Proposal Title: Study of Ultrafast Light Induced Structural Phase Transitions in MoTe₂

> Proposal ID: PI: B. Freelon (UHouston)

Collaborators: T. Rohwer (DESY), D. Strubbe (UC Merced), M. Abeykoon (BNL), Z. Yamani (Canadian Neutron Beam Ceter), G. Sumanesekera (Louisville) & S. Chen (UHouston)

> Funding Source(s): State of Texas & University of Houston Funding Status: Received

Transition Metal Dichalcogenide MoTe₂

- 2D van der Waals crystal
- Weyl fermions emerge at the boundary of electron/hole pockets
- Topologically non-trivial band structure & superconductivity
- Proposed to be a topological switch material: thermal and photonic
- 1*T*' semiconducting phase to T_d phase topological Weyl semi-metallic phase
- The low temperature T_d state exhibits
 - Very large magnetoresistance
 - Superconductivity with possible unconventional origins
 - Type-II Weyl nodes
 - Broken inversion symmetry phase.

1*T*'-MoTe2

- 1T'-MoTe₂ is a structurally stable but delicate material
- The 1T' to T_d structural phase transition (SPT) is not well understood
 - Symmetry determination is a challenge
 - 1-st order, coexistence phase region
 - Disorder: stacking faults
 - Dimensionality influences the SPT
- Can we investigate the SPT the evolution from 1T' to T_d using time-resolved methods?

23rd ATF Users' Meeting, Brookhaven National Laboratory 2020

1*T*'-MoTe2

- 1T' to T_d SPT near 250K
- Large co-existence region $1T' + T_d$
- Static diffraction complicated by stacking faults
- Appearance of a new phase *T**
- Average structure (Bragg diffraction) can detect SPT-related symmetry changes
 - Overlooks local structural changes that might drive subtle transformations (from 1T' to T_d)
- SPT behavior growth & dimensiondependent

Simulated Electron Diffraction of MoTe₂

Photo-induced SPT in 1T'-MoTe2

- 800 nm ultrafast light can drive the 1T' to T_d SPT under sufficient pump fluences
- Use the appearance of shear-mode Raman modes to identify the 1T' to T_d SPT
 - A-mode invisible in the 1T'-phase
- Track the (*hk0*) Bragg peaks with different non-zero k values to track the sliding of the layers in the non-equilibrium state
- Can we investigate the structural phase transition: the evolution from 1T' to T_d

Calculated Raman modes sensitive to the inversion symmetry breaking

Exploring the 1T'- T_d **Transition:** Layering

- 1T' to T_d SPT can be viewed as layer sequencing process
- Layer models
 - 2 layer structures
 - Sequences of 2 transitions A an B
 - Reproduces the 1T' and T_d phases

Layer Sequencing Model

$1T' - T_d$ Phase Transition: Local Ordering

- Investigate the use of electron Pair Distribution Function (ePDF) technique
- Interlayer sliding: subtle local changes to expose the 1T'- T_d evolution
- λ -parameter determination
- Large box modelling (RMCprofile), Molecular Dynamics, DFT) to track these parameters in the non-equilibrium state
- Establish Proof-of-principle?
 - Determine sufficient PDF peak intensity
 - Confirm PDF fit-worthiness at high energy (MeV): compression of scattering peaks

Special Equipment Requirements & Hazards

- User Sample and Setup
 - Please indicate any special equipment that you expect to need bolometer/interferometer setup etc: NO
- Pump Laser Requirements
 - Please note any special pump laser requirements here:
 NO

YES

NO

YES

NO

- Hazards & Special Installation Requirements
 - Large installation (chamber, insertion device, etc.):
 NO
 - Cryogens: (liquid Nitrogen)
 - Introducing new magnetic elements:
 - Introducing new materials into the beam path:
 - Any other foreseeable beam line modifications:

Experimental Time Request

CY2021 Time Request

Capability	Setup Hours	Running Hours
UED Facility	60	300

Time Estimate for Full 3-year Experiment (including CY2020)

Capability	Setup Hours	Running Hours
UED Facility	100	600

23rd ATF Users' Meeting, Brookhaven National Laboratory 2020