Jet Substructure at EIC

Mriganka Mouli Mondal Stony Brook University

In Collaboration with :

<u>Stony Brook University, Stony Brook</u> Theorists : Yang-Ting Chien, George Sterman Experimentalists : Abhay Deshpande, Roli Esha, Henry Klest, Meng Jia Ou, Jinlong Zhang

<u>University of California, Riverside</u> Experimentalists : Miguel Arratia, Sean Preins

<u>Wayne State Universy, Detroit</u> Experimentalist : Raghav Kunnawalkam Elayavalli

Introduction

- Jets and their structure
 - $\circ\,$ Correlations in momentum, charge and flavor : leading and next to leading particles in a jet
 - $\circ~$ access to the dynamics of fragmentation and color entanglement in QCD
- Observable

• Charge asymmetry and connection to dihedron fragmentation function

• Pythia event studies on the observable and PID limits

 $\,\circ\,$ Acceptance of Jets with with limits in PID

- Charge asymmetries for two different PID limits in central region
- Summary

10/2/20

Momentum-charge correlations

Leading particle (L) and next-to-leading (NL) are **both pions generated in two pictures**

i) "random" picture : L is fixed and NL is random and both L and NL pions are charged

 $C\overline{C}$ indicates opposite charges CC same charge

Ii) "alternating" picture : perturbative shower gives q_L followed by $\bar{q'}_{NL}$, which form pions by sharing a soft pair: $q_L + \bar{q}_{NL} \rightarrow q_L + (\bar{q}_s + q_s) + \bar{q'}_{NL} \rightarrow \pi(q_L, \bar{q}_s) + \pi(q_s, \bar{q'}_{NL})$

$$N_{C\overline{C}}^{\text{alternating}} = N^{\text{alternating}}$$
 and $N_{CC}^{\text{alternating}} = 0$

The observable :

$$r_{\text{asy}} \equiv \frac{N_{CC} - N_{C\overline{C}}}{N_{CC} + N_{C\overline{C}}} = \frac{1-a}{2} - \left(\frac{1-a}{2} + a\right) = -a$$

✓ provided every event results from one of these two processes, with no interference

✓ percentage of "alternating" = a; and percentage of random events = 1-a

r_{asy} is a measurement of the fraction of hadronizations that are "string-like", alternating between quark and antiquark (classical picture)

✓ Faction of jet momentum carried by leading particle \checkmark Angle between the leading and next to leading particles ($\Delta \theta$) ✓ relative transverse momentum (k_{perp})

✓ pair invariant mass

✓ Formation time : $[2z(1-z) P] / k_{perp}^2$

 $r_{\rm asy} \equiv$

✓ Leading particle (π) and next leading particles ($\pi/K/p$) \checkmark Leading particle (K) and next leading particles (K/ π /p) \checkmark Leading particle (**p**) and next leading particles (**p**/ π/K)

✓ Momentum-next lead particle/momentum of leading particle

Q2 > 65 GeV

anti-kt R = 0.7

Jet pt > 8GeV

Jet Reconstruction :

pt-tracks > 0.2GeV

track |eta| < 3.5

Jet |eta| < 2.8

Acceptance

Momentum cuts on tracks for approximate PID requirement at EIC at different **η** regions (currently we made one hard limit at certain momentum)

Acceptance

η - range	Momentum cut (GeV/c²)
-3.5 to -1.0	7
-1.0 to 1.0	5
1.0 to 2.0	8
2.0 to 2.0	25
3.0 to 3.5	45

The effect of momentum cuts in pseudorapidity acceptance of jets

Correlation with two leading particles

 $r_{\rm asy} \equiv \frac{N_{CC} - N_{C\overline{C}}}{N_{CC} + N_{C\overline{C}}}$

 The strength of correlations are different for pions, kaons and proton

The transition region from soft patron emission to hard is very important

Formation time

Formation time, $\tau_{\text{form}} = [2z(1-z) P] / k_{\text{perp}}^2$

 τ_{form} < 1fm : L and NL particles seem to separate after a very short time, which might decorrelate their hadronization

 $\tau_{\text{form}} > 10 \text{ fm} (K_{\text{perp}} < 200 \text{ MeV})$: nonperturbative transverse momenta in the jet, and we don't think that going to longer τ_{form} or smaller k_{perp} leads to new dynamics

Important region to study in data τ_{form} = "a few fermi" and "a few dozen fermi", k_{perp} = "a few GeV" to "several hundred MeV"

Different PID limits at Barrel region : a comparative study

η - range	Momentum cut (GeV/c²)
-1.0 to 1.0	No limit
-1.0 to 1.0	10
-1.0 to 1.0	5

Acceptance in x-Q²

Covers wider x-Q² phase with high momentum PID

$p_{T,Jet}$ and z reach for different PID limits at Barrel region $z = P_{NL}/(P_{NL}+P_L)$

- PID up to 10 GeV/ c^2 impose significant limitation in small z and high $p_{T,Jet}$ reach
- However, increasing PID performance up to 10 GeV/c² would :
 - ✓ significantly cover small z
 - ✓ enhance p_{T,Jet} limit od measurement

 increasing PID performance up to 10 GeV/c² would significantly make better measurement in small z and small p-net-lead/p-lead region

Summary

- Correlations in momentum, charge and flavor of leading particles in jet carry information of non perturbative aspect of jet fragmentation
- At EIC this can be measured with high momentum PID capabilities compared to the experiments in HERA
- PID with 5 GeV/c momentum limit keeps much of the important region inaccessible
- Enhancing momentum reach 10 GeV/c is very useful in reaching the very important inaccessible region
 - ✓ Covers wider x-Q² phase space
 - ✓ Access smaller z region
 - ✓ enhance **p**_{T,Jet} limit of measurement
- Such studies going in very forward region

backup

Measurements of r_{asy} and expressing in terms of di-hadron fragmentation functions

- **D** Measurements of r_{asy} : differentially in fractions z_L and z_{NL} in a jet,
 - "transverse" kinematic variables:
 - ✓ relative transverse momentum
 - ✓ pair invariant mass
 - ✓ pair formation time
 - ✓ including polarization where applicable

I r_{asy} and its connection with generalized di-hadron fragmentation functions

generalized di-hadron fragmentation functions for any hadrons h₁, h₂: $D_{h_L,h_{NL}}^{>}(z_L z_{NL})$

$$N_{h_L,h_{NL}}^{>} = \int_0^1 dz_L \int^{\min(z_L,1-z_L)} dz_{NL} D_{h_1,h_2}^{>}(z_L,z_{NL},Q)$$

When z_L and z_{NL} are large enough, this is the usual di-hadron distribution $D^>(x_1, x_2, Q) = D(x_1, x_2, Q)$ when $x_2 > 1 - x_1 - x_2$

$$r_S = \frac{\sum_{h_1, h_2 \in S} Q_{h_1} Q_{h_2} N^{>}_{h_1, h_2}}{\sum_{h_1, h_2 \in S} |Q_{h_1} Q_{h_2}| N^{>}_{h_1, h_2}}$$

After momentum cuts

- The strength of correlations are different decrease as an acceptance effect
- Acceptance changes in certain regions due to momentum cuts

 $N_{c\bar{c}}$

 Γ_{asy}

The transition region from soft patron emission to hard is very important

10/2/20

 $\boldsymbol{\mathsf{\Gamma}}_{\mathsf{asy}}$

Formation time

Formation time, $\tau_{form} = [2z(1-z) P] / k_{perp}^2$

 τ_{form} < 1fm : L and NL particles seem to separate after a very short time, which might decorrelate their hadronization.

 $\tau_{\rm form}$ > 10 fm (K_{perp}< 200 MeV) : nonperturbative transverse momenta in the jet, and we don't think that going to longer $\tau_{\rm form}$ or smaller k_{perp} leads to new dynamics

Important region to study in data τ_{form} = "a few fermi" and "a few dozen fermi", k_{perp} = "a few GeV" to "several hundred MeV"