ATF Electron Beam and UED plans

Mikhail Fedurin

ATF User meeting December 7 – 11, 2020

Outline

- ATF main beam parameters
- ATF beam diagnostic and manipulation capabilities
- FY20 e-beam improvements and plans
- Electron beam upgrade perspectives
- UED facility improvements
- UED plans

ATF linac main beam parameters

Parameter	Typical value / range	Best value
Energy	50-65 MeV	75 MeV
Charge	0.1 – 2 nC	2.5 nC
Repetition rate	1.5 Hz	3 Hz
Electron spot size on cathode	2.86 mm	0.2 – 4 mm
Bunch length	1-8 ps	100 fs with compression
Average bunch current	100 A	1.2 kA with compression
Emittance	1 – 3 mm mrad	0.8 mm mrad @ 0.5 nC

Facility Overview (Bldg. 820)

ATF beam ningnostics

Microscope (25-0506 X15 Reflecting Objective NA 0.28, F~13 mm) Basler Gigabit camera (scA 1400-17gm, F=135 mm).

Bunch length measurements

Parameter	Value	
Field amplitude, $\sqrt{E/P^{1/2}}$	8.48 kV/mW ^{$1/2$}	
Group velocity, v_g	0.0267 <i>c</i>	
Attenuation factor, α	0.66 m^{-1}	
Cavity length, L_T	0.46 m	
Number of cells, N	53	
Power ratio, P _{out} /P _{in}	0.55	

5

ATF beam manipulation and diagnostics

e-beam mask technique

e-beam spectrometer

Images on the screen after deflector

Accelerator Test Facility

6

Electron Energy

ATF beam manipulation capabilities

Bunch compression

Electromagnet chicane

Parameter	Value	Units
B-Field	2015	Gauss
Bend Angle	20	deg
Geometric Length	41	cm
Magnet Gap	2.1	cm

Permanent Magnet Chicane

~1 Tesla magnetic field 50 mm magnetic length

U.S. DEPARTMENT OF ENERGY

ATF beam manipulation capabilities

• 10 um microbunching with CO2 laser

N. Sudar, P. Musumeci, I. Gadjev, et al., PRL 120, 114802 (2018)

FY20 e-beam improvements and plans

- Replacement of ATF old gun klystron in January significantly improved beam stability
- X-band klystron refurbish was arranged and may happen after FY21 (>1year repair due to present constraints)
- Control system continues upgrade
- Bunch compression design for LWFA experiments at beamline #1
- ATF received funding from BNL for maintenance work (crane replacement, YAG room air handlers)

Electron beam bunch compression design

e-beam compression with permanent magnet chicane (simulations by Yichao Jing)

FWHM bunch length < 20 fs is achievable for higher charge (100 pC in this case) with the combination of the zigzag chicane together with CSR shielding

Electron beam upgrade perspectives

Beamline #1 design with TDC diagnostics capabilities after completion of laser transport

Electron beam upgrade perspectives

Linac energy upgrade

Plan to feed linac acceleration sections with separated klystrons to push maximum operational energy to 110-120 MeV

12

ATF UED main beam parameters

	BNL	SLAC	MSU
Beam energy, MeV	3	3.68	0.03
N e ⁻ per pulse	1.25 E+6	3.8E+5	500
Temporal resolution, fs	180	102	300
Beam size diameter, μm	300 (100 best)	400 (10 best)	20-40
Max repetition rate	48	120 (180 best)	1,000
N e ⁻ per sec per μ m ²	880	360	400
Advantage	short bright pulse	short bright pulse	DC (no jitter)

1

Accelerator Test Facility

13

FY20 UED facility improvements

- Repetition rate upgrade from 5Hz to 48Hz obviously speed up user scan rate and decrease systematic drifts influence
- Stable performance during last summer
- e-beam collimator was replaced with new design

UED plans: Support Tunable Pump Wavelength

- mid-IR pump-probe materials science requires an Optical Parametric Amplifier to access the full range of wavelengths
- To reach the needed OPA output energy levels of ~100 μ J at λ =10-11 μ m, a more energetic pump pulse from a new Ti:sapphire booster amplifier is needed
- "Topas HE" OPA from SpectraPhysics installation starts next week

800 1000 1200

U.S. DEPARTMENT OF ENERGY

UED plans: Flexible UED-UEM translation table

Quick change design to switch between UEM and UED baseline drift tube configuration

UED plans: beam diagnostic beamline extension

Beamline extension

for real-time beam diagnostic at the end of beamline will include spectrometer magnet for shot-to-shot energy fluctuations, Faraday cup for charge fluctuations

Thank you!

18