Measurement of charged-particle production in single diffractive proton-proton collisions with the STAR detector

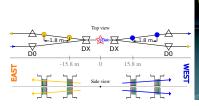
Leszek Adamczyk

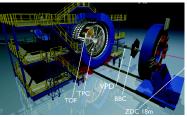
AGH - UST Cracow On behalf of STAR Collaboration

Supported in part by:

Single diffractive (SD) dissociation

 The total p + p → p + X cross section is large and not well experimentally and theoretically separated from other processes.


- Previous analyses mainly based on rapidity gaps:
 - Not able to fully distinguish between the SD process, double dissociation
 (DD: p+p → X + Y) and central diffraction (CD: p+p → p + X + p) partners and the tail of non-diffractive (ND) contributions
 - No direct access to the underlying dynamics:
 - \bullet -t squared four momentum transfer
 - ξ fractional energy loss of the intact proton ($\xi = M_X^2/s$)
- Only few measurements with proton tagging at ISR, SPS and LHC
 - Suppression of DD,CD and ND processes.
 - Direct access to t and ξ .
 - \bullet Only UA4 at $\sqrt{s}=$ 546 GeV provides information on the fragmentation of the system X.


Motivations for SD measurement with STAR at $\sqrt{s} = 200 \text{ GeV}$

- Better understand a significant part of total inelastic pp cross section
- Improve understanding of the low Bjorken-x region of proton structure
- Measure fragmentation and hadronization properties of proton diffractive excitation
- Better interpretation of cosmic ray air showers

Experimental setup

- Intact final state proton is scattered through a small angle of typically 2 5 mrad. Proton is measured in the Roman Pot (RP) detector at 16 m from the IP, the RP was placed at 35 mm from the beam in standard RHIC run of $\beta^* = 10$ m optics
- Other proton dissociates to produce a multi-particle hadronic system X. Charged particles with $p_T > 0.2$ GeV and $|\eta| < 1.0$ are measured in Time Projection Chamber (TPC) allowing determination of the primary vertex position and Particle Identification (PID) through dE/dx measurement.
- Trigger: Coincidence of the signal in RP with Time of Flight (TOF) activity and veto on inner part of Beam-Beam Counter (BBC) and Zero Degree Calorimeter (ZDC) on the scattered proton side. Inner part of BBC covers pseudorapidity range of $3.3 < |\eta| < 5.2$

Principles of the measurement

- Measure tracks with $p_T > 0.2$ GeV and $|\eta| < 0.7$ in TPC to get:
 - Charged particle distributions:

$$\frac{1}{N}\frac{dN}{dn_{\rm ch}}, \qquad \frac{1}{N}\frac{1}{2\pi p_{\rm r}}\frac{d^2N_{\rm ch}}{d\bar{\eta}dp_{\rm r}}, \qquad \frac{1}{N}\frac{dN_{\rm ch}}{d\bar{\eta}}$$

in $2 \le n_{\rm ch} \le 8$ fiducial region. $\bar{\eta}$ defined with respect to intact proton direction.

• Identified particle ratios (based on dE/dx):

$$\pi^+/\pi^-$$
, K^+/K^- , p/\bar{p} , $(K^++K^-)/(\pi^++\pi^-)$

- Primary vertex position.
- Matching with ToF hits to ensure selection of only in-time TPC tracks
- Measure track position and local angle at RP to get the proton momentum and thereby:

- RP alignment based on elastic scattering events:
 - Physics Letters B 808 (2020) 135663
- TPC/TOF reconstruction efficiency obtained through embedding of single particle MC events into randomly triggered collision data:
 - Journal of High Energy Physics 7 (2020) 178

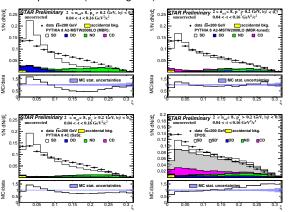
Monte Carlo Generators

- PYTHIA 8
 - Diffractive cross sections parameterized based on the exchange of the Pomeron with trajectory $\alpha(t) = \alpha(0) + \alpha' t$, assuming Regge theory formalism.

$$rac{\mathrm{d}^2\sigma}{\mathrm{d}\xi\mathrm{d}t}\propto\left(rac{1}{\xi}
ight)^{lpha(0)}\mathrm{e}^{\mathrm{B}t}, \quad B(\xi)=B_0-2lpha'\ln\!\xi$$

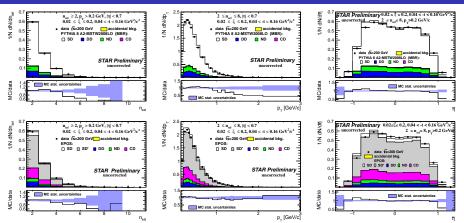
- Diffractive cross sections arbitrarily suppressed at large values of $\xi > 0.1$
- Lund (longitudinal excitation) string model for hadronization
- Main samples: C4 tune embedded into collision data:
 - $\alpha(0) = 1.0$, $\alpha' = 0.25 \text{ GeV}^{-2}$ (Schuler and Sjöstrand model)
 - SD for unfolding; CD, DD, ND for background subtraction
- Additional samples for results comparison:
 - PYTHIA8 A2 tune : α (0) = 1.104, α' = 0.25 GeV $^{-2}$ (MBR model)
 - \bullet As above but without suppression at large values of $\xi >$ 0.1 (MBR-tuned)
 - HERWIG 7.1 (soft tune) with alternative cluster hadronization model
 - EPOS (LHC tune) with alternative (color exchange) string model
 - EPOS predicts a very large contribution of the forward protons well separated in rapidity from other final state particles from non-diffractive events. Therefore EPOS prediction is separated into:

EPOS-SD : with SD diffractive flag from generator


 ${\sf EPOS\text{-}SD'}: non\text{-}diffractive flag but only proton produced from beam remnant}$

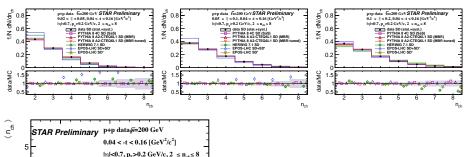
EPOS-ND: other events with non-diffractive flag

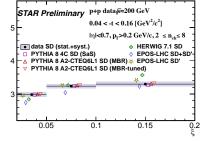
Background


- Accidental background random overlap of signals from two different collisions estimated using the randomly triggered collision data: below 1% for $\xi > 0.02$ but above 10% at $\xi < 0.02$
- Single source background originating from DD, CD and ND events determined using PYTHIA 8 (MBR) and EPOS-LHC expectation (excluding SD')

- PYTHIA 8 A2 (MBR) fails to describe the shape of ξ
- PYTHIA 8 A2 (MBR-tuned) agrees better with the data
- PYTHIA 8 C4 (SaS) predicts much smaller DD contribution vs. MBR
- EPOS-LHC shows a dominant contribution of non-diffractive (SD')

Final results limited to $0.02 < \xi < 0.2$ and provided in three ξ ranges.

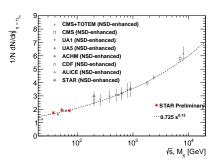

Detector level control plots

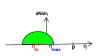


- EPOS-LHC very well describes the data
- ullet All PYTHIA 8 models predict too soft p_T spectra and too small charged particle multiplicities

Results: Charged particle multiplicities

Data corrected using iterative Bayesian unfolding



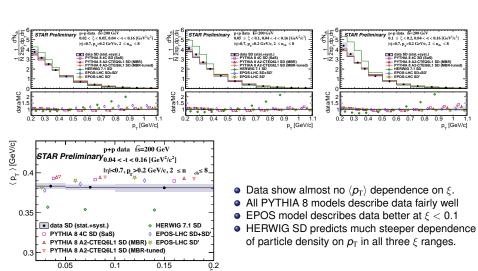

- Data exhibit an expected increase of the $\langle n_{\rm ch} \rangle$ with ξ due to the larger diffractive masses probed at increasing ξ in SD process
- The shapes of the measured distributions are reproduced reasonably well by all PYTHIA 8 models

Results: Comparison to non-single diffraction

Test similarity between the dissociation of a diffractively produced system of mass M_X and the hadronization of the system resulting from non-diffractive pp collisions at $\sqrt{s} \approx M_X$

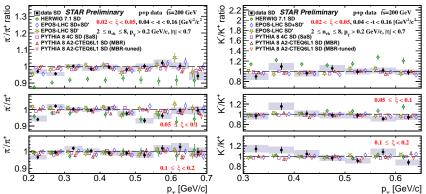
ξ range	$\langle M_X \rangle$	$\eta_{\it m}$	f _{extr}
$0.02 < \xi < 0.05$	37.53 GeV	-1.67	0.80
$0.05 < \xi < 0.1$	53.52 GeV	-1.31	0.84
$0.1 < \xi < 0.2$	72.71 GeV	-1.01	0.83

Particle density should be compared at mid-rapidity (η_m)


- $\eta_m = -\ln\left(\sqrt{s}/M_X\right)$ (SD) and $\eta_m = 0$ for non-single diffractive (NSD)
- Use PYTHIA 8 model to extrapolate particle density from η fiducial region to η_m a to account for $n_{\rm ch}=$ 1 events.

Preliminary STAR SD measurements show similarity of charged particle densities at midrapidity between SD and NSD enhanced measurements

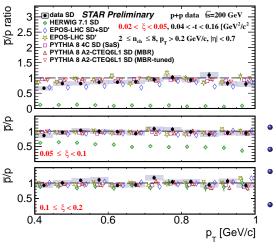
Other measurements: see Eur. Phys. J.C74(2014) 3053 and references therein.


Results: Charged p_T momenta in three ξ regions

Observable sensitive to p_{T} kicks during string(cluster) breaking in fragmentation process

Results: π^-/π^+ and K^-/K^+ ratios

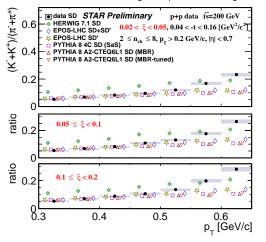
Charge, isospin and baryon number conservation predicts that anti-particle to particle ratios tend to unity in mid-rapidity if fragmentation is the dominant source of particle production



- Ratios in all three ξ ranges are consistent with unity with no p_T dependence
- MC models agree with data (except HERWIG SD)
- HERWIG SD, in the first ξ range predicts 10% excess of π⁺ over π⁻ and predicts 15% excess of K⁻ over K⁺. Also large excess of p over p̄ is predicted (see next slide).

Results: \bar{p}/p ratio

- Observable sensitive to the baryon number transfer from forward to mid-rapidities in pp scattering
- At RHIC ($\sqrt{s} = 200$ GeV) \bar{p}/p is measured to be 0.8 (in good agreement with PYTHIA 8 prediction) for ND



- Naively baryon number transfer in SD should be twice smaller compared to ND $(\bar{p}/p > 0.9)$
- PYTHIA 8 prediction for SD at $\sqrt{s}=$ 200 GeV is 0.95 independently on ξ and $p_{\rm T}$
- Data shows small ξ and $p_{\rm T}$ dependance. In first ξ range $\langle \bar{p}/p \rangle = 0.75$ 3 σ below PYTHIA 8 prediction.
- HERWIG SD shows large ξ dependance with large disagreement with data.
 Net baryon appears always close to rapidity edge (η_{max}) (backward baryon transfer).

Results: $(K^{+} + K^{-})/(\pi^{+} + \pi^{-})$ ratio

Observable sensitive to the strangeness production in fragmentation process

- The ratio increases from 0.05 at $p_{\rm T}=0.3$ GeV to 0.22 0.25 at $p_{\rm T}=$ 0.65 GeV. The slope of the $p_{\rm T}$ dependence significantly increases at $p_{\rm T}=$ 0.5 GeV in all three ξ intervals.
- PYTHIA 8 and EPOS-LHC agree very well with data at $0.3 < p_T < 0.5$ GeV but do not expect a change of the slope of p_T dependence at $p_T > 0.5$
- \bullet HERWIG SD predicts almost twice larger value independently from $\rho_{\rm T}$

Preliminary STAR results for $(K^+ + K^-)/(\pi^+ + \pi^-)$ ratio in SD suggest that $s\bar{s}$ suppression in fragmentation process (factor 0.2 in PYTHIA 8) is too strong in diffractive system. Significant $p_{\rm T}$ dependence suggests that $p_{\rm T}$ kicks during string(cluster) breaking producing $s\bar{s}$ is larger compared to $u\bar{u}$ or $d\bar{d}$ production.

Summary

- STAR performed a measurement of the inclusive single diffractive dissociation process $p+p \to X+p$ at $\sqrt{s}=200$ GeV
- The final state protons are directly reconstructed greatly reducing backgrounds from Non-Diffraction and Double Diffraction compared to previous analyses based on rapidity gaps.
- Inclusive and identified charged-particle production in Single Diffractive process has been measured.
- Significant differences are observed between the measured distributions of ξ and Monte Carlo model predictions. Among the models considered, EPOS-LHC and PYTHIA (MBR) without suppression of diffractive cross sections at large ξ provide the best description of the data.
- Similarity between the dissociation of a diffractively produced system of mass M_X and the hadronization of the system resulting from non-diffractive pp collisions at $\sqrt{s} \approx M_X$ reported for the first time by the UA4 Collaboration, was confirmed with much better precision.
- π⁻/π⁺ and K⁻/K⁺ production ratios are close to unity and consistent with most of model predictions except for HERWIG 7.1 SD.
- \bar{p}/p production ratio shows a significant deviation from unity in the 0.02 < ξ < 0.05 range indicating a non-negligible transfer of the baryon number from the forward to the central region.
- \bullet \bar{p}/p ratio suggests that some contribution from backward(beyond mid-rapidity) baryon transfer might be necessary to explain the data
- $(K^+ + K^-)/(\pi^+ + \pi^-)$ ratio suggests that $s\bar{s}$ suppression in fragmentation process (factor 0.2 in PYTHIA 8) is too strong in diffractive system and p_T kicks during string(cluster) breaking producing $s\bar{s}$ is larger compared to $u\bar{u}$ or $d\bar{d}$ production.

Additional material

