

UCLA

Particle Beam Physics Lab

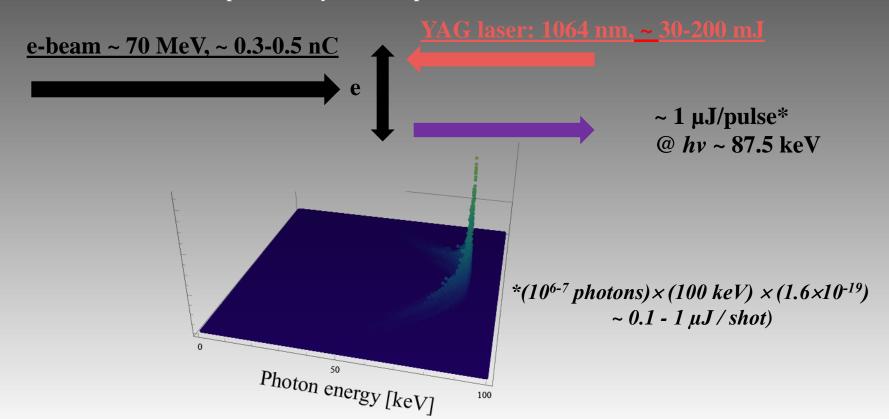
AE87: Hard X-ray ICS status report

Nonlinear ICS by $a_0 \sim 1$, CO_2 laser @ $hv \sim 10 \text{ keV}$

 $\rightarrow \rightarrow \rightarrow$ Linear ICS by YAG laser @ hv ~ 100 keV

2020 BNL ATF user meeting

Yusuke Sakai, Oliver Williams, *Zhong Zhong, James Rosenzweig UCLA, *BNL NSLS


Funding source: DOE Accelerator Stewardship, Received

Monochromatic YAG ICS at $hv \sim 100$ keV range

- **♦** Medical applications: Medicine as Photon activation
- **♦** Strong field physics: Bi-Harmonic Compton interaction with ATF's CO₂ laser
- **♦** Hard X-ray optics developments*: DDS measurement & Focusing or Collimation

* OAM investigation ↔ Measurement of Higher order harmonics (contain OAM) spectrum by circular polarized multi TW

Initial examination of Photon Activation with Gold Nano Particle (AuNP) in ATF

ICS X-ray energy hv > 80.7 keV (Au K-edge) Enhanced does by monochromatic X-ray

Activation process:

X-ray absorption by Au K-shell

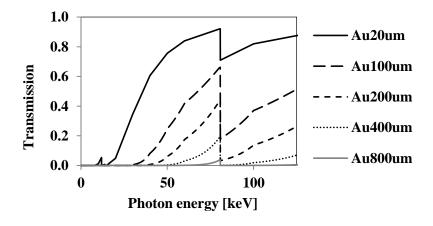
Emission of Auger electron from outer shell (~90% of energy)

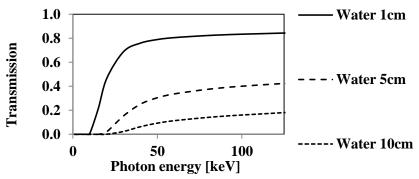
Transfer energy to Radicals (OH etc) through water etc

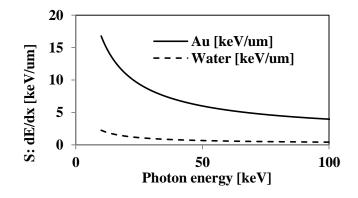
→ <u>Dose enhancement around surface of AuNP</u>

14

Required Gold particle size : 100 nm ↔ Auger, L-edge 11.9-14.3 keV 10 nm ↔ Auger, M-edge 2.2-2.4 keV


<u>Penetration depth of keV electron in water (between AuNP): ~ µm range</u> Spacing between particles:


 $AuNP Dia 10 nm \leftrightarrow 1 \mu m$, $AuNP Dia 100 nm \leftrightarrow 10 \mu m$


Details will be studied by monochromatic ICS.

Note: Density of 100 µm thick Au sheet in cubic cm of water of square volume corresponds to 194 mg/g uptake.

(Density of Au and H₂O are 19.3 g/cm³ and 0.997 g/cm³)

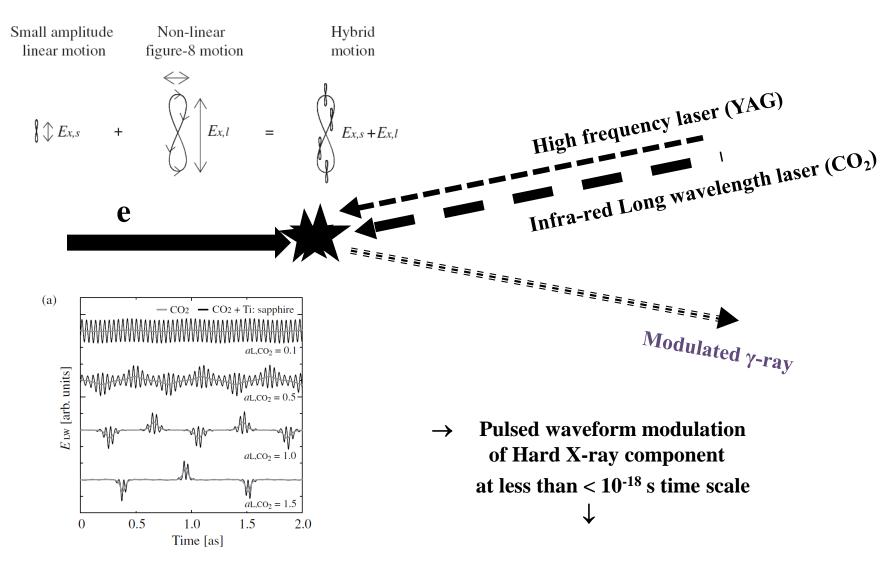
Initial examination of Photon Activation with Gold Nano Particle (AuNP) in ATF

AE87 requirement:- - Flux to see response of target - -

Assuming target dimension of $(L_{I.P. to target} \times 1/\gamma)^2 = 1 \text{ cm}^3$, (1 m away from I.P. at $1/\gamma = 10 \text{ mrad}$)

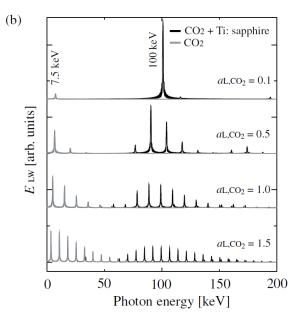
Radiation dose per kg of water per shot: $1 [Gy] = 1 J / (10 cm)^3 \rightarrow 1 mJ / (1 cm)^3$.

> Total irradiation time required: $1 \text{ mJ} / 0.1 \mu \text{J} = 10.000 \text{ shot}$


 $\leftrightarrow > 1.5 \text{ Hz} \times 60 \text{ min} \times 2 \text{ hour? run time}$

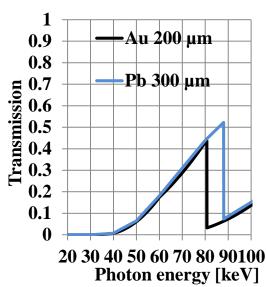
 $\uparrow\downarrow$

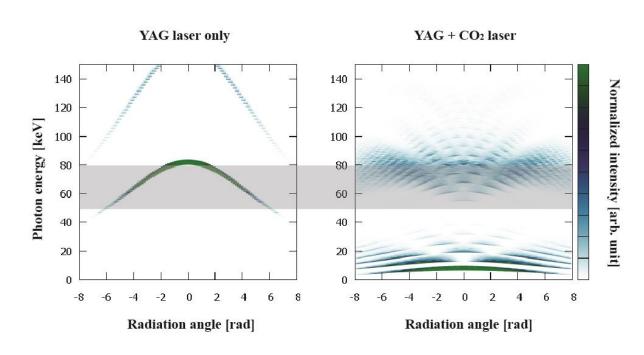
 $(10^{6-7} \text{ photons}) \times (100 \text{ keV}) \times (1.6 \times 10^{-19}) \sim 0.1 - 1 \,\mu\text{J/shot})$


 \leftrightarrow 10⁶⁻⁷ photons is also required for single shot Double Ddifferential Spectrum (DDS) measurment

Bi-Harmonic nonlinear Compton

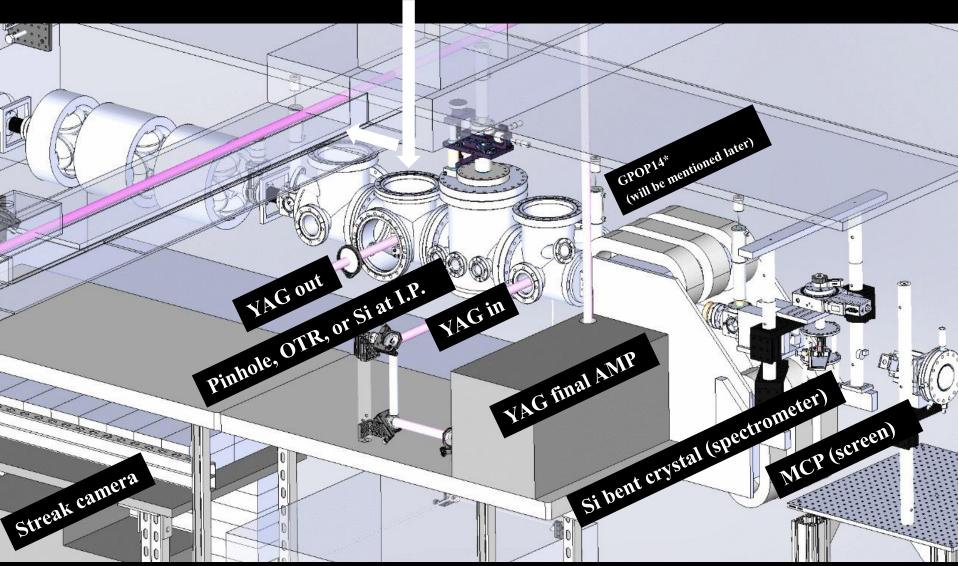
Numerically calculated Lienard-Wiechert potential $E_{LW,x}(t_{screen})$ on (x, y, z) = (0, 0, 0)

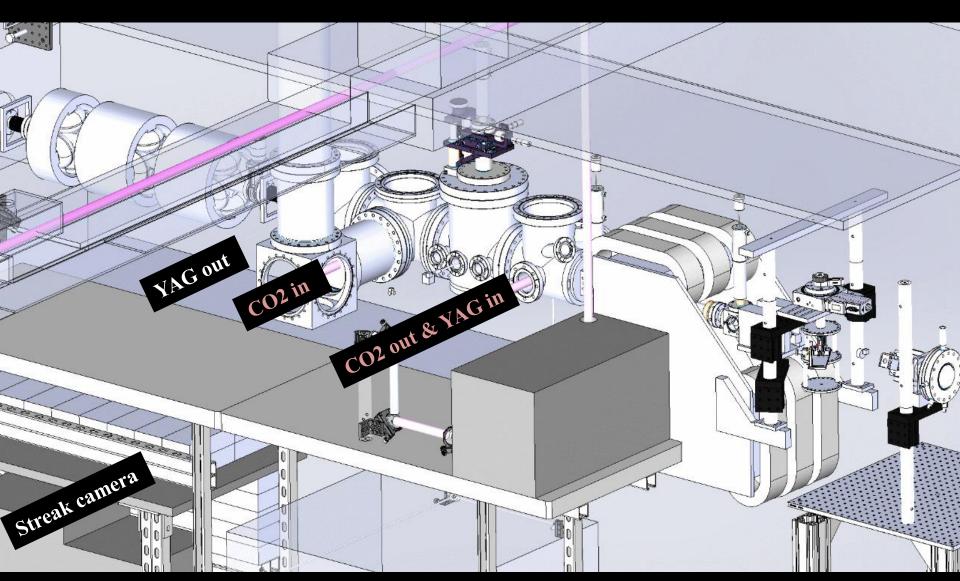

Bi-Harmonic nonlinear Compton



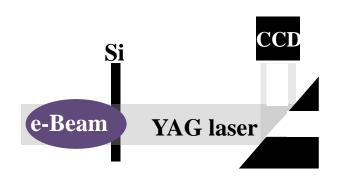
Bi-harmonic spectrum:

$$hv_{\rm ICS} = 4\gamma^2 h(v_{\rm L,YAG} \pm nv_{\rm L,CO2})/(1 + a_0^2/2)$$


Observation of Red-Blue shifts & $hv_{L,YAG} \pm hv_{L,CO2}$ K-edge of Au (81 keV) and Pb (88 keV) k-edge, Natural bent crystal spectrometer \downarrow


YAG ICS Set-up in BL1 (12/07/2020)

Modification: Fixed PMQ removed temporarily, Compton chamber extended



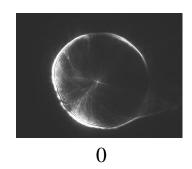
YAG ICS Set-up in BL1 (next year.)

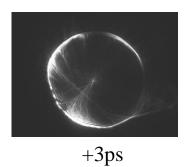
Modification is planned: Vacuum transport of CO₂ laser for Bi-Harmonic Compton interaction.

Synchronization by Si semiconductor plasma switch established (Plasma deflector, not by attenuation of laser)

Critical density of YAG laser, 1 µm:

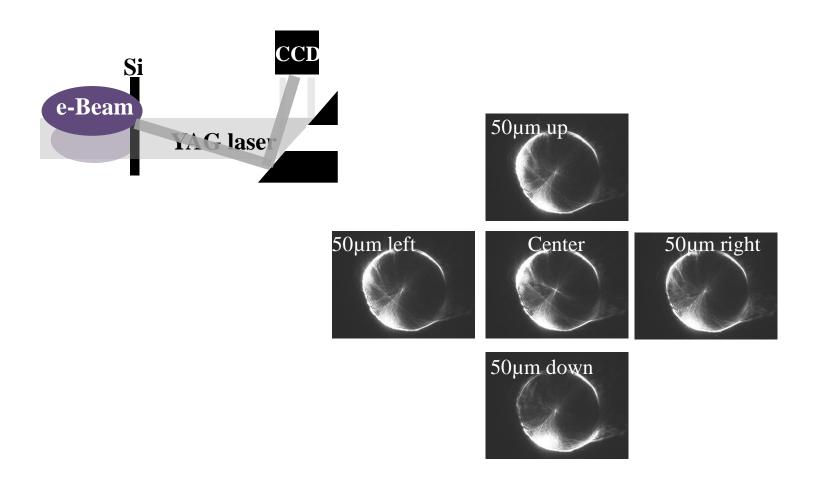
$$n_{\rm e,c} \sim 1 \times 10^{21} [\rm cm^{-3}] \iff \omega_p = \sqrt{n_e e^2 / m \epsilon_0}$$


Electron-Hole Pairs number per incident particle:


~ 70 [MeV] /
$$\varepsilon_{\text{Si,ebeam}}$$
 *[eV] ~ 1×10⁷

$$n_{\rm e.\,eheam}$$
 $(q \sim 0.5 \text{ nC}, \sigma_{\rm r} \sim 30 \text{ -}100 \text{ } \mu\text{m}) \sim 1 \times 10^{14-15} \text{ [cm}^{-3]}$

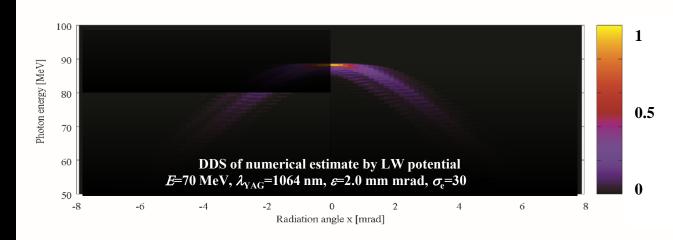
Electron number density created in Si plate $n_{\rm e,Si,p} \sim 1 \times 10^{20-22} \, [{\rm cm}^{-3}]$

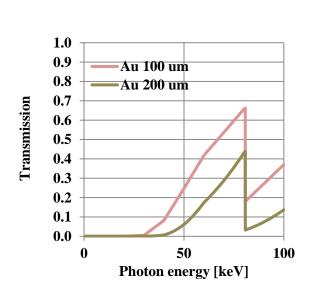


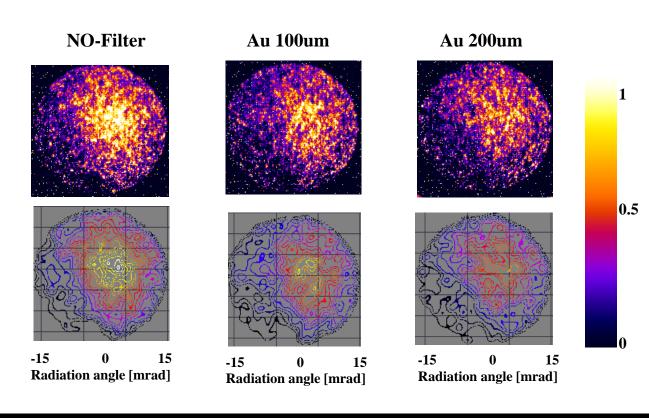
* Note: $\varepsilon_{\text{Si,ebeam}}$: ~ Pair-creation energies: $\varepsilon_{\text{Si,ebeam}} = (14/5) E_G + r(\hbar \omega_R)$] ~ 4 eV

 $E_{\rm G}$: band gap Si = 1.14 eV, Ge= 0.67eV, $\hbar\omega_R$: phonon losses $0.5 \le r(\hbar\omega_R) \le 1.0$ eV

Synchronization by Si semiconductor plasma switch established (Plasma deflector, not by attenuation of laser)

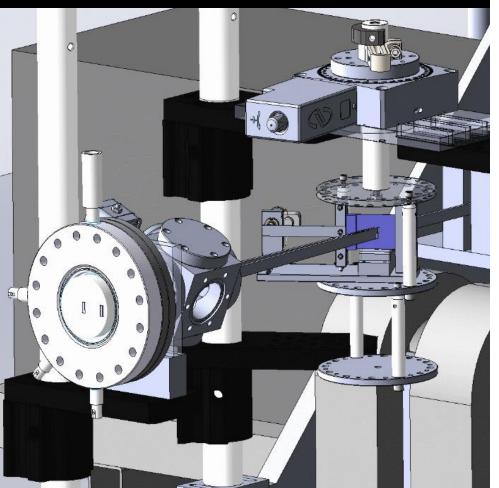

Examination: Deflection of YAG laser by e-beam offset, density gradient




Observed Hard X-ray in a single shot (March-2020yr)

87.5 keV X-ray

by $E_e = 70 \text{MeV}$ YAG laser energy ~ 30 mJ




****CdTe Diode estimate:** 10^4 - 10^5 photons / shot (Need to be increased to 10^5 - 10^7)

Next step:

Single shot DDS measurement at 87.5 keV

→ Thick Laue Bent Crystal Efficiency > Bandwidth

Theta-Theta Bragg [urad]
Rocking curve for Bent crystal,
R2m, Si[111], X-ray energy 80 keV. By XOP v2.3.

- **★** Radius of curvature R: A few m
- **★** Thickness: 1mm
- * Bragg angle at 85keV: A few 10s mrad (A few deg)
- **★** Dispersion at screen: A several mm:
- **★** Band width: ~50%
- ***** Reflectivity: ~20%

Stats: Photon flux needs to be increased (S/N ratio ~10% now) → Increase YAG output up to 150-200mJ by pre-amp in FEL room (Marcus is preparing now.) + Potential PMQ re-installation.

 \rightarrow 10⁶-10⁷ X-ray photons / shot

2020-2021 plan

2021 A:

Single shot DDS measurement by Bent crystal At ~100 keV range

2021 B:

Initial examination of photon activation by target organic materials:

- → Distribution of absorption vs GDP density and size
- → Possibility of measuring emission spectrum

2022-202?:

Setup for advanced nonlinear Compton experiment by multi-TW laser

- \rightarrow Bi-Harmonic Compton $(a_0 \sim 2)$
- \rightarrow Spectrum measurement of 2nd & 3rd order harmonics (contains OAM) (Circular $a_0 \sim 1$)
- \rightarrow Spectrum measurement of higher order harmonics, Wiggler mode (Linear $a_0 \sim 10$)

Electron Beam Requirements

Parameter	Units	Typical Values	Comments	Requested Values
Beam Energy	MeV	50-65	Full range is ~15-75 MeV with highest beam quality at nominal values	68 - 75 MeV
Bunch Charge	nC	0.1-2.0	Bunch length & emittance vary with charge	0.3-0.5 nC
Compression	fs	Down to 100 fs (up to 1 kA peak current)	A magnetic bunch compressor available to compress bunch down to ~100 fs. Beam quality is variable depending on charge and amount of compression required. NOTE: Further compression options are being developed to provide bunch lengths down to the ~10 fs level	NONE
Transverse size at IP (s)	mm	30 – 100 (dependent on IP position)	It is possible to achieve transverse sizes below 10 um with special permanent magnet optics.	~ 30 um
Normalized Emittance	mm	1 (at 0.3 nC)	Variable with bunch charge	1
Rep. Rate (Hz)	Hz	1.5	3 Hz also available if needed	1.5
Trains mode		Single bunch	Multi-bunch mode available. Trains of 24 or 48 ns spaced bunches.	TBD

CO₂ Laser Requirements (For Bi-Harmonic ICS)

Configuration	Parameter	Units	Typical Values	Comments	Requested Values
CO ₂ Regenerative Amplifier Beam	Wavelength	mm	9.2	Wavelength determined by mixed isotope gain media	
	Peak Power	GW	~3		
	Pulse Mode		Single		
	Pulse Length	ps	2		
	Pulse Energy	mJ	6		
	M^2		~1.5		
	Repetition Rate	Hz	1.5	3 Hz also available if needed	
	Polarization		Linear	Circular polarization available at slightly reduced power	
CO ₂ CPA Beam	Wavelength	mm	9.2	Wavelength determined by mixed isotope gain media	ANY
Note that delivery of full power pulses to the Experimental Hall is presently limited to Beamline #1 only.	Peak Power	TW	2	~5 TW operation is planned for FY21 (requires further in-vacuum transport upgrade). A 3-year development effort to achieve >10 TW and deliver to users is in progress.	NORMALIZED VECTOR POTENTIAL a0 >= 1
	Pulse Mode		Single		SINGLE
	Pulse Length	ps	2		ANY
	Pulse Energy	J	~5	Maximum pulse energies of >10 J will become available in FY20	5
	M^2		~2		ANY
	Repetition Rate	Hz	0.05		100 SHOTS/DAY
	Polarization		Linear	Adjustable linear polarization along with circular polarization will become available in FY20	LINEAR FIRST (THEN CIRCULAR ♦)

[♦] NOTE: Circular polarization is required for reconsideration of OAM study by nonlinear Compton process.

Near IR Experimental Laser Requirements

Nd:YAG Laser System	Units	Typical Values	2021 Modification s	Comments	Requested Values
Wavelength	nm	1064	1064	Single pulse	1064
Energy	mJ	5	100		30 mJ AT PRE-AMP ♦
Pulse Width	ps	14	<20		14
Wavelength	nm	532		Frequency doubled	
Energy	mJ	0.5			
Pulse Width	ps	10			

♦ NOTE: ~30 mJ AT PRE-AMP is required, for final AMP in order to generate < 200 mJ pulse located at ICS optical table

Special Equipment Requirements and Hazards

Any special equipment:

- CO₂ Laser: Circular polarization ($a_{L,0} \sim 2$) for OAM study in year 2022-23 (No experimental plan this year.).
- ♦ Nd: YAG Laser: Pre-amp (> 10 mJ) in order to maximize designed out put power (< = 200 mJ) of final-amp.

Hazards & Special Installation Requirements:

♦ All items have been included in updated ESR a few months ago.

Large installation (chamber, insertion device, etc.):

- ♦ Now e-beam has been deflected by the magnet field around the BL1 final dipole at GPOP14 (p.7) location generating Bremsstrahlung radiation. A magnet shield is required which was installed years ago. Which necessitates shift of BL1 dipole location by 1 or 2 inch. However, the BL1 dipole magnet strength may be seeing saturation at 70 MeV.
- \bullet CO₂ laser's vacuum transport needs to be connected to the Compton chamber as shown in p.8 for 2022-23yr's study on the bi-harmonic Compton interaction.

Introducing new magnetic elements:

♦ Reinstallation of existing ATF's fixed medium strength PMQ with new adjustable mount in front of Compton I.P. (now it's removed temporarily with the chamber upgrade for e-beam alignment process & Bi-harmonic ICS.)

Experimental Time Request

CY2021 Time Request

Capability	Setup Hours	Running Hours
Electron Beam Only		
Laser* Only (in Laser Room & EH)		
Laser(s)* + Electron Beam		2WEEKS X 3 = 6 WEEKS (Total time requested including setups)

Time Estimate for Remaining Years of Experiment (including CY2021)

Capability	Setup Hours	Running Hours
Electron Beam Only	0	0
Laser* Only	1 WEEK (Setup needs running)	1 WEEK (Running includes setup) YAG amp test
Laser(s)* + Electron Beam	TBD	TBD

- Laser = ONLY Near-IR this year is expected.
- Deign and Installation of CO₂ laser's vacuum transport may be included flexibly.
- We also need pre-approval from our University for scheduling a N.Y. visit a month before.
- Thank you.