# Hard color-singlet exchange in dijet events in proton-proton collisions at $\sqrt{s}=13$ TeV in CMS and TOTEM

Based on CERN-EP-2020-229, arXiv:2102.06945, submitted to Phys. Rev. D

Cristian Baldenegro (cbaldenegro@ku.edu)

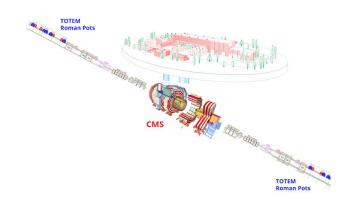
The University of Kansas

On behalf of the CMS and TOTEM Collaborations

XXVIII International Workshop on Deep-Inelastic Scattering and Related Subjects
April 12-16 2021






DE-SC0019389

Cristian Baldenegro (KU) 0/15

#### Outline

- The CMS and TOTEM detectors.
- ► Hard color-singlet exchange in dijet events ("jet-gap-jet") as a probe of Balitsky-Fadin-Kuraev-Lipatov dynamics.
- ▶ Jet-gap-jet events in proton-proton collisions at  $\sqrt{s}=13$  TeV (CMS-only analysis).
- ▶ Jet-gap-jet events with an intact proton at  $\sqrt{s} = 13$  TeV (CMS-TOTEM analysis).
- Summary

#### CMS and TOTEM experiments



#### CMS:

- General purpose detector at IP5 of the CERN LHC.
- ▶ Tracking ( $|\eta|$  < 2.5), and hadronic and electromagnetic calorimetry ( $|\eta|$  < 5.2)
- Jets reconstructed within  $|\eta^{
  m jet}| < 4.7$

#### TOTEM:

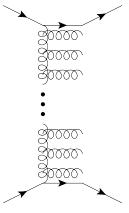
- ▶ Roman pots: Forward tracking detectors at ≈ 220m w.r.t. IP5 that measure the protons scattered at small angles w.r.t. the beam.
- Measurement of total cross section, elastic scattering, and soft and hard diffractive processes in pp collisions.

## The high-energy limit of QCD

The high-energy limit is defined by  $\hat{s}\gg -\hat{t}\gg \Lambda_{\rm QCD}^2$ , where  $\hat{s},~\hat{t}$  are the Mandelstam variables at parton-level.

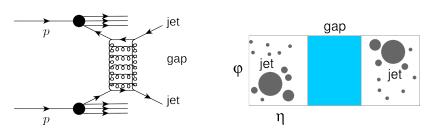
Here, the fixed-order pQCD approach breaks down.

The perturbative expansion should be rearranged (symbolically) as,


$$\mathrm{d}\hat{\sigma} \sim \alpha_s^2 \sum_{n=0}^{\infty} \alpha_s^n \ln^n \left(\frac{\hat{s}}{|\hat{t}|}\right) + \alpha_s^3 \sum_{n=0}^{\infty} \alpha_s^n \ln^n \left(\frac{\hat{s}}{|\hat{t}|}\right) + \alpha_s^4 \sum_{n=0}^{\infty} \alpha_s^n \ln^n \left(\frac{\hat{s}}{|\hat{t}|}\right) + \dots$$

such that  $lpha_s^n \ln^n \left( \hat{\mathfrak{s}}/|\hat{t} \right) \lesssim 1$ 

**Resummation of large logarithms** of  $\hat{\mathbf{s}}$  to all orders in  $\alpha_s$  is done via **Balitsky-Fadin-Kuraev-Lipatov (BFKL)** evolution equations of pQCD.


Very important test of QCD; very challenging to isolate experimentally

Detailed theory discussion presented by Federico Deganutti in the previous talk.



Multi-gluon ladder diagrams contribute significantly in the high-energy limit

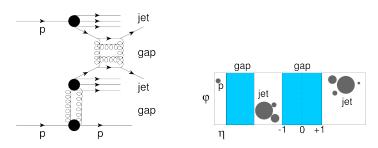
## Jet-gap-jet process as a probe of BFKL dynamics



t-channel color-singlet exchange between partons (two-gluon exchange)

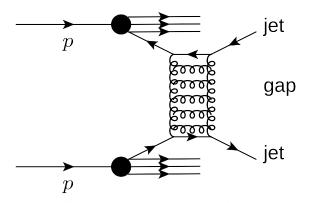
ightarrow pseudorapidity interval void of particle production between jets (pseudorapidity gap).

In the high-energy limit, this corresponds to perturbative pomeron exchange (BFKL two-gluon ladder exchange). A. Mueller and W-K. Tang, Phys. Lett. B 284 (1992) 123.


Dokshitzer-Gribov-Lipatov-Altarelli-Parisi dynamics are strongly suppressed in events with pseudorapidity gaps (Sudakov form factor to suppress radiation in gap).

Detailed theory description of the jet-gap-jet process by Federico Deganutti in the previous talk.

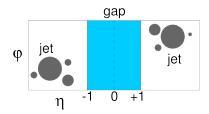
#### Gap survival probability


Although there is a short-distance mechanism for gap formation, soft-parton activity can destroy the central gap between the jets. This is parametrized by means of a gap survival probability,  $|\mathcal{S}|^2$ , which is difficult to understand theoretically.

In pp collisions with intact protons, soft-parton activity is largely reduced → Central gap more likely to "survive" (Marquet, Royon, Trzebiński, Žlebčík, Phys.Rev. D 87, 034010 (2013) ).

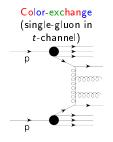


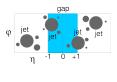
Addressed in study with CMS-TOTEM combined analysis (SMP-19-006, arXiv:2102.06945). Second part of this talk.

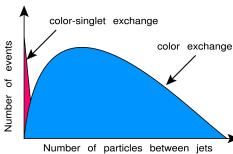

# Turning to CMS measurement



#### Experimental analysis of jet-gap-jet events at $\sqrt{s} = 13$ TeV

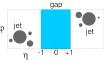

Analysis based on 13 TeV low-luminosity with special optics  $eta^*=$  90 m pp collision data collected by CMS and TOTEM in 2015 (pileup of 0.05-0.10). Event selection:


- ▶ Particle-flow, anti- $k_t$  jets R = 0.4.
- ▶ Two highest  $p_T$  jets have  $p_T > 40$  GeV each.
- ▶ Leading two jets satisfy  $1.4 < |\eta_{\rm jet}| < 4.7$  and  $\eta^{\rm jet1} \eta^{\rm jet2} < 0$   $\rightarrow$  Favors t-channel color-singlet exchange.
- ightharpoonup At most one reconstructed primary vertex,  $N_{PV} \leq 1$ , to suppress residual pileup contributions.



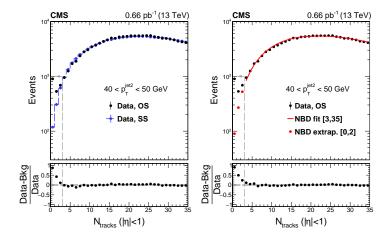

Pseudorapidity gap is defined by means of the charged particle multiplicity  $N_{tracks}$  between the leading two jets. Each charged particle has  $p_T>200$  MeV in  $|\eta|<1$ .

## Need to distinguish color-exchange from color-singlet exchange contributions









Color-singlet exchange (two-gluon in *t*-channel)





Color-exchange fluctuations at low-multiplicities need to be properly treated.

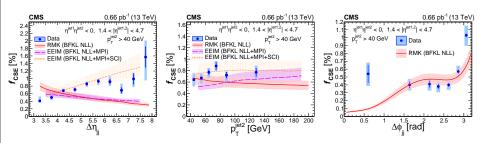
## Multiplicity of charged particles between the jets



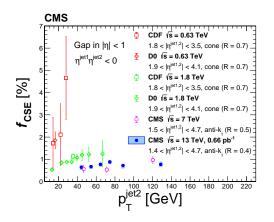
Color-exchange events dominate at  $N_{\rm tracks} o {\sf Use}$  as control region to estimate fluctuations at low  $N_{\rm tracks}$ . Two data-based approaches:

- ► Control dijet sample: two jets on the same-side (SS) of the CMS detector,  $\eta^{\text{jet1}}\eta^{\text{jet2}} > 0$ . Normalize to events with jets in opposite sides (OS) of CMS,  $\eta^{\text{jet1}}\eta^{\text{jet2}} < 0$ , in  $N_{\text{tracks}} > 3$ .
- Negative binomial distribution (NBD) function: Fit data with NBD in  $3 \le N_{\rm tracks} \le 35$ , extrapolate down to  $N_{\rm tracks} = 0$ . (Baseline method)

## Hard color-singlet exchange fraction $f_{CSE}$

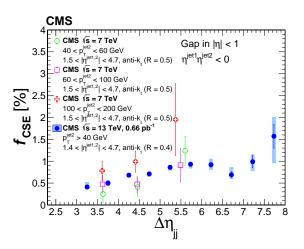

We extract the fraction  $f_{CSE}$  based on the charged particle multiplicity between the jets:

$$\textit{f}_{\text{CSE}} \equiv \frac{\textit{N(N}_{\text{tracks}} < 3) - \textit{N}_{\text{bkg}}(\textit{N}_{\text{tracks}} < 3)}{\textit{N}_{\text{all}}} \equiv \frac{\text{color-singlet exchange dijet events}}{\text{all dijet events}}$$


The fraction  $f_{CSE}$  is measured as a function of:

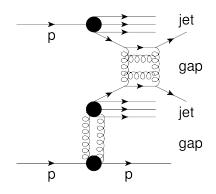
- ▶ Pseudorapidity difference between the jets,  $\Delta \eta_{jj} \equiv |\eta^{\text{jet1}} \eta^{\text{jet2}}|$ . Sensitive to expected BFKL dynamics, since it's related to resummation of large logs of s.
- **Subleading jet transverse momentum**,  $p_{T}^{\text{jet2}}$ . Sensitive to expected BFKL dynamics.
- ▶ Azimuthal angle difference between the leading jets,  $\Delta \phi_{jj} \equiv |\phi^{jet1} \phi^{jet2}|$ . Sensitive to deviations of  $2 \to 2$  scattering topology.

## Results on color-singlet exchange fraction $f_{\mathsf{CSE}}$

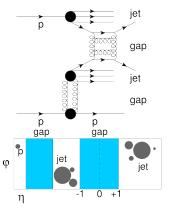



- ▶ Color-singlet exchange represents  $\approx 0.6\%$  of the inclusive dijet cross section for the probed phase-space.
- Bars represent stat uncertainties, boxes represent stat + syst uncertainties.
- ► Comparison calculations based on BFKL NLL resummation + LO impact factors:
  - **Royon, Marquet, Kepka (RMK)** predictions (Phys. Rev. D 83.034036 (2011), arXiv:1012.3849), and survival probability  $|S|^2 = 0.1$ .
  - ▶ Ekstedt, Enberg, Ingelman, Motyka (EEIM) predictions (Phys. Lett. B 524:273 and arXiv:1703.10919) with multiple-parton interactions (MPI) to simulate |S|², also be supplemented with soft-color interactions (SCI).
- ► Challenging to describe theoretically all aspects of the measurement simultaneously.




- ▶ Measurement of jet-gap-jet events at four different  $\sqrt{s}$  in p $\bar{p}$  and pp collisions at 0.63 TeV, 1.8 TeV, 7 TeV, and 13 TeV (this measurement).
- Generally,  $f_{\text{CSE}}$  is expected to decrease with increasing  $\sqrt{s}$ , due to an increase in spectator parton activity with  $\sqrt{s}$ .
- ▶ Within uncertainties,  $f_{CSE}$  stop decreasing with  $\sqrt{s}$  at LHC energies, in contrast to trend observed at lower energies 0.63 TeV  $\rightarrow$  1.8 TeV  $\rightarrow$  7 TeV.

#### $f_{\sf CSE}$ vs. $\Delta\eta_{\sf ij}$ between 7 and 13 TeV CMS results

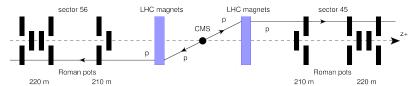



- ▶ CMS 7 TeV analysis performed in three bins of  $p_{\rm T}^{\rm jet2}$  and three bins of  $\Delta \eta_{\rm jj}=3$ –4, 4–5,5–7 (CMS, **EPJC** 78 (2018) 242)
- ▶ Trend of increasing  $f_{CSE}$  with  $\Delta \eta_{ij}$  is confirmed with new 13 TeV results.
- lacktriangle New results reach previously unexplored values of  $\Delta\eta_{
  m ii}$

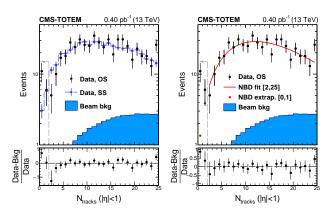
# Turning to CMS-TOTEM combined measurement



#### Turning to study with intact protons (CMS-TOTEM)



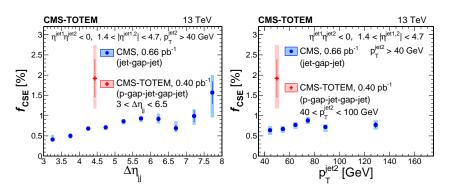

Better understand the role of spectator partons in the destruction of the central gap.


Same dijet and central gap definitions as with CMS-only analysis.

Proton requirements:

- ▶ The fraction of beam energy lost by the proton must be  $\xi_{p}(\mathsf{RP}) < 0.2$
- ▶ The four-momentum transfer square at the proton vertex must be  $-4 < t < -0.025 \text{ GeV}^2$ , where  $t = (p_f p_i)^2$  of the proton.




#### Charged particle multiplicity between jets + intact proton



Similar techniques to estimate background from fluctuations in particle multiplicity:

- ▶ Control dijet sample: Two jets in same side w.r.t. fixed  $\eta$  region. The  $\eta$  interval needs to be adjusted to account for boosts in SD dijet events (0.8 units in  $\eta$ ).
- Negative binomial distribution (NBD) approach: NBD is fit in  $2 < N_{\rm tracks} < 25$ , and extrapolated down to  $N_{\rm tracks} = 0$ . Different fit range accounts for lower mean  $N_{\rm tracks}$  in events with intact protons.

Excess of events at low charged particle multiplicities  $\rightarrow$  For the first time these events are studied! Filled histogram represents beam background contribution.



 $f_{\rm CSE}$  fraction in p-gap-jet-gap-jet study is  $2.91\pm0.70{
m (stat)}^{+1.02}_{-0.94}{
m (syst)}$  times larger than jet-gap-jet fraction, for similar dijet kinematics.

#### Abundance of events with a central gap is larger in events with intact protons.

Lower spectator parton activity in events with intact protons  $\rightarrow$  Better chance of central gap surviving the collision.

#### Unique opportunity to study hard color-singlet exchange at the CERN LHC.

#### Analysis of jet-gap-jet events at 13 TeV:

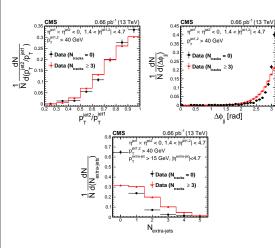
- ► About 0.5% of dijet events are produced by hard color-singlet exchange.
- ▶ No further suppression between 7 and 13 TeV results is observed.

#### Jet-gap-jet events with intact protons:

- First study of this process. Allows for the possibility of future differential measurements.
- ▶ Hard color-singlet exchange fraction  $f_{CSE}$  is  $2.91 \pm 0.70 (\text{stat})^{+1.02}_{-0.94}$  larger than that in standard jet-gap-jet events.

Paper has been submitted to PRD (arXiv:2102.06945).

# Thanks!



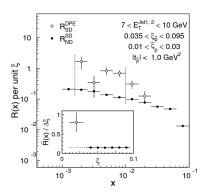







#### Kinematic properties of jet-gap-jet candidates vs incl. dijet events




Normalized distributions in:

- $ightharpoonup p_{\mathrm{T}}^{\mathrm{jet}\,2}/p_{\mathrm{T}}^{\mathrm{jet}\,1}$
- ▶ Jet multiplicity N<sub>extra-jets</sub> for jets with p<sub>T,extra-jet</sub> > 15 GeV.

**Jet-gap-jet candidates** with  $N_{\rm tracks}=0$  and events dominated by color-exchange dijet events with  $N_{\rm tracks}\geq 3$ .

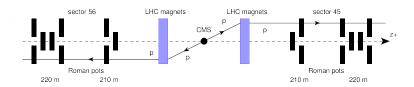
Distributions reflect underlying quasielastic parton-parton scattering process topology.

## Consistent with other two-rapidity gap topology



CDF studied double-pomeron exchange/single-diffractive dijet event ratios, compared them to single-diffractive/non-diffractive (PRL85,4215):

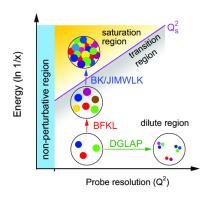
 $\mathcal{R}=(\mathsf{DPE/SD})$  /  $(\mathsf{SD/ND})=5.3\pm1.9$ , different from factor of 1 expected from factorization. Comparison of gap-jet-jet-gap/gap-jet-jet topology.


Present CMS-TOTEM result finds a similar effect for a different two-gap topology (proton-gap-jet-gap-jet).

# Systematic uncertainty table summary

| Source                           | Jet-gap-jet          |                         |                      | Proton-gap-jet-gap-jet  |
|----------------------------------|----------------------|-------------------------|----------------------|-------------------------|
|                                  | $\Delta\eta_{ m jj}$ | $p_{\mathrm{T, jet-2}}$ | $\Delta\phi_{ m jj}$ | 1 toton-gap-jet-gap-jet |
| Jet energy scale                 | 1.0-5.0              | 1.5-6.0                 | 0.5-3.0              | 0.7                     |
| Track quality criteria           | 6.0 - 8.0            | 5.4 - 8.0               | 1.5 - 8.0            | 8                       |
| Charged particle $p_T$ threshold | 2.0-5.8              | 1.6 - 4.0               | 1.1 - 5.8            | 11                      |
| Background subtraction method    | 4.7 - 14.6           | 2-14.6                  | 12.0                 | 28.3                    |
| NBD fit parameter                | 0.8 - 2.6            | 0.6 - 1.7               | 0.1 - 0.6            | 7                       |
| NBD fit interval                 | _                    | _                       | _                    | 12.0                    |
| Calorimeter energy scale         | _                    | _                       | _                    | 5.0                     |
| Horizontal dispersion            | _                    | _                       | _                    | 6.0                     |
| Fiducial selection requirements  | _                    | _                       | _                    | 2.6                     |
| Total                            | 6.8–22.0             | 8.3–14.9                | 12.0-17.1            | 33.4                    |
|                                  |                      |                         |                      |                         |

Relative systematic uncertainties in percentage on  $f_{\rm CSE}$ . Uncertainty range is representative of the variation found in the jet-gap-jet fraction in bins of the kinematic variables of interest.

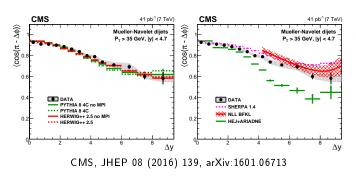

#### Proton selection



- At least one proton on either side.
- Track-impact point cuts (x, y) based on acceptance studies. For vertical RPs, 0 < x < 20mm and 8 < |y| < 30mm, for horizontal RPs, 7 < x < 25mm and |y| < 25mm.
- Proton fractional momentum loss is  $\xi_p(\text{RP}) < 0.2$  and four-momentum transfer square is  $0.025 < -t < 4 \text{ GeV}^2$ . Based on acceptance studies + validity of optical functions.
- To suppress beam bkg contribution (pileup+beam halo), additional cut  $\xi_P(PF) \xi_P(RP) < 0$ , where  $\xi_P(PF) = \frac{\sum_i \xi_i \pm p_z, i}{\sqrt{s}}$  is the proton fractional momentum loss reconstructed with PF candidates of CMS. The  $\pm$  is the sign of the intact proton  $\eta$ .

A total of 336 and 341 events in sector 45 and sector 56, respectively, satisfy the above selection requirements + dijet selection requirements.

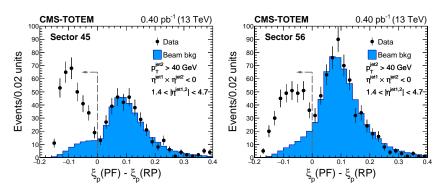
#### Proton wavefunction in x and $Q^2$




**Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)**: Evolution in  $Q^2$  (resummation of  $\alpha_s^n \ln^n(Q^2/Q_0^2)$ )  $\to$  Resolving "smaller" partons with larger  $Q^2$  at fixed  $x_{\rm Bj}$ .

**BFKL**: Evolution in  $x_{\rm Bj}$  (resummation of  $\alpha_{\rm s}^n \ln^n(1/x_{\rm Bj})$ )  $\to$  Larger parton densities at smaller  $x_{\rm Bj}$  at fixed  $Q^2$ .

Very important to understand parton densities QCD evolution in  $(x, Q^2)$  plane; need as many experimental probes of QCD evolution effects as possible!


## Probing BFKL dynamics



Some standard probes of BFKL dynamics:

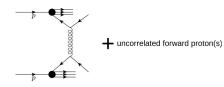
- $ightharpoonup \Delta \phi$  decorrelations in Mueller–Navelet jets (Plot above)
  - Exclusive vector meson production  $(\gamma^*p o Vp)$  at large  $W_{\gamma p}$ , with  $V=J/\psi, \psi(2s), \Upsilon, \ldots$
- $lackbox{ PDFs at small-$x_{
  m Bj}$ at small momentum transfer $Q^2 > \Lambda_{
  m QCD}^2$.}$

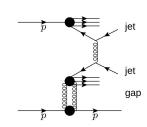
It is generally difficult to isolate BFKL from other higher-order effects, such as DGLAP evolution. Processes where DGLAP evolution is expected to be suppressed may aid to unambiguously identify BFKL dynamics.



Estimated with event-mixing: inclusive dijet events paired with protons in zero-bias sample.

Requirement  $\xi_P(PF) - \xi_P(RP) < 0$  indicated by dashed line. Region  $\xi_P(PF) - \xi_P(RP) > 0$  is dominated by beam bkg contributions  $\to$  Used as control region to estimate residual beam bkg in  $\xi_P(PF) - \xi_P(RP) < 0$ .


Beam background contributes 18.7 and 21.5% for protons in sector 45 and 56 in  $\xi_P(PF) - \xi_P(RP) < 0$ , respectively.


## Background contributions to p-gap-jet-gap-jet events

Inclusive dijet production + uncorrelated proton from residual pileup or beam halo activity (estimade from data).

Standard diffractive dijet production with no central gap (p-gap-jet-jet topology):

 $\rightarrow$  Fluctuations on particle multiplicity can lead to gaps. Needs to be subtracted (NBD and ES methods).



