Probing electron Weibel instability in optical-field ionized plasmas (AE98)

PI: Chaojie Zhang and Chan Joshi UCLA

Collaborators:

- Yipeng Wu, Zan Nie, Mitchell Sinclair, Ken Marsh, Warren Mori (UCLA)
- Navid Vafaei-Najafabadi (SBU/ATF)
- Wei Lu (Tsinghua Univ.)

Currently supported by NSF and DOE-NNSA, DOE-HEP

Dec 7, 2020, the 23rd annual ATF User Meeting

Introduction: electron thermal Weibel instability

- Weibel instability is one of the earliest kinetic instability 1959)
- It is driven by temperature anisotropy
- <u>Relaxation of the anisotropic plasma</u> causes self-organization (coalescence) of the currents which leads to the generation and amplification of magnetic fields
- It is primarily an electromagnetic mode
- Quasi-static B fields
- One of the major candidates responsible for seeding magnetic fields in laboratory and astrophysical plasmas

Many theoretical work; few experiments;

U

• Weibel instability is one of the earliest kinetic instability discovered in plasma theory (E. S. Weibel,

Physical mechanism of the Weibel instability.

- Initialize anisotropic EVD;
- Accurate measurement of B field (10s μm, ~Tesla, 10s ps)

Sketch of the experiment

- CO2 laser: 1-2 TW, both LP and CP
- e- beam: 50-60 MeV, >0.1 nC, <0.3 ps, large spot size

• Concepts:

- Initialize anisotropic plasmas using optical field ionization
- Take snapshots of Weibel magnetic fields using e-beams
- Physics we can explore:
 - growth rate, k-spectrum evolution
 - different plasma temperatures/densities
 - effect of collisions
 - effect of finite width plasma
 - etc

Progress: proof-of-principle experiment performed (using a 0.8- μ m laser driver and a 45-MeV electron probe)

• We have demonstrated the feasibility of the proposed experiment

• Major findings:

- confirmed existence of detectable Weibel magnetic fields in anisotropic OFI plasmas
- measured the <u>collisional</u> growth rate (Te~260 eV, $n_{e} \sim 1e19 \text{ cm}^{-3}$
- the quasistatic Weibel B field lasts for tens of ps

New physics expect to explore at ATF

<u>Collisionless, quasi-relativistic regime</u> due to the much hotter CO₂-driven plasma ($I\lambda^2$ scaling)

EVD from self-consistent 3D PIC simulations

Laser: CO₂ laser, 3 ps (FWHM), w₀=50 μ m, P=0.8 TW, Peak intensity 2e16 W/cm² (CP), a0=0.86, ne=1e17 cm⁻³

Plasma temperatures from 3D PIC simulations

λο	T	a 0	gas	<i>T⊥</i> (<i>keV</i>)	T ∥ (keV)
0.8 µm	50 fs	0.2	He	0.5	0.04
10 µm	3 ps	0.86	He	28	15
10 µm	3 ps	1.22	N2	16.5	17.1
10 µm	3 ps	0.1	H2	1.5	0.3
10 µm	0.3 ps	0.86	He	47	8

New physics expect to explore at ATF

2) dependence of the B field topology on anisotropy (controlled by CO₂ laser polarization)

Experimental layout with upgraded diagnostics

- Compatible with AE93 and AE99
- upgraded diagnostics
 - a compact PMQ-based imaging system for the e- probe
 - Thomson scattering to measure possible (ion) density fluctuation associated with the B field (also useful for AE99)

Requirements at the IP:				
e- beam	CO ₂ laser			
E=60 MeV	<i>P~1-2 TW</i>			
<i>τ<0.2 ps</i>	τ~2-3 ps			
Q>50 pC	w0~50-200 µm			
εn<10 mm.mrad	Jitter<0.3 ps			
σr~1 mm	LP and CP			
	(reduced power <0.5TW is OK)			

Upgraded probing technique: PMQ-based electron imaging

Summary: goals for the first run and timeline

- Repeat the proof-of-principle experiment with focuses on
 - measure the evolution of the B field in the collisionless, quasi-relativistic regime
 - show the magnetic field topology of LP case (and its dependence on polarization if CP is available)
 - resolve shorter wavelength using the PMQs (this may enable us to observe the initial broad k spectrum predicted by kinetic theory)

• Timeline

- Now March 2021, testing of diagnostics (e.g., PMQ) at UCLA
- Now May 2021, discussions with Navid and ATF staff to sort out the installation plan
- run plan: see Chan's talk

- Experiment officially approved in June 2020
- A proof-of-principle experiment using 0.8- μ m laser performed
- Manuscripts
 - The results of the proof-of-principle experiment is available at
 - <u>https://arxiv.org/abs/2011.09979</u> (accepted by PRL)

10

- Travel to ATF was not possible
- Established collaboration with local user team (Navid's group and the ATF staff)
- Simulation work continued
- Hardware development (in house) continued

11

Electron beam requiremnets

Parameter	Units	Typical Values	Comments	Requested Va
Beam Energy	MeV	50-65	Full range is ~15-75 MeV with highest beam quality at nominal values	50-60 MeV
Bunch Charge	nC	0.1-2.0	Bunch length & emittance vary with charge	<0.1 for best compression
Compression	fs	Down to 100 fs (up to 1 kA peak current)	A magnetic bunch compressor available to compress bunch down to ~100 fs. Beam quality is variable depending on charge and amount of compression required. NOTE: Further compression options are being developed to	<i><0.5 ps</i>
Transverse size at IP (S)	mm	30 – 100 (dependent on IP position)	It is possible to achieve transverse sizes below 10 um with special permanent magnet optics.	>1 mm (horizontal) >0.5 mm (vert
Normalized Emittance	mm	1 (at 0.3 nC)	Variable with bunch charge	<1 mm mrad
Rep. Rate (Hz)	Hz	1.5	3 Hz also available if needed	1.5 Hz
Trains mode		Single bunch	Multi-bunch mode available. Trains of 24 or 48 ns spaced bunches.	single bunch

CO₂ laser requirements

Configuration	Parameter	Units	Typical	Comments	Requested
CO₂ Regenerative Amplifier	Wavelength	mm	9.2	Wavelength determined by mixed isotope	9.2 µm
	Peak Power	GW	~3		3
	Pulse Mode		Single		single
	Pulse Length	ps	2		2
	Pulse Energy	mJ	6		6
	M^2		~1.5		ΟΚ
	Repetition Rate	Hz	1.5	3 Hz also available if needed	ΟΚ
	Polarization		Linear	Circular polarization available at slightly	linear
CO ₂ CPA Beam	Wavelength	mm	9.2	Wavelength determined by mixed isotope	9.2 µm
Note that delivery of full power	Peak Power	TW	2	~5 TW operation is planned for FY21	2
	Pulse Mode		Single		single
	Pulse Length	ps	2		2
	Pulse Energy	J	~5	Maximum pulse energies of >10 J will	<5
	\mathbf{M}^2		~2		ΟΚ
	Repetition Rate	Hz	0.05		ΟΚ
	Polarization		Linear	Adjustable linear polarization along with circular polarization will become available in FY20	<i>Linear and Circular (O reduce pov</i>

Near IR Experimental Laser Requirements

Ti:Sapphire Laser	Units	Stage I Values	Stage II Values	Comments	Requested
Central Wavelength	nm	800	800	Stage I parameters have been delivered, while Stage II	800 nm
FWHM Bandwidth	nm	20	13		ΟΚ
Compressed FWHM	fs	<55	<75	Transport of compressed pulses will initially include a	ΟΚ
Chirped FWHM Pulse Width	ps	³ 50	³ 50		ΟΚ
Chirped Energy	mJ	>30	200		Stage I OK
Compressed Energy	mJ	>14	100		Stage I OK
Energy to Experiments	mJ	>10	>80		<10 mJ
Power to Experiments	GW	>250	>1067		ΟΚ
Nd:YAG Laser	Units	Typical	2021	Comments	Requested
Wavelength	nm	1064	1064	4 Single pulse	
Energy	mJ	5	100)	
Pulse Width	ps	14	<20		
Wavelength	nm	532		Frequency doubled	
Energy	mJ	0.5			
Pulse Width	ps	10			

Electron beam

- save as AE93 and AE99 except the location of the beam profile screen is different likely to bring in a compact assembly of permanent magnet quadrupoles
- CO₂ laser
 - can start with linear polarization (LP) but circular polarization (CP) is highly desired
 - ok to reduce the power to <0.5 TW for CP
- Ti:Sapphire laser
 - need to be synchronized to the CO2 laser and e- beam
- Hazards and special Installation Requirements
 - none

15

Experimental Time Request

CY2021 Time Request (combined with AE99)

Capability	Setup Hours	Running Hours
Electron Beam Only	30	30
Laser* Only (in Laser Rooms)	currently unknown	currently unknown
Laser(s)* + Electron Beam	15	90

Time Estimate for Remaining Years of Experiment (including FY2021)

Capability	Setup Hours	Running Hours
Electron Beam Only	50	60
Laser* Only (in FEL Room)		
Laser(s)* + Electron Beam	40	250

