

Tunable Laser Positron Source

308093 - CO2-Laser driven plasma to post-process positron-electron jets

A. Sahai (PI), CU

H. Chen, LLNL, A. Thomas, U Michigan J. Resta-Lopez, Cockcroft Inst. & U Valencia

V. Harid, M. Golkowski, CU

S. Palaniyappan, LANL, J. Cary, Tech-X & CU

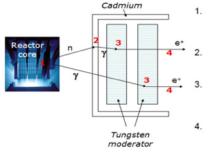
Funding: DOE / NSF

Funding status: proposed

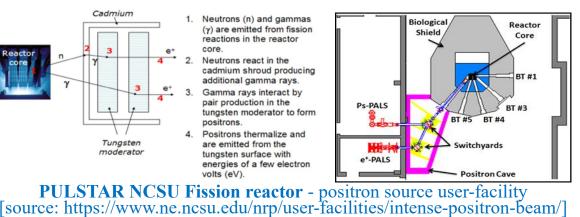
Key scientific goals

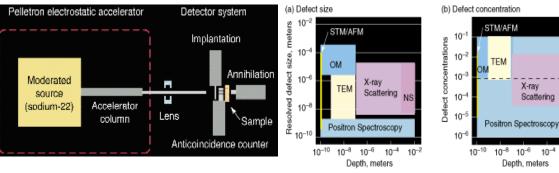
- positron beams with tunable properties using CO₂ laser-driven plasma structures
- control the interaction between
 ATF e⁻-beam driven positron-electron jets / showers and CO₂ laser-driven plasma
- long wavelength CO₂ laser (compared to Ti:Sapphire):
 larger plasma structures easier to physically overlay the showers
 slower structures for a lower plasma density laser velocity slower for same density

PHYSICAL REVIEW ACCELERATORS AND BEAMS 21, 081301 (2018)


Quasimonoenergetic laser plasma positron accelerator using particle-shower plasma-wave interactions

- limits of the range of tunability of CO₂ laser produced positron beams
- numerous applications benefit from a tunable positron beam




Current positron sources

- Neutrons (n) and gammas (y) are emitted from fission
- Neutrons react in the cadmium shroud producing
- pair production in the tungsten moderator to form
- Positrons thermalize and are emitted from the tungsten surface with energies of a few electron

LLNL Na-22 beta plus positron source and positron spectroscopy [source: https://str.llnl.gov/str/Howell.html]

nuclear reactor

Cave 111b Positron Lab 111d concrete 22 Na source wall (3.2m) water = = accelerator monopol lense Wien filter accelerators chopper buncher multi-detector Cable

> **HZDR Germany - ELBE Positron (EPOS) facility** [source: http://positron.physik.uni-halle.de/EPOS/]

electron linac

radioactive nuclei

Numerous positron applications

PHYSICAL REVIEW B

VOLUME 3, NUMBER 3

1 FEBRUARY 1971

Channeling of Positrons

J. U. Andersen* and W. M. Augustyniak
Bell Telephone Laboratories, Murray Hill, New Jersey 07974

and

E. Uggerhøj
Institute of Physics, University of Aarhus, 8000 Aarhus C, Denmark
(Received 7 July 1970)

IEEE Transactions on Nuclear Science, Vol. NS-26, No. 3, June 1979

CHANNELING RADIATION FROM POSITRONS

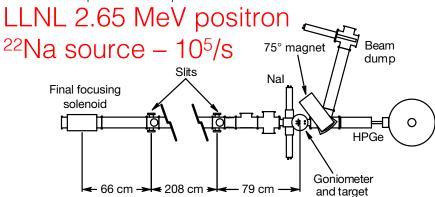
M. J. Alguard, * R. L. Swent, * R. H. Pantell, * B. L. Berman, † S. D. Bloom, † and S. Datz †

VOLUME 77, NUMBER 10

PHYSICAL REVIEW LETTERS

2 September 1996

Increased Elemental Specificity of Positron Annihilation Spectra


P. Asoka-Kumar, M. Alatalo, V. J. Ghosh, A. C. Kruseman, B. Nielsen, and K. G. Lynn Brookhaven National Laboratory, Upton, New York 11973

2IRI, Delft University of Technology, Mekelweg 15, NL-2629JB Delft, The Netherlands

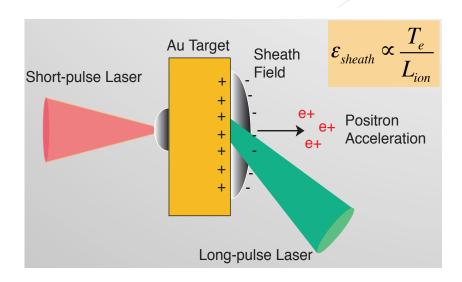
Spatial sampling of crystal electrons by in-flight annihilation of fast positrons

A. W. Hunt*†, D. B. Cassidy*†, F. A. Selim‡, R. Haakenaasen§, T. E. Cowan†, R. H. Howell†, K. G. Lynn $\|$ & J. A. Golovchenko*¶#

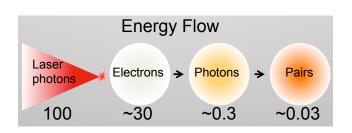
NATURE VOL 402 11 NOVEMBER 1999

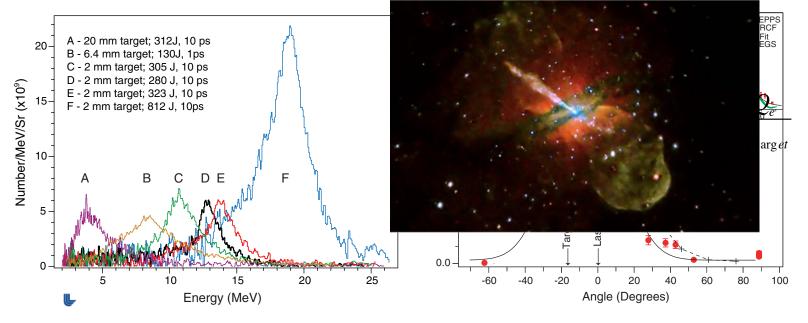
...development of practical atomic-scale channeling measurements of electronic spin densities, and momentum profiles in addition to valence and bonding e⁻ density maps.

LLNL – kJ laser positron-production


Blow-off plasma

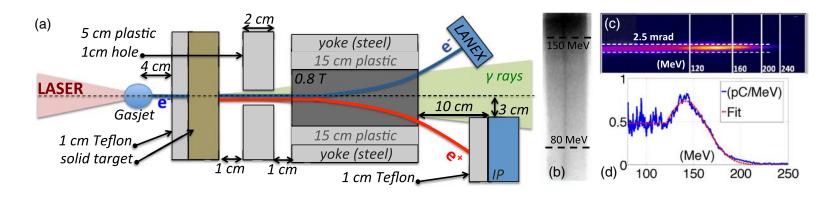
Target

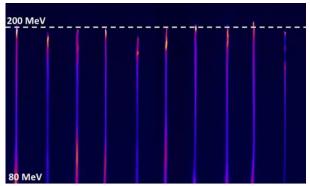

Positrons


Electron cloud

S. Wilks

H. Chen et. al. PRL 105, 015003 (2010)





Laser shower production experience

Supplementary material Figure 1: Typical series of ten spectra of the laser-accelerated electron beam, as recorded on the LANEX screen before the insertion of the solid target. The overall electron beam charge fluctuated within less than 10% and the peak electron energy was consistently of the order of 200 MeV.

Mat.	d (mm)	θ_{e^+} (mrad)	$N_{\rm exp} \times 10^5$	$N_{\rm sim} \times 10^5$	$N_T \times 10^5$
Cu	5.3	2.3 ± 0.2	0.3 ± 0.1	0.3	31
Sn	6.4	2.7 ± 0.3	0.6 ± 0.1	0.6	63
Ta	2.8	2.7 ± 0.3	2.1 ± 0.3	2.1	190
Pb	4.2	3.5 ± 0.4	2.3 ± 0.3	2.3	240
Ta	1.4	2.3 ± 0.2	0.8 ± 0.2	0.8	78
Ta	4.2	2.7 ± 0.3	3.8 ± 0.3	3.9	350
Pb	2.2	3.0 ± 0.3	0.7 ± 0.2	0.7	60
Pb	2.8	3.3 ± 0.3	1.1 ± 0.3	1.1	122

increases for materials with higher atomic number. This trend is quantitatively confirmed by integrating the experimental spectra in the range $90 < E_{e^+}(\text{MeV}) < 120$ (see Table I and Fig. 3). Within this energy range, a maximum positron number of $(2.30 \pm 0.28) \times 10^5$ is obtained for the material with the highest Z (Pb). Fitting the data keeping j as a free parameter, we obtain a best fit for $j = 2.1 \pm 0.1$

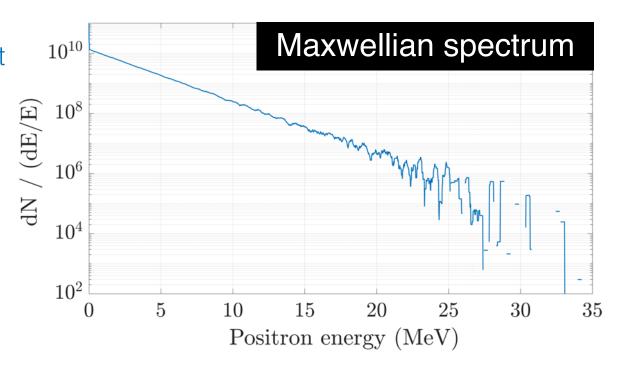
PRL **110**, 255002 (2013)

PHYSICAL REVIEW LETTERS

week ending 21 JUNE 2013

Table-Top Laser-Based Source of Femtosecond, Collimated, Ultrarelativistic Positron Beams

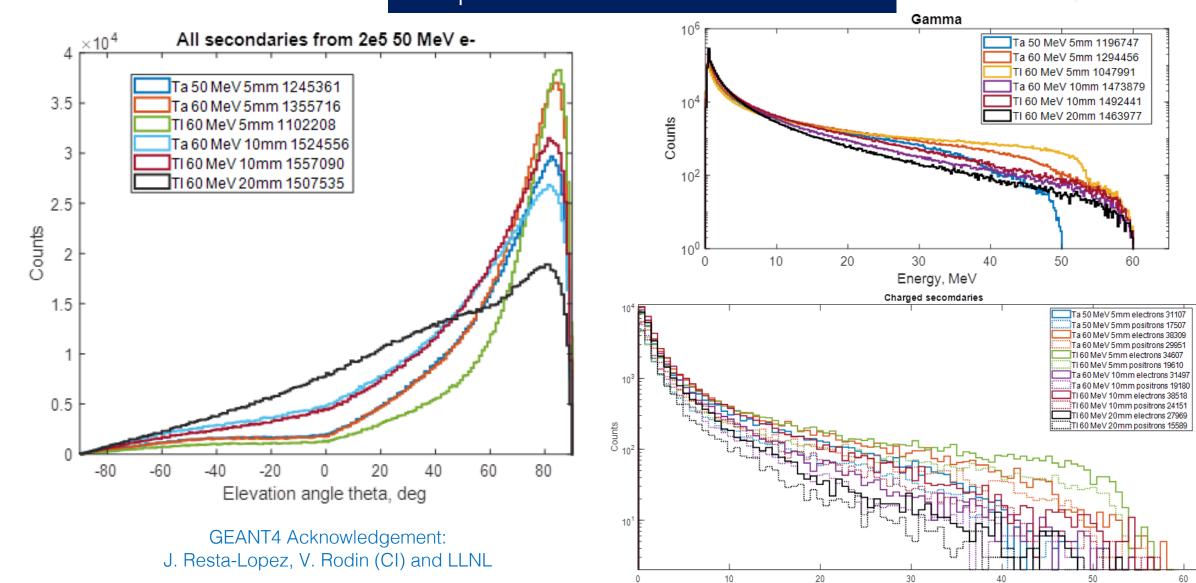
G. Sarri, W. Schumaker, A. Di Piazza, M. Vargas, B. Dromey, M. E. Dieckmann, V. Chvykov, A. Maksimchuk, V. Yanovsky, Z. H. He, B. X. Hou, J. A. Nees, A. G. R. Thomas, C. H. Keitel, M. Zepf, 1,4 and K. Krushelnick


raw positron-electron showers

- showers > MeV electrons on converter target
- although "some" authors have claimed so:

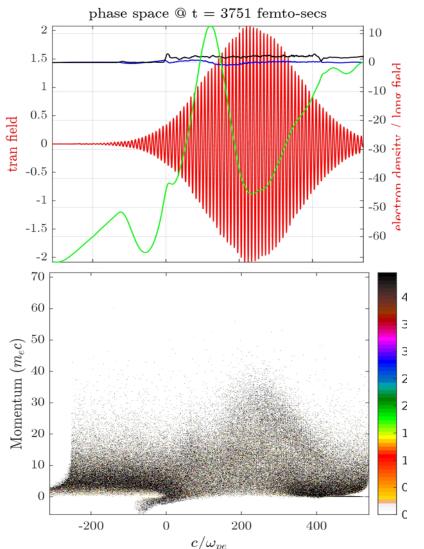
shower ≠ beam pair-plasma ≠ beam

- positrons NOT isolated
- positrons still divergent
- un-localized in momentum space



orders-of-magnitude roll-off at high-energies

simulations of ATF-beam driven positron-electron showers


Sim of CO₂ laser driven plasma processing

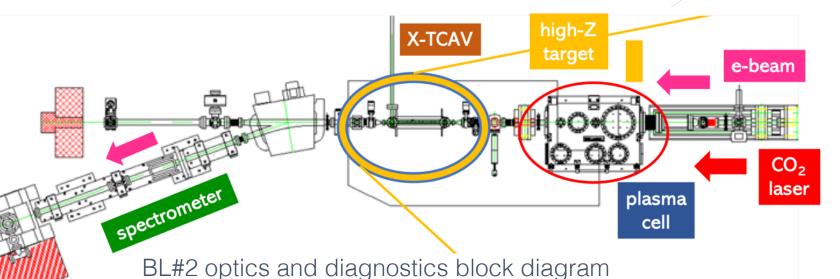
- 2D PIC EPOCH simulations CO2 laser-driven post-processing of ATF beam-driven showers
- Shower properties determined using GEANT4
- Initialize a long shower ~ 2.5 ps
- CO₂ Laser-driven structures can trap and slowdown positrons

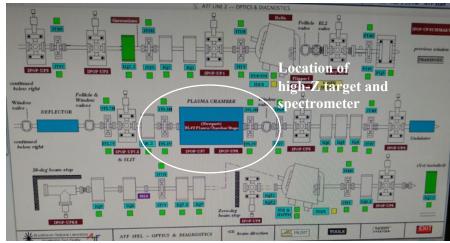
Plasma parameters	$1\mathrm{TW}$	$2\mathrm{TW}$
Density	$2 \times 10^{17} \text{ cm}^{-3}$	
Critical Power (P _c)	1.1 TW	$1.1~\mathrm{TW}$
P/P_c	0.88	1.87
$\operatorname{matched}$ - w_0	$32~\mu\mathrm{m}$	$36~\mu\mathrm{m}$
a_0	1.52	1.95
λ_{eta}	1.45 mm	$1.45~\mathrm{mm}$
Z_{R} (matched- w_{0})	$0.32~\mathrm{mm}$	$0.4~\mathrm{mm}$
σ_r/w_0	0.9	0.8

Strongly Mismatched Regime of Nonlinear Laser–Plasma Acceleration: Optimization of Laser-to-Energetic Particle Efficiency 10.1109/TPS.2019.2914896

2D PIC simulation of CO2 laser driven post-processing of shower

experimental layout




initially use BL# 2

 vacuum chamber on BL#2 – space for our spectrometers

 however, need CO₂ laser on BL#2

can we get Ti:Sapph or Nd:YAG on BL#2?

BL#2 optics and diagnostics design to show the location of our experiment

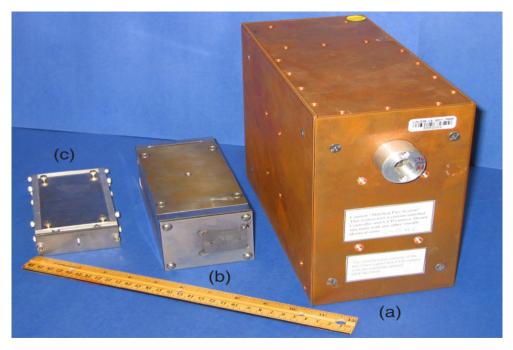
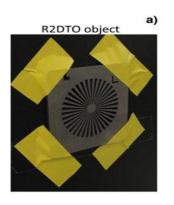
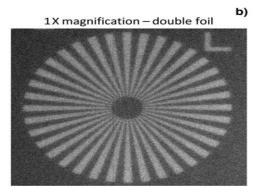
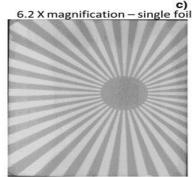



Photo of beamline # 2 setup


our diagnostics





LLNL positron spectrometer

Rev. Sci. Instrum. 79, 10E533 (2008)

LANL gamma-ray diagnostics

Laser and Particle Beams **36**, 502–506. (2018)

Proposed Milestones

Yr. 1 – **characterization of positron-electron jet** production in solid target, over the sub-ps electron beam parameter-space (spot-size, charge, current) and its interaction with laser-ionized plasma

Yr. 2 – **demonstration of spatio-temporal overlap** between a high-power CO₂ laser pulse within the plasma-cell along with positron-electron jets

Yr. 3 – demonstration of **tuning of the characteristics of the positron beam** by scanning over electron beam, CO2 laser and plasma properties.

Electron Beam Requirements

Parameter Units Typical Values		Typical Values	Comments	Requested Values
Beam Energy	Energy MeV 50-65		Full range is ~15-75 MeV with highest beam quality at nominal values	60 MeV
Bunch Charge	nC 0.1-2.0		Bunch length & emittance vary with charge	1nC
Compression	fs Down to 100 fs (up to 1 kA peak current)		A magnetic bunch compressor available to compress bunch down to ~100 fs. Beam quality is variable depending on charge and amount of compression required. NOTE: Further compression options are being developed to provide bunch lengths down to the ~10 fs level	0.1 - 1ps (10fs will be highly desirable when available ?)
Transverse size at IP (σ) μm 30 – 100 (dependent on IP position)		(dependent on IP	It is possible to achieve transverse sizes below 10 um with special permanent magnet optics.	30-50 µm Can we get the PMQ triplet setup used earlier at BNL ?
Normalized Emittance	μm	1 (at 0.3 nC)	Variable with bunch charge	
Rep. Rate (Hz)	Hz	1.5 3 Hz also available if needed		
Trains mode Single bunch		Single bunch	Multi-bunch mode available. Trains of 24 or 48 ns spaced bunches.	

CO₂ Laser Requirements

Configuration	Parameter	Units	Typical Values	Comments	Requested Values
CO ₂ Regenerative Amplifier Beam	Wavelength	μm	9.2	Wavelength determined by mixed isotope gain media	9.2 μm
	Peak Power	GW	~3		3 GW
	Pulse Mode		Single		
	Pulse Length	ps	2		2 ps
	Pulse Energy	mJ	6		6 mJ
	M ²		~1.5		
	Repetition Rate	Hz	1.5	3 Hz also available if needed	
	Polarization		Linear	Circular polarization available at slightly reduced power	
CO ₂ CPA Beam	Wavelength	μm	9.2	Wavelength determined by mixed isotope gain media	9.2 μm
Note that delivery of full power pulses to the Experimental Hall is presently limited to Beamline #1 only.	Peak Power	TW	2	~5 TW operation is planned for FY21 (requires further in-vacuum transport upgrade). A 3-year development effort to achieve >10 TW and deliver to users is in progress.	0.5 – 2 TW
	Pulse Mode		Single		
	Pulse Length	ps	2		2 ps
	Pulse Energy	J	~5	Maximum pulse energies of >10 J will become available in FY20	1-5 J
	M ²		~2		
	Repetition Rate	Hz	0.05		
	Polarization		Linear	Adjustable linear polarization along with circular	linear

University of Colorado Special Equipment Requirements and Hazards

- Electron Beam
 - transverse deflecting cavity
 - plasma capillary discharge system

Experimental Time Request

CY2021 Time Request

Capability	Setup Hours	Running Hours
Electron Beam Only	24	120
Laser* Only (in Laser Rooms)		
Laser(s)* + Electron Beam		

Time Estimate for Remaining Years of Experiment (including CY2021)

Capability	Setup Hours	Running Hours
Electron Beam Only	Good for year 1 (but pre-amp CO2 level would be very useful)	
Laser* Only (in FEL Room)		
Laser(s)* + Electron Beam	80	320

^{*} Laser = Near-IR or LWIR (CO₂) Laser