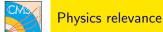
First measurement of the forward rapidity gap distribution in pPb collisions at 8 TeV in CMS

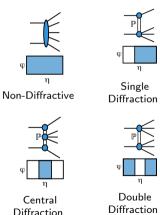
Dmitry Sosnov

Petersburg Nuclear Physics Institute NRC KI, Gatchina, Russia for the CMS collaboration

XXVIII International Workshop on Deep-Inelastic Scattering and Related Subjects, Stony Brook, NY, USA April 14, 2021

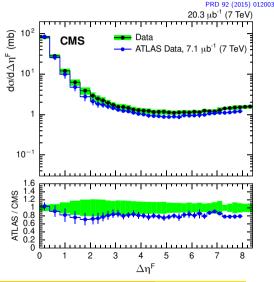


The talk is based on recent preliminary CMS results:


CMS collaboration, First measurement of the forward rapidity gap distribution in pPb collisions at $\sqrt{s_{\rm NN}}=8.16~{\rm TeV}$

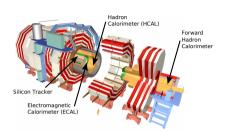
CMS-PAS-HIN-18-019, CERN, June 2020

Types of processes:


- Diffractive collisions are defined as special inelastic collisions in which no quantum numbers are exchanged between colliding particles
- A diffractive process is characterized by a Rapidity Gap, which is caused by t-channel pomeron(s) exchange.
- Most important problems of QCD which can be studied with diffraction:
 - Nature of the pomeron in QCD
 - Small-x problem and "saturation" of parton densities
- Cross sections of inelastic diffractive processes are very sensitive to nonlinear saturation effects, which get more important for scattering off nuclei.
- Diffraction of hadrons on nuclear targets at very high energies is also relevant for cosmic-ray physics.
- • The latest measurements on diffraction in pA were done by HELIOS with $\sqrt{s}=27$ GeV Z. Phys. C 49 (1991) 355

Prior measurements at the LHC in pp collisions

- Rapidity Gap (Δn) the rapidity regions free of final
- Forward Rapidity Gap (FRG, $\Delta \eta^{\rm F}$) distribution is one of the most inclusive way to study diffraction
- Until now only pp diffraction at LHC is observed
- FRG was studied with pp collisions data by ATLAS EPJC 72 (2012) 1926, CMS PRD 92 (2015) 012003



state particles

Tracker ECAL HF- HCAL HF+ -5 -4 -3 -2 -1 0 1 2 3 4 5 ¶

- ullet Silicon tracker: $|\eta| < 2.5$
- ullet ECAL and HCAL: $|\eta| < 3.0$
- Forward Hadron Calorimeter (HF): $3.0 < |\eta| < 5.2$

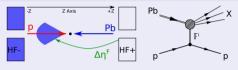
Calorimetry + tracking = Particle Flow (PF) objects

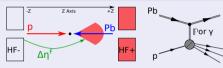
Triggers

- Minimum Bias (MB): Requires the presence of proton and lead beams and an energy of HF Tower higher then approximately 7 GeV in either of the HF calorimeters
- Zero Bias (ZB): Requires the presence of proton and lead beams in the CMS detector
- Analysis was done on Minimum Bias and Zero Bias was used for the cross section corrections

HF Towers

• HF has fine segmentation by η and ϕ into 432 HF Towers




Data and event topologies

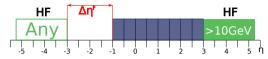
Data: CMS, pPb $\sqrt{s_{NN}} = 8.16 \text{ TeV}, 6.4 \ \mu\text{b}^{-1}$ (2016)

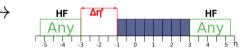
Lead dissociation

Proton dissociation

ullet The photon flux from the Pb is enhanced by a factor of $Z_{
m Pb}^2$ compared to that of protons

Compared to MC event generators


- HIJING v2.1
 - hard parton scatterings: perturbative QCD
 - soft interactions: string excitations
- EPOS-LHC: Gribov-Regge theory for the parton interactions; Gluon saturation phenomenological implementation
- QGSJET II-04 (generator level only): Gribov-Regge theory for the parton interactions; Gluon saturation via higher order pomeron-pomeron interactions


The generators do not include photon exchange processes

Selection of events with Forward Rapidity Gaps (FRG)

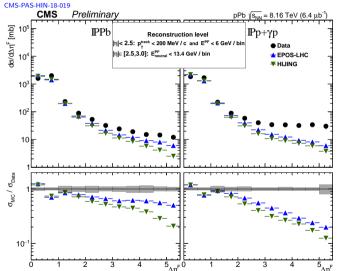
Data sample: Minimum Bias data.

Offline selection:

- At least one HF tower with energy at least 10 GeV
- Events with 0 or 1 vertex.

Definition of Rapidity Gap

- At least one HF tower with energy at least 10 GeV in HF opposite to FRG
- ullet In bins of 0.5 η
- For $|\eta| < 2.5$:
 - No track with $p_T > 200 \text{ MeV}$
 - Total energy of all PF candidates less then 6 GeV
- For $2.5 \le |\eta| < 3.0$:
 - Total energy of all PF hadronic candidates less then 13.4 GeV

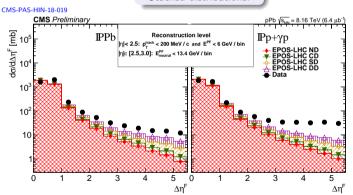

Correction to total inelastic cross section

Zero Bias data used to normalize to crossection of events with at least one track with $p_T>200$ MeV and eny energy in opposite HF

FRG cross section at detector level for $|\eta| < 3.0$

The Monte Carlo spectra are normalized to the total visible cross section of the data.

- For both topologies (IPPb and IPp) the spectra fall by a factor of over 50 between $\Delta \eta^F = 0$ and $\Delta \eta^F = 2$
- For $\Delta \eta^F > 2$ the spectra flatten off for both topologies
- The predictions of EPOS-LHC are closer to the data than those of HIJING
- For the IPp MC predictions are significantly below the data in the region $\Delta \eta^F > 2$ due to γp events



FRG cross section at detector level for $|\eta| < 3.0$

Contributions of different processes predicted by EPOS-LHC

Stacked distributions:

- Non-diffractive processes dominate at $\Delta \eta^F < 3.0$
- Extending the FRG acceptance would allow to be more sensitive to the diffractive processes
- ND: Non-Diffractive
- CD: Central Diffractive
- SD: Single Diffractive
- DD: Double Diffractive

"Diffraction enhanced" subsample: extending over HF region adjacent to FRG

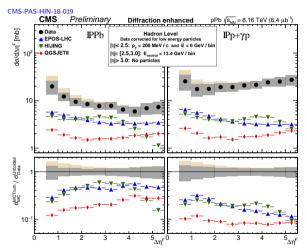
To extend FRG over the HF region (3.0 < $|\eta|$ < 5.2):

- ullet Data: weighting the original $d\sigma/d\Delta\eta^F$ spectra by the probability for the corresponding HF calorimeter to have no signal
- MC: No detectable particles at the HF acceptance

Weighting procedure

- \bullet We want to find the fraction of events without energy deposition at HF
- For the low energy part we normalize HF distribution of non-colliding bunch events to the leftmost part at full distribution
- This we do for each FRG bin separately on the ZeroBias data

Hadron level

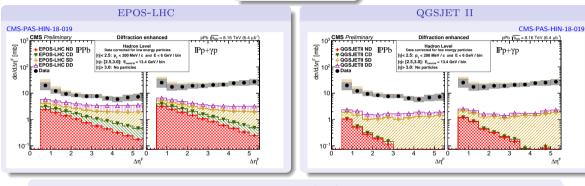

All our corrections correspond to following hadron level definition:

- Inelastic collision events
- FRG in the central region (the same as detector level):
 - In bins of 0.5 η
 - For $|\eta| < 2.5$:
 - No charged particles with $p_T > 200$ MeV
 - The total energy of all particles should not exceed 6 GeV
 - For $2.5 \le |\eta| < 3.0$:
 - The total energy of neutral hadrons should not exceed 13.4 GeV
- No detectable particles at the HF acceptance on the side of FRG

Hadron-level FRG cross section at diffractive enhanced subsample for $|\eta| < 3.0$

Those generators do not include photon exchange processes.

The Monte Carlo spectra are normalized to the total visible cross section of the data.


- ullet For the PPb topology case, (γ -exchange contribution should be negligible), predictions of EPOS-LHC is about a factor of 2 and QGSJET II a factor of 4 are below the data
- However for both of those generators the shape of the $\frac{d\sigma}{d\Delta\eta^F}$ spectrum is similar to that of the data
- \bullet The rapidity spectrum from the ${\rm HIJING}$ generator falls at large $\Delta\eta^F$ in contradiction to the data
- For the Pp case all the generators are more than a factor of 5 below the data
- This suggests a very strong contribution from γp events which is not yet implemented in the considered event generators

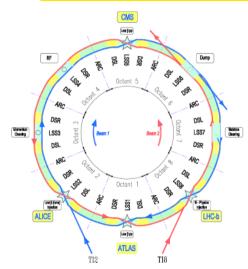
Contributions of different processes as predicted by EPOS-LHC and QGSJET II

Stacked distributions:

- ND: Non-Diffractive
- CD: Central Diffractive
- SD: Single Diffractive
- DD: Double Diffractive
- Transition to diffractive enhanced sample suppressed contribution of non-diffractive processes.
- The considered event generators do not fully describe the data.

Summary

- Forward rapidity gap distribution $\frac{d\sigma}{d\Delta\eta^F}$ from proton-lead collisions at the LHC ($\sqrt{s_{NN}}=8.16$ TeV) have been measured for the first time for both pomeron-lead and pomeron-proton topologies
- \bullet For the IPPb topology case, where the $\gamma\text{-exchange}$ contribution should be negligible:
 - Predictions of EPOS-LHC is about a factor of 2 and QGSJET II a factor of 4 are below the data
 - However for both of those generators the shape of the $\frac{d\sigma}{d\Delta\eta^F}$ spectrum is similar to that of the data
 - $ilde{}$ The rapidity spectrum from the <code>HIJING</code> generator falls at large $\Delta\eta^F$ in contradiction to the data
- For the IPp case:
 - The cross section of EPOS-LHC and QGSJET II are lower than data by more than a factor of 5
 - ightharpoonup This suggests a very strong contribution from γp events which is not yet implemented in the considered event generators
- These data may be of significant help in modeling ultrahigh-energy cosmic ray air showers

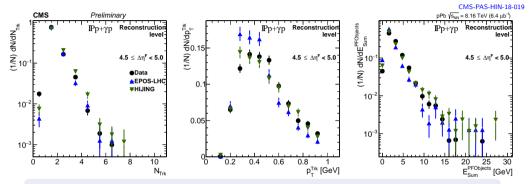

Thank you for attention!

Backup slides

LHC beams and collision modes

LHC beams

- Beam 1 circulates clockwise
- Beam 2 goes counter-clockwise


Collision modes

- During data taking beam direction was reversed.
- Pbp: beam 1 protons, beam 2 lead ions
- pPb: beam 1 lead ions, beam 2 protons

Comparison of $\mathbb{P}p$ and γp events

- To test the appropriateness of using these generators for the unfolding, distribution of:
 - Number of tracks,
 - p_T distribution of tracks
 - Sum of energy of all PF candidates

in a bin was studied

• For each $\Delta \eta^F$ bin, the distributions are in a good agreement.