Higgs prospects at the HL-LHC

corrinne mills

University of Illinois at Chicago and Fermilab

On behalf of the ATLAS and CMS collaborations

DIS conference

April 16, 2021

The promise of the HL-LHC

- Compelling physics case with Higgs boson studies at the center
 - → Relevant context in S. Dawson's talk on Tuesday morning:

 https://indico.bnl.gov/event/9726/contributions/47610/attachments/33601/54068/dis_2021_dawson.pdf
 - Scalar sector a very likely place for new physics to appear, directly or indirectly
 - "Just getting to the interesting regime" in Higgs couplings
- Both ATLAS and CMS have invested in detector upgrades that will bring qualitatively new capabilities to the experiments
 - → and allow us to cope with the large amount of "pileup" resulting from up to 200 simultaneous proton-proton collisions
- Order of magnitude more integrated luminosity will illuminate key measurements that have been limited by statistical uncertainties
- In this talk, I try to connect improvements to the detector upgrades, and highlight the different experimental factors still limiting measurements

CMS Phase 2 upgrade highlights

CMS DETECTOR

Total weight : 14,000 tonnes

Overall diameter : 15.0 m

Overall length : 28.7 m

Magnetic field : 3.8 T

STEEL RETURN YOKE Silicon tracking:

Smaller **pixels**, coverage to pseudorapidity $\eta \sim 4$ New **strip** geometry enables L1 tracking

MIP timing detector:

New capability to timestamp particles LYSO+SiPM (barrel), LGAD (endcap)

Trigger: Track information (and particle-flow-like objects at Level 1

Higher rates at L1, better rejection in HLT

PRESHOWER

Silicon strips ~16m² ~137,000 channels

FORWARD CALORIMETER
Steel + Quartz fibres ~2,000 Channels

Muons:

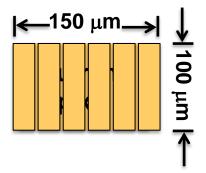
New detector technology (GEMs)
Upgraded electronics

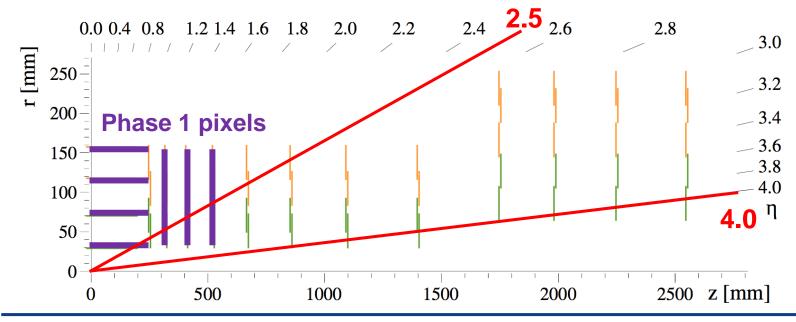
Increased trigger geometric coverage

Barrel calorimeter:

Upgraded electronics will provide more granularity to L1 trigger

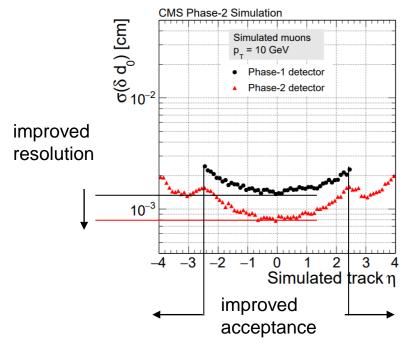
NIVERSITY OF Linois Hicago

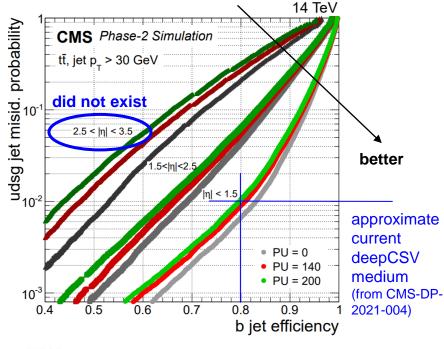

Endcap calorimeter (HGCal):

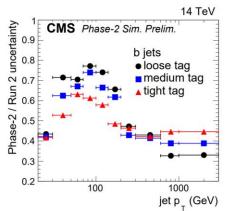

Increased granularity, silicon as active material for innermost layers

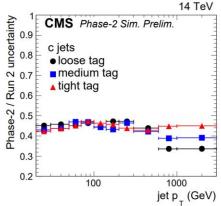
CMS Pixels for the HL-LHC

- Focus on improved radiation tolerance
 - → New "RD53"-based chip common to ATLAS and CMS
 - → Sensor design improved
 - n+-in-n to n-in-p planar
 - "3D" under consideration
 - Thinner sensor material
- More layers, more granularity






🚥 🗱 Fermilab

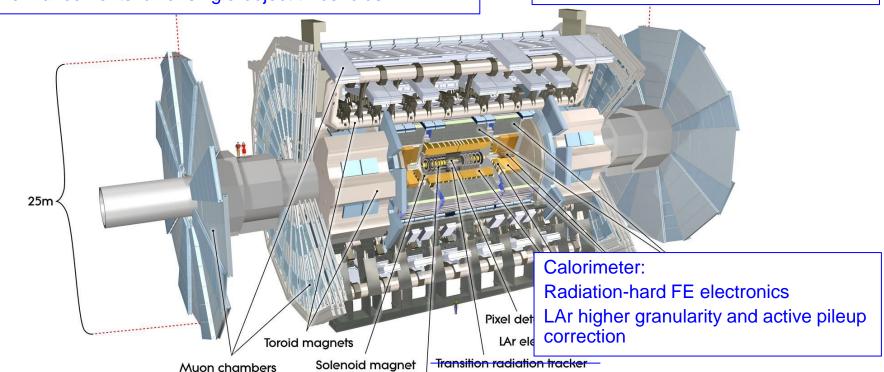

b-tagging and the new trackers

caveats: this averages over p_T , current measurements average over eta

bottom line: better performance, more precision will highlight some places the

will highlight some places this appears in measurements

ATLAS Phase 2 upgrade highlights



Trigger:

Hardware ("Level 0") redesigned for granularity & flexibility EF enhancements lower single-object thresholds

Timing:

LGAD layers in front of LAr endcap provide timestamps for forward tracks

Muons:

Increased trigger geometric coverage

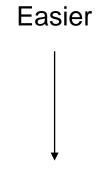
| Semiconductor tracker

Silicon tracking:

Replace TRT with expanded strip tracker

Smaller pixels with more acceptace ($|\eta| < 2.5 \rightarrow 4.0$)

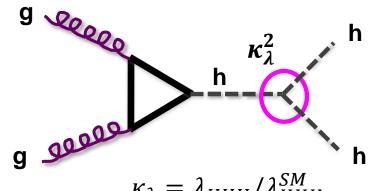
ATL-PHYS-PUB-2019-005

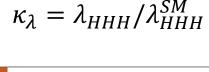

c. mills

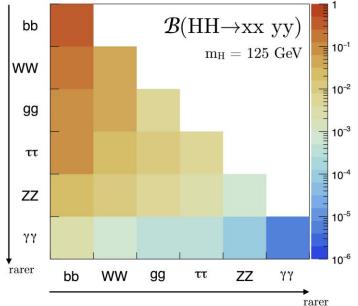
April 16, 2021

Predicting the future

- Cross sections scaled from 13 → 14 TeV
- Statistical uncertainties estimated from expected integrated luminosity
- **Detector improvements**: expanded capabilities (timing), acceptance (forward tracking), more detector layers ...
 - → Based on simulated detector performance when feasible
- Systematic uncertainties are the human factor in our measurement
 - → Express limitations of techniques and knowledge
 - → Different approaches
 - Use current best values, unchanged (S1)
 - "YR18" improved uncertainties agreed by ATLAS and CMS (S2): theory uncertainties 50% of current, experimental uncertainties scale with statistics to "floor" defined by expected detector performance

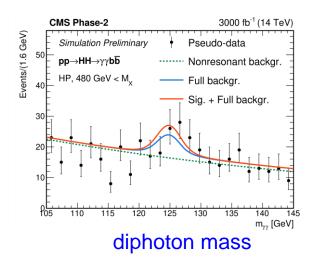

Higgs pair production

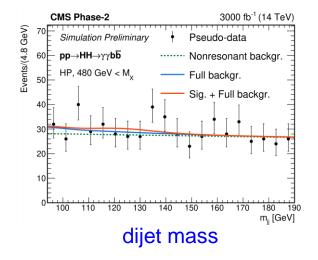



- A flagship measurement of HL-LHC
- Directly examines the shape of the Higgs potential
 - → Implications for electroweak baryogenesis
- Channels with highest BR don't dominate sensitivity
 - → systematics and/or large backgrounds
- Both experiments expect 3σ evidence (in SM case)

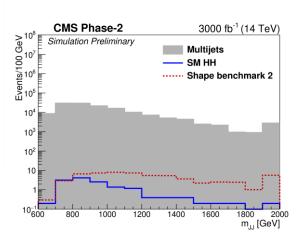
	ATLAS	CMS
bbbb	0.61	0.91
bbττ	2.1	1.4
bbγγ	2.0	1.8
bbWW($\ell \nu \ell \nu$)		0.56
$bbZZ(\ell\ell\ell\ell)$		0.37
combination	3.0	2.6

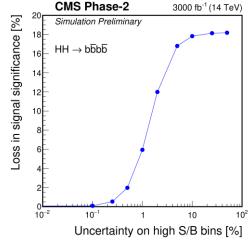
summary drawn from tables in following slides



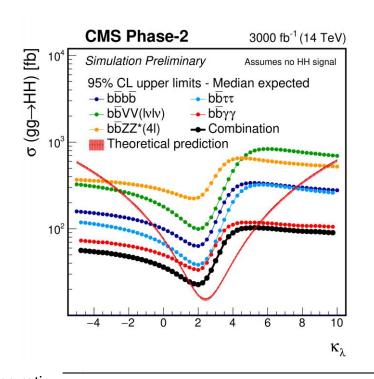


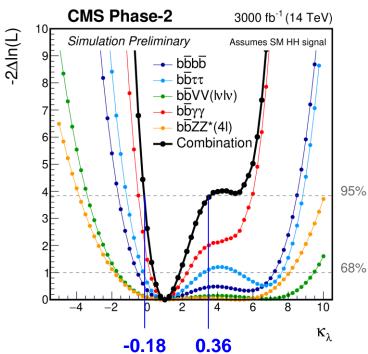
Reviews in Physics 5 (2020) 100039


CMS HH



- Parametric detector model (Delphes)
- Most sensitive analysis: bbγγ
 - → Double resonance search with BDT classifier
 - \rightarrow Main background (ttH, H $\rightarrow \gamma \gamma$) evident in $m_{\gamma \gamma}$
- Largest branching ratio: 4b
 - → Large multijet background with substantial uncertainty on estimate




CMS-PAS-FTR-18-019

ERSITY OF

CMS HH

branching ratio	Channel	Significance		95% CL limit on $\sigma_{\rm HH}/\sigma_{\rm HH}^{\rm SM}$	
	Charmer	Stat. + syst.	Stat. only	Stat. + syst.	Stat. only
33.6%	bbbb	0.95	1.2	2.1	1.6
7.3%	$bb\tau\tau$	1.4	1.6	1.4	1.3
1.7%	$bbWW(\ell \nu \ell \nu)$	0.56	0.59	3.5	3.3
0.26%	bb $\gamma\gamma$	1.8	1.8	1.1	1.1
0.015%	$bbZZ(\ell\ell\ell\ell)$	0.37	0.37	6.6	6.5

2.6

2.8

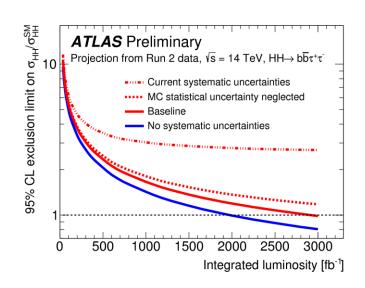
Insight from Run 2 results: b-tagging is leading experimental uncertainty (2.8% for 4b,1810.11854)

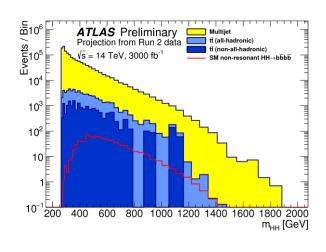
For leading channels, statistical uncertainty is dominant

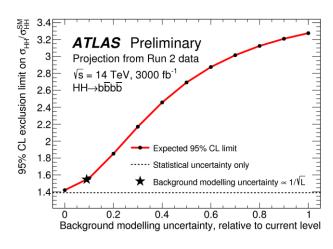
CMS-PAS-FTR-18-019

Combination

UNIVERSITYOF

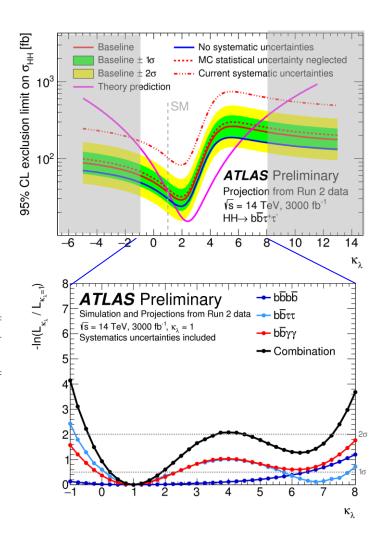

0.77


0.71


ATLAS HH

- Extrapolation from Run 2 analysis, with smeared truth-level simulation for bbγγ
- Expected 8% improvement in b-tagging efficiency included based on simulation of new tracker
- bbbb analysis: multijet background significant as for CMS
- bbττ highlights MC statistical uncertainties, other prospects analyses set them to zero

ATLAS HH

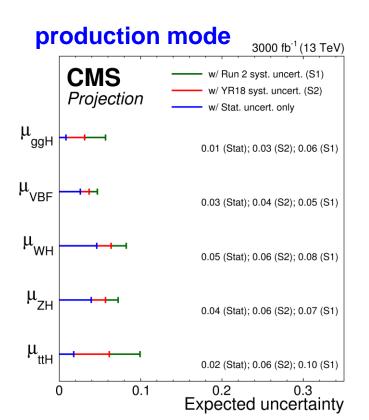


Expected significance

Channel	Statistical-only	Statistical + Systematic
$HH o b ar{b} b ar{b}$	1.4	0.61
$HH o bar{b} au^+ au^-$	2.5	2.1
$HH o b ar{b} \gamma \gamma$	2.1	2.0
Combined	3.5	3.0

Limits on scale of triple Higgs coupling assuming the SM

Scenario	1 <i>σ</i> CI	2σ CI
Statistical uncertainties only	$0.4 \le \kappa_{\lambda} \le 1.7$	$-0.10 \le \kappa_{\lambda} \le 2.7 \cup 5.5 \le \kappa_{\lambda} \le 6.9$
Systematic uncertainties	$0.25 \le \kappa_{\lambda} \le 1.9$	$-0.4 \le \kappa_{\lambda} \le 7.3$

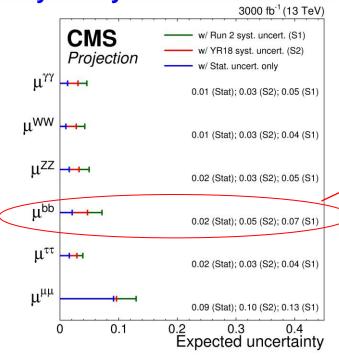


CMS Higgs couplings

			3000 fb	⁻¹ uncert	ainty [%]		
		Total	Stat	SigTh	BkgTh	Exp	
1/ 17	S1	5.7	0.8	5.4	0.9	1.2	I the little or
$\mu_{ m ggH}$	S2	3.1	0.8	2.8	0.6	0.9	Limiting uncertainties
1/xmc	S1	4.7	2.6	3.0	1.3	2.1	boxed in red
$\mu_{ ext{VBF}}$	S2	3.7	2.6	2.1	0.3	1.6	
1/11/11	S1	8.2	4.6	2.9	3.3	5.2	
$\mu_{ m WH}$	S2	6.4	4.6	1.4	2.7	3.2	
11 mm	S1	7.2	3.9	5.1	2.5	2.1	
$\mu_{ m ZH}$	S2	5.7	3.9	3.0	2.3	1.7	
Ишт	S1	9.9	1.8	8.3	4.1	3.1	
μ_{ttH}	S2	6.2	1.8	4.2	3.4	2.4	

not knowledge of measured cross section, but do count in SM comparisons

- VBF and ZH remain limited by statistical uncertainties
- Theoretical and experimental uncertainties limit others

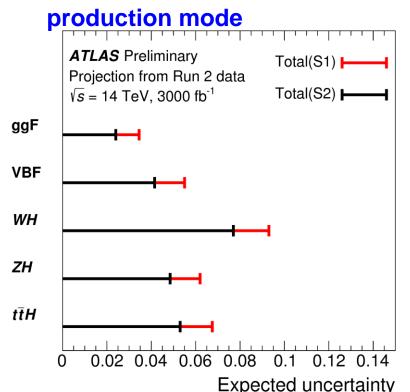

CMS-PAS-FTR-18-011

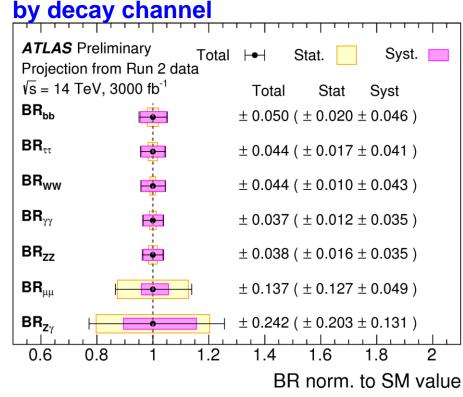
CMS Higgs couplings

by decay channel

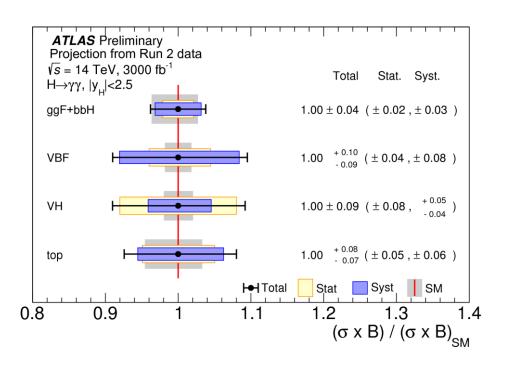
Zoom in on VHbb (associated production via WH, ZH)

		S1	S2	
	T 1			
	Total uncertainty	7.3%	5.1%	
	Signal theory uncertainty	5.4%	2.6%	Broadly
	Inclusive	4.6%	2.2%	similar for
V	Acceptance	2.7%	1.3%	ATLAS
	Background theory uncertainty	2.8%	2.3%	J
	Experimental uncertainty	2.6%	2.2%	- Importance of
	b-tagging	2.2%	2.0%	Importance of
	JES and JER	0.7%	0.6%	understanding
	Statistical uncertainty	3.2%	3.2%	b-tagging


HE NIVERSITYO LINOIS T HICAGO μ^{bb} above also includes other production modes (VBF, boosted ggH)


CMS-PAS-FTR-18-011

ATLAS H couplings



- Statistical uncertainty smaller than systematic for all but rarer $\mu\mu$, $Z\gamma$ channels
- Similar ratio of systematic / statistical uncertainty for bb, ττ, WW
- Look at limiting factor for precision in three different channels: $\gamma\gamma$, WW, bb
 - → Uncertainty breakdown for the most sensitive final state
 - → A simplification, but still instructive

ATLAS H couplings γγ

- Limited by understanding of reconstruction
- Systematics-limited in all but VH
- Main uncertainties from photon isolation and identification uncertainty, pileup-related

ggF uncertainties:

 $\Delta \sigma / \sigma_{\rm SM}$

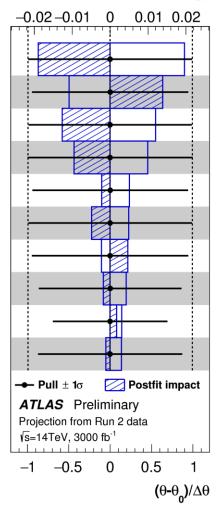
photon isolation efficiency

pileup reweighting

photon ID efficiency

luminosity

UEPS VBF

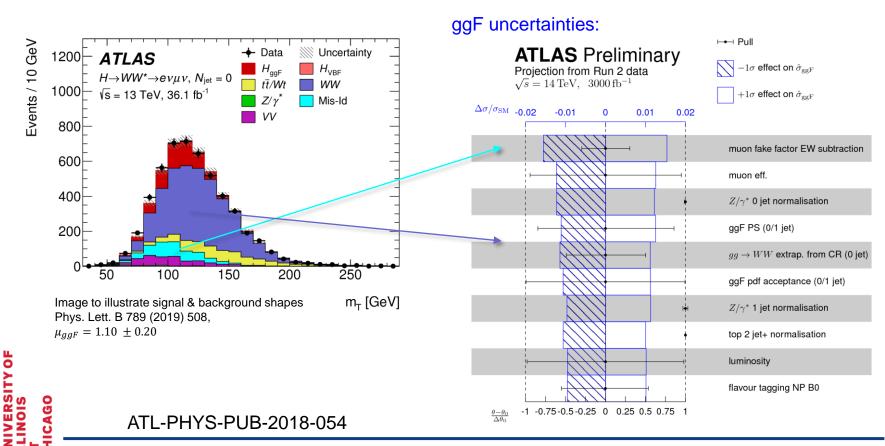

trigger efficiency

jet flavour composition VBF

JER

jet pileup ρ-topology

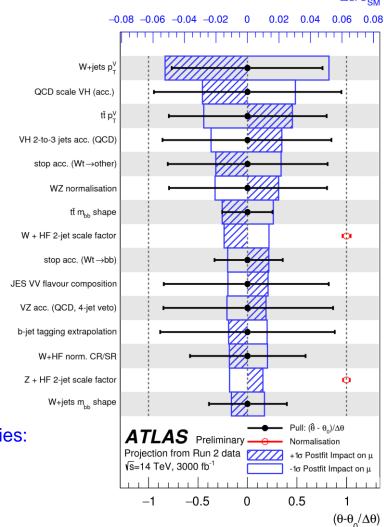
jet flavour composition ggF


IVERSITY OF INOIS

ATLAS H couplings WW

Limited by methods (background estimation)

- → S/B ~ 10% and simple sideband subtraction is not an option
- → Fake lepton background a notorious challenge
- → Large background from WW must be extremely well-controlled

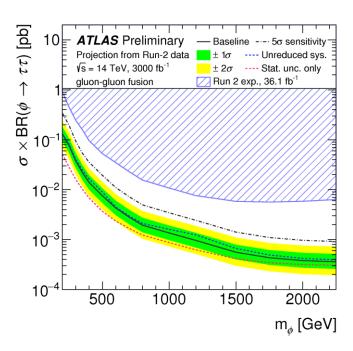


ATLAS H couplings Vhbb

 $\Delta\sigma/\sigma_{\text{SM}}$

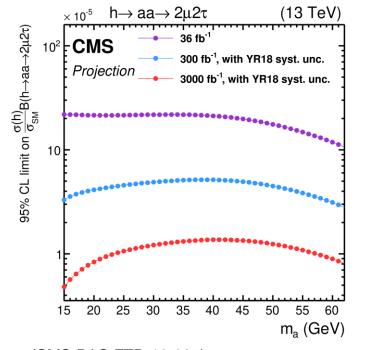
- Limited by theoretical modeling
 - \rightarrow QCD scale
 - → Vector boson transverse momentum model
- Jet energy scale contribution from uncertainty in flavor composition
- b-jet tagging not primary

WH uncertainties:


BSM searches

 Searches that improve most are those currently limited by statistics or detector capabilities

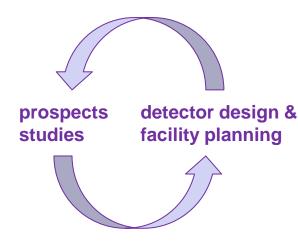
Detector: New heavy scalar to $\tau\tau$


→ Improved tau identification (better tracker) and more acceptance

(ATL-PHYS-PUB-2018-050)

Statistics: h(125) to light pseudoscalars ("a") to $\tau\tau$ bb or $\tau\tau\mu\mu$

→ 2HDM+S well-motivated model and less constrained than 2HDM


(CMS-PAS-FTR-18-035)

Summary

- Projected measurements motivate new facilities
 - → HL-LHC, HE-LHC, ILC, FCC, muon collider...
- Requires good understanding of planned detector upgrades
 - → Which are themselves motivated by the physics goals
- Stringent tests of SM-like observed Higgs boson
 - \rightarrow **4-5% total uncertainty** in "big 5" channels (WW, ZZ, $\gamma\gamma$, bb, $\tau\tau$)
 - → Different limitations in different channels: statistics, background-estimation methods, particle identification
- Expect evidence for Higgs pair production
 - → Non-SM signal potentially larger (or smaller)
- Next up: resumption of Snowmass
 - → CMS and ATLAS have both submitted LoIs
 - → Aiming for improved analysis strategies and new channels in next round of prospects
- Detector upgrades now starting construction looking forward to the data!

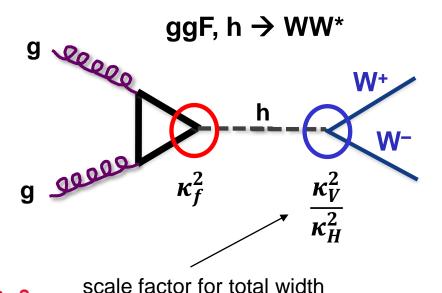
backup

HL-LHC overview

- Start of the high-luminosity LHC (HL-LHC) in 2027 will be the culmination of over a decade of intensive work
- 14 TeV proton-proton collisions, 3000-4000 fb⁻¹ at instantaneous luminosity of 2 x 10³⁵ cm⁻¹s⁻¹
- Comparison: Run 3 imminent at 13 TeV (possible upgrade to 14 TeV), 300-350 fb⁻¹ and inst lumi up to 2 x 10³⁴ cm⁻¹s⁻¹
- Up to 140-200 interactions per bunch crossing

Common systematics

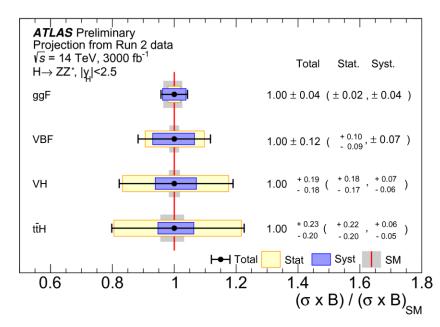
Table 1: The "floor" systematic uncertainties for the HL-LHC.


Uncertainty	Working point/ component	Value
Electron ID	All WPs, $p_{\rm T} > 20 {\rm GeV}$	0.5%
	All WPs, $10 < p_{\rm T} < 20 {\rm GeV}$	2.5%
Photon ID	·	2%
Muon ID	All WPs	0.5%
Tau ID	All WPs	2.5%
Jet energy scale	Total	1–2.5%
	Absolute scale	0.1-0.2%
	Relative scale	0.1-0.5%
	PU	0–2%
	Jet flavor	0.75%
Jet energy resolution		3–5% as a function of η
b-tagging	b jets (all WPs)	1%
	c jets (all WPs)	2%
	Light jets, loose WP	5%
	Light jets, medium WP	10%
	Light jets, tight WP	15%
	Subjet b tagging	1%
	Double c tagging	
$p_{\mathrm{T}}^{\mathrm{miss}}$	Propagate jet energy	
	corrections uncertainties (must)	
	Propagate jet energy	
	resolution uncertainties (recommended)	
	Vary unclustered	
	energy by 10% (recommended)	
Integrated luminosity		1%

Indirect tests

"kappa" framework

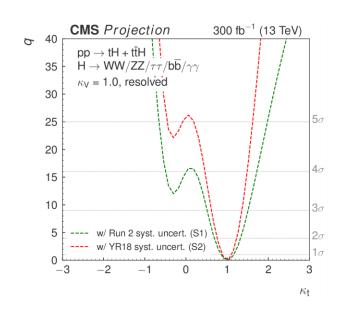
- Rescaling of processes according to LO vertices
- Simple to implement in statistical frameworks for immediate interpretation of new results

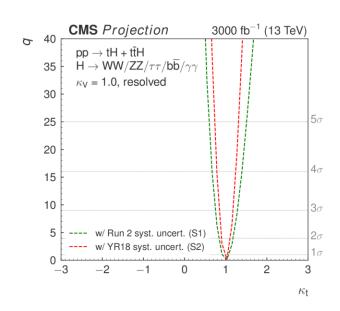

Effective Field Theory (HEFT, SMEFT)

- Model-independent, gaugeinvariant parameterization of all operators respecting symmetries of the SM
 - → Subtleties in implementation of EWSB distinguish approaches
- Allows new structure in interactions, not just rescaling of existing processes
- Inclusive: incorporates not just Higgs observables but other precision measurements (top, W, Z, at LHC, Tevatron, LEP)

ATLAS H couplings ZZ4l

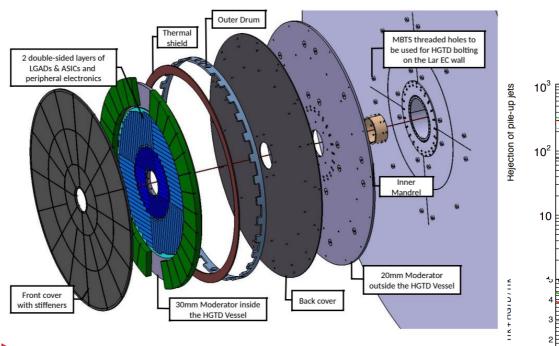
 Statistics dominated in all but ggF

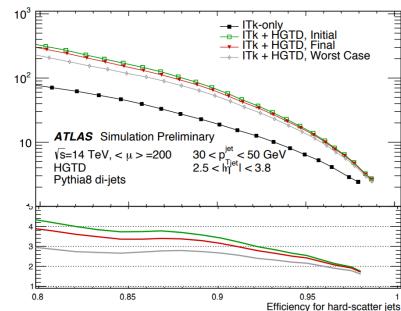



CMS: sign of top coupling

 Dedicated tHq analyses have no sensitivity at SM values but channel is dramatically enhanced for non-SM couplings

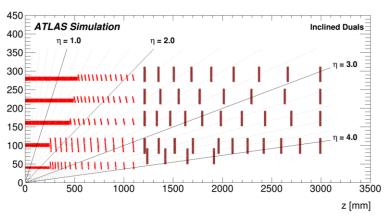
Additional data resolves sign ambiguity

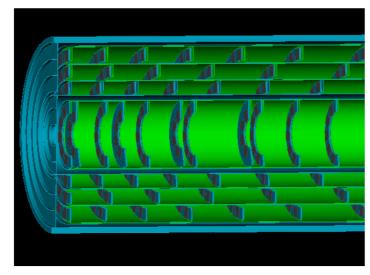



CMS-PAS-FTR-18-011

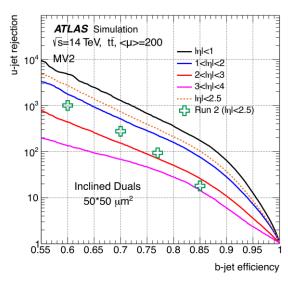
ATLAS Phase 2 detector

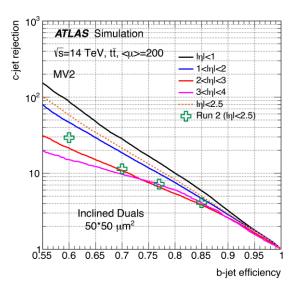
- Completely new: HGTD
 - → LGAD technology
 - → Coverage in forward region to target jets
 - → 3 ps timing resolution per track (42-60 ps per hit)


LHCC-P-012



ATLAS Phase 2 detector




Inclined Modules maintain track hits with fewer total planes → less material

 Improvements in b-tagging efficiency (and uncertainty) expected from improved pixel detector

ATLAS-TDR-030

Evolution of projections

- Making projections of Higgs measurements is as old as the Higgs boson itself
- How have our expectations changed over the years?
- Surprisingly difficult to compare new and old projections
 - → Priority measurements in Run 1 & 2 have shifted
 - → How we think about these measurements has evolved
 - "signal strength" μ → cross section x BR
 - "kappa" scale factors to STXS and EFT

CMS-PAS-FTR-18-019

CMS-PAS-FTR-15-002	Channel	Signific Stat. + syst.		95% CL limit Stat. + syst.	on $\sigma_{ m HH}/\sigma_{ m HH}^{ m SM}$ Stat. only
	bbbb	0.95	1.2	2.1	1.6
0.9σ	bbττ	1.4	1.6	1.4	1.3
	$bbWW(\ell\nu\ell\nu)$	0.56	0.59	3.5	3.3
1.7σ *	$bb\gamma\gamma$	1.8	1.8	1.1	1.1
	$bbZZ(\ell\ell\ell\ell)$	0.37	0.37	6.6	6.5
1.9σ	Combination	2.6	2.8	0.77	0.71

^{*} I subtracted in quadrature from the combination (ignores correlations)

Evolution of couplings – ATLAS

- Only comparable numbers are in couplings baseline measurements
- Doubled the expected precision
- Muon coupling (κ_μ) least changed: statistics-dominated
- Most dramatic: κ_b 11% \rightarrow 4.4%
 - → Tempting to ascribe to b-tagging with machine learning, but ML already in use by then (though methods have advanced)

Nr.	Coupling	3000 fb^{-1}		
		Theory unc.:		
		All	Half	None
	ΚZ	4.3%	3.9%	3.8%
	κ_W	4.8%	4.1%	3.9%
7	κ_t	8.2%	6.1%	5.3%
	κ_b	12%	11%	10%
	$\kappa_{ au}$	9.8%	9.0%	8.7%
	κ_{μ}	7.3%	7.1%	7.0%
	-			

POI	Scenario	Precision
κ_W	HL-LHC S1	+0.028 -0.027
	HL-LHC S2	+0.019 -0.019
κ_Z	HL-LHC S1	+0.026 -0.025
	HL-LHC S2	+0.017 -0.017
κ_t	HL-LHC S1	+0.043 -0.041
	HL-LHC S2	+0.030 -0.029
κ_b	HL-LHC S1	+0.064 -0.060
	HL-LHC S2	+0.044 -0.043
$\kappa_{ au}$	HL-LHC S1	+0.038 -0.036
	HL-LHC S2	+0.028 -0.027
κ_{μ}	HL-LHC S1	+0.079 -0.076
	HL-LHC S2	+0.070 -0.071

ATL-PHYS-PUB-2014-016

