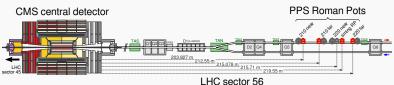
New physics results with the CMS Precision Proton Spectrometer

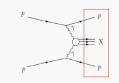

K. Shchelina¹ on behalf of the CMS Collaboration

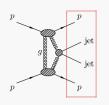
¹INFN Torino

DIS 2021

Intro

- Precision Proton Spectrometer (PPS): forward proton spectrometer designed for operation in regular, high-intensity LHC runs
- Collected > 110 fb⁻¹ in Run 2, extending forward coverage of CMS on both sides of IP5

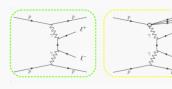



- \blacktriangleright Unique opportunity to probe $\gamma\gamma$ and gluon-gluon collisions at hadron collider
- ► In central exclusive production (CEP) events, addition of PPS allows to reconstruct the full 13 TeV collision energy
- For details of reconstruction, see talk by Fabrizio Ferro

PPS physics motivation

Primary goal: study central exclusive production in $\gamma\gamma$ or gg collisions

- proton tag advantages:
 - closure of event kinematics
 - effective background rejection
 - reduced theory uncertainties related to proton dissociation


Opportunity to access a variety of topics: from diffraction to BSM physics

- anomalous couplings with high sensitivity
- new resonances in very clean final state
- proton structure (generalized parton distributions)

Dilepton production $\gamma\gamma \to \ell^+\ell^-$ with proton tag

(Semi-)exclusive dilepton production via photon exchange in proton-proton collisions

Final state: one (two) forward protons + dilepton

Physics:

- ► Look for "simple" SM process, explore correlation between kinematics of the dilepton system and that of the forward proton(s)
- ▶ Consider both double and single-tagged $\ell^+\ell^-$ events
- ▶ Validation of the optics and alignment
- lacktriangle Observation of the first proton-tagged $\gamma\gamma$ collisions at the EWK scale

Strategy

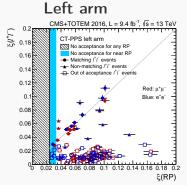
Key proton variable: relative momentum loss $\xi = \Delta p/p$

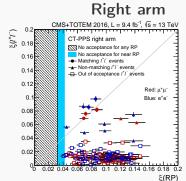
Look for correlation between

- direct proton ξ measurement by PPS
- dilepton system measured by central subdetectors of CMS

 ξ can be derived from lepton p_T and η :

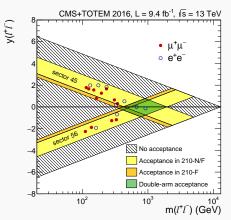
$$\xi^{\pm} = rac{1}{\sqrt{s}} imes (
ho_{T}(\ell_{1})e^{\pm\eta(\ell_{1})} +
ho_{T}(\ell_{2})e^{\pm\eta(\ell_{2})})$$


 $(\pm \eta$ solutions correspond to the protons in the +z and -z direction.)


Expected backgrounds:

- will fake signal by overlapping with pileup or beam halo protons
- can be largely suppressed by selection cuts

Final result: ξ correlations

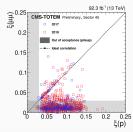

- 20 events with matching kinematics $(12\mu^+\mu^- + 8e^+e^-)$
- $\mu^+\mu^-$ background: 1.49 \pm 0.07 (stat) \pm 0.53 (syst)
- \bullet e^+e^- background: 2.36 \pm 0.09 (stat) \pm 0.47 (syst)

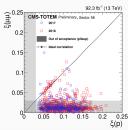
Combined significance:

$$> 5.1\sigma$$

arXiv:1803.04496 JHEP07(2018)153

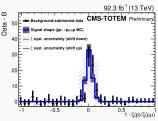
Signal candidates properties




- Dilepton M and Y consistent with single arm acceptance
- No double-tagged events observed, consistent with SM cross section*efficiency

Mass extends up to \sim 900 GeV – first tagged $\gamma\gamma$ collisions at EWK scale!


Dilepton analysis with 2017 + 2018 data


 \blacktriangleright 92.3 fb $^{-1}$ of remaining Run 2 data calibrated and analyzed, $\mu\mu$ channel shown

Excellent reconstruction and MC performance ⇒ full dataset ready for any Run 2 analysis

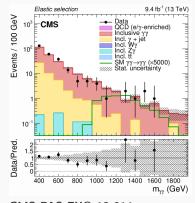


CMS-DP-2020-047

Exclusive di-photon production at high mass

Search for BSM contributions to the light-by-light scattering cross section

Final state: two forward protons + diphoton

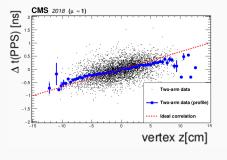

Physics:

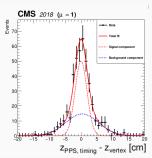
- ightharpoonup CMS and ATLAS reported the observation of LbL event candidates for diphoton masses of a few GeV. The $m_{\gamma\gamma}$ spectrum above 350 GeV is explored for the first time at a hadron collider in this analysis
- ► Challenges: low process cross-section (few fb for elastic SM production), large theoretical uncertainties (survival probability, particles in loop)

¹Phys. Rev. Lett. 123 (2019) 052001, Phys. Lett. B 797 (2019) 134826

Di-photon mass spectrum

- 2016 data, 9.4 fb^{-1}
- $m_{\gamma\gamma} > 350 \text{ GeV}, p_T > 75 \text{ GeV}, 1 |\Delta\varphi|/\pi < 0.005$
- Di-photon mass spectrum before PPS proton requirement
- Main background from inclusive $\gamma\gamma$ and inclusive $\gamma+jet$

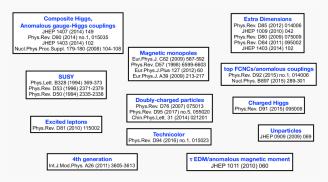

CMS-PAS-EXO-18-014


- No events in signal region found to contain a pair of forward proton tracks, expected background 0.23^{+0.08}_{-0.04}
- a 95% confidence level observed frequentist upper limit of 3.0 fb is quoted on the LbyL cross section within the fiducial region

Run 2 timing performance

- In addition to proton ξ , PPS measures time of proton arrival
- Vertex resolution can be obtained from the difference of proton arrival times in two arms

$$z_{PPS} - z_{vertex} = (c/2 * \Delta t_{PPS}) - z_{vertex}$$



- Vertex resolution of 1.87 \pm 0.21 cm (\sim 60 ps)
- Resolution dominated by the single-arm detector and electronics performance
- \bullet Expected to degrade by $\sim 15-25$ ps between this low pileup data and the end of Run 2

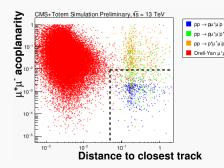
PPS in future analyses

A myriad of accessible topics – here are few examples:

Run 3 prospects:

- Goal to acquire 300 fb^{-1} of data
- New opportunities with introduction of PPS in HLT trigger: for both automatized calibration and physics
- Upgrade of PPS timing system to reach 30 ps resolution additional tool to combat background

Summary


- Public PPS results based on 2016 data: first observation of tagged $\gamma\gamma$ collisions at the EWK scale, first collider limit on 4-photon AQGC
- Extensive work on full Run 2 analyses, to be released very soon
- Exciting prospects for Run 3: benefit from acquired Run 2 experience, more data, more powerful tools for signal extraction

Backup

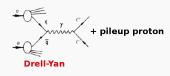
Event selection

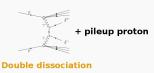
- Pair of opposite sign leptons with $p_T(\ell) > 50$ GeV and $M(\ell\ell) > 110$ GeV (above Z-peak)
- ► To suppress background:
- Veto additional tracks around dilepton vertex (within 0.5mm)
- Require back-to-back leptons:

$$|1 - \Delta\phi(\mu^+\mu^-)/\pi| < 0.009$$
 (<0.006 for e⁺e⁻)

Signal candidates required to have $\xi(\ell\ell)$ and $\xi(proton)$ matching within 2σ of resolution

Data-driven background estimate

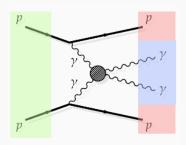

Use sample of pileup protons from Z-peak events (data)


Drell-Yan contribution:

- count number of Z-peak events with $\xi(\ell\ell)$ and $\xi(\operatorname{proton})$ correlated within 2σ
- use MC to extrapolate to the signal region

Double-dissociative contribution:

 mix double-dissociative simulated events (LPAIR) and protons from data to derive number of matching events



Total number of expected matching background events:

$$\mu^{+}\mu^{-}$$
: 1.49 \pm 0.07 (stat) \pm 0.53 (syst) $e^{+}e^{-}$: 2.36 \pm 0.09 (stat) \pm 0.47 (syst)

PPS for signal extraction: the principle

- Since the process is exclusive, the energy lost by the protons in the interaction goes into producing the diphoton system
- PPS measures fractional proton momentum loss ξ.

- \Rightarrow Two independent ways to derive diphoton M and y
 - a) measure diphoton kinematics directly with CMS
 - **b)** Use $\xi = \frac{p_{in} p_{final}}{p_{in}}$ to predict diphoton M and y from energy conservation:

$$M(VV) = \sqrt{s}\sqrt{\xi(p1)\xi(p2)}$$
 $y(VV) = \frac{1}{2}\ln(\xi(p1)/\xi(p2))$

For signal events a) and b) will be the same within resolution, for background just random correlation.