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q Measurements of rasy : 

q rasy and its connection with generalized di-hadron fragmentation functions
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• The strength of 
correlations are 
different 
decrease as an 
acceptance effect

• Acceptance 
changes in 
certain regions 
due to 
momentum cuts

𝑁 !
̅ !

𝑁 !
̅ !

The transition 
region from soft 
patron emission to 
hard is very 
important
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r a
sy

r a
sy

𝝿𝝿, KK, pp
𝜏form < 1fm  : L and NL particles seem to separate after a very short time, 
which might decorrelate their hadronization.

𝜏form > 10 fm (Kperp< 200 MeV) : nonperturbative transverse momenta in 
the jet, and we don't think that going to longer 𝜏form or smaller kperp leads 
to new dynamics

Important region to study in data 𝜏form = "a few fermi" and "a few dozen fermi",  kperp= “a few GeV” to “several hundred MeV”

𝜏form < 1fm 𝜏form > 10fm

Formation time, 𝜏form = [2z(1-z) P] / kperp2


