The Compton polarimeter in IR6

Zhengqiao Zhang BNL

How to choose the position of electron polarimeter and Compton IP

- Have a dipole to separate the scattered photons from the beam;
- As close to the ep IP as possible;
- Enough rate of scattered photons;
- Small smearing in Y position;
- Detect scattered photons and recoil electrons;

Luminosity and Y smearing

$$L = f_b N_e N_{\gamma} G$$
Geometric factor:

$$G = \frac{1 + \beta \cos\theta}{2\pi \sqrt{\sigma_y^2 + \sigma_{\gamma y}^2} \sqrt{\sigma_x^2(\beta + \cos\theta)^2 + \sigma_{\gamma x}^2(1 + \beta \cos\theta)^2 + (\sigma_z^2 + \sigma_{\gamma z}^2) \sin^2\theta}} \qquad f_b = 2.2852 \times 10^7; Ne = 6.2 \times 10^{10}; N_{\gamma} = 2.84974 \times 10^{12};$$

$$\sigma_{\gamma x} = 0.1mm; \sigma_{\gamma y} = 0.1mm; \sigma_{\gamma z} = 1.3mm;$$

$$\sigma_z = 10mm; \sigma_x = \sqrt{\epsilon_x \beta_x}, \beta_x = 13.4m; \beta_y = 19m;$$

$$\delta P_e \approx \frac{1}{A\sqrt{N}}; N = time * L * \sigma_{Compton} * 0.8 * f_b/290;$$

$$\theta = 3mrad; \sigma_{Compton} = 400mb;$$

The distribution of the initial electrons would also produce a smearing of the Y distribution of the scattered photon; The height of the electron beam at a distance D from the IP is calculated in the following way:

$$\sigma_{e,y}(D) = \sqrt{\epsilon_y \beta_y(D)} = \sqrt{\epsilon_y} \sqrt{\beta_y(0) - 2\alpha_y(0)D + \gamma_y(0)D^2}$$
$$\gamma_y(0) = \frac{1 + \alpha_y^2(0)}{\beta_y(0)}$$

Transporting Twiss Parameters

The emittance between two points is conserved, regardless of the change in beam shape and orientation, so the twins parameters transform as:

$$\begin{pmatrix} \beta \\ \alpha \\ \gamma \end{pmatrix} = \begin{pmatrix} C^2 & -2SC & S^2 \\ -CC' & (S'C+SC') & -SS' \\ C'^2 & -2S'C' & S'^2 \end{pmatrix} \begin{pmatrix} \beta_o \\ \alpha_o \\ \gamma_o \end{pmatrix}$$

For drift:
$$M_{\text{twiss, drift}} = \begin{pmatrix} 1 & -2L & L^2 \\ 0 & 1 & -L \\ 0 & 0 & 1 \end{pmatrix}$$
 $\beta = \beta_o - 2L\alpha_o + L^2\gamma_o$
 $\alpha = \alpha_o - L\gamma_o$
 $\gamma = \gamma_o$

For Quadrupole: If K>0

$$C(s) = \cos(\sqrt{K}s),$$

$$S(s) = \frac{1}{\sqrt{K}}\sin(\sqrt{K}s),$$

$$\beta(s) = C^{2}\beta_{0} - 2CS\alpha_{0} + S^{2}\gamma_{0}$$

$$\alpha(s) = -CC'\beta_{0} + (SC' + S'C)\alpha_{0} - SS'\gamma_{0}$$

$$\alpha(s) = -CC'\beta_{0} + (SC' + S'C)\alpha_{0} - SS'\gamma_{0}$$

$$\gamma(s) = C'^{2}\beta_{0} - 2S'C'\alpha_{0} + S'^{2}\gamma_{0}$$

IR6 layout

Optimize IP6 Forward Compton IP

IP6 Forward

IP6 Forward

IR6 layout

IP6 Rear

IP6 Rear layout

Photon detection

Magnets constraints in IP6 Rear

Backup

Theta distribution of scattered photon

1

Magnets constrain in IP6 Rear

Other options:

Studying the possibility to dig a hole in the magnets...