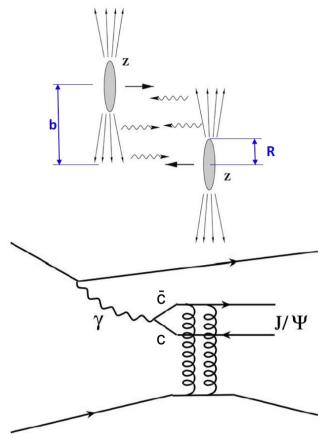
J/ψ Production in Ultra-Peripheral Heavy-Ion Collisions at STAR

W. Schmidke, BNL For the STAR Collaboration

DIS 2021 Stony Brook Univ. (virtual)

- Ultra-Peripheral Collisions (UPC) & e⁺e⁻ processes
- The STAR detector & UPC data selection
- UPC J/ψ in Au+Au
- UPC J/ψ in polarized p↑+Au

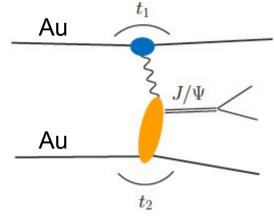
Ultra-Peripheral Collisions (UPC)

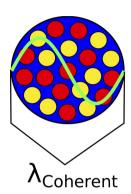

- UPC: b > 2R, hadronic interactions suppressed
- Large flux of photons coming from Weizsaecker-Williams:
- WW photon from one beam particle
 - → photoproduction on other beam particle
- \bullet e.g. J/ ψ production, sensitive to gluons:

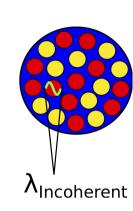
<u>AuAu:</u> gluon content of Au models UPC photon flux from Au &:

- STARlight: $\gamma+p\to J/\psi+p$ from HERA data $\Rightarrow \gamma+Au\to J/\psi+Au$ classical Glauber, some gluon shadowing
- Sartre: dipole model + bSat saturation see talk by T. Toll

pAu: gluon content of p

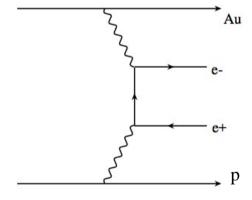

J/ψ asymmetry ∝ gluon GPD E^g; compare E^g parameterization




UPC processes in Au+Au

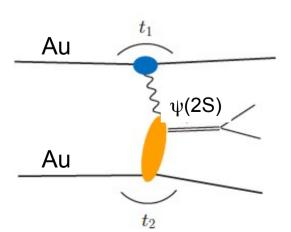
 $J/\psi \rightarrow e^+ + e^-$

- Photoproduction J/ ψ (m_{ee}~m_{J/ ψ}):
 - coherent, off nucleus, low p₊
 - incoherent, off nucleus, high p_T elastic $\gamma+p \rightarrow J/\psi+p$ inelastic $\gamma+p \rightarrow J/\psi+p+X$ (nucleon dissociation)

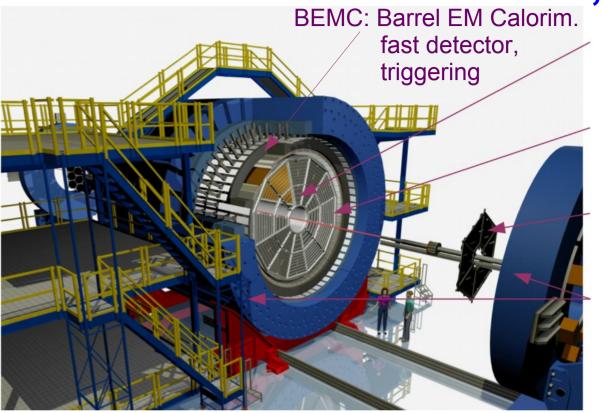


• QED 2γ (m_{ee} continuum):

$$\gamma + \gamma \rightarrow e^+ + e^-$$


Photoproduction ψ(2S), decays:

$$\psi(2S) \rightarrow e^{+} + e^{-} (m_{ee} \sim m_{\psi(2S)})$$


$$\psi(2S) \rightarrow J/\psi + X$$

 $J/\psi \rightarrow e^+ + e^- (m_{ee} \sim m_{J/\psi})$ (feeddown)

Statistics sensitive to only $\psi(2S)$ coherent

The STAR detector, data selection

TPC: slow detector, many bunch xings tracking & dE/dx

TOF: fast detector, triggering

BBC: forward scint. around beam

Magnet

ZDC: ±18m from IP

0° calorimeters, forward neutrons

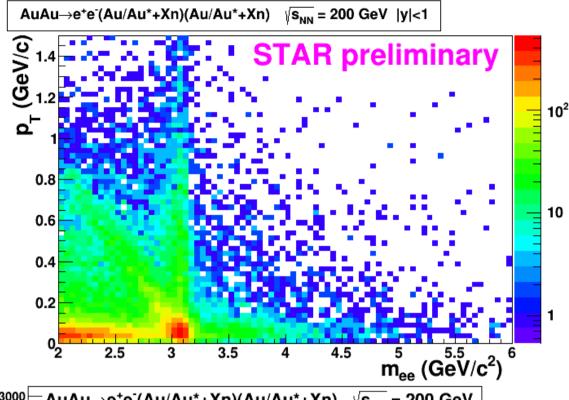
Trigger:

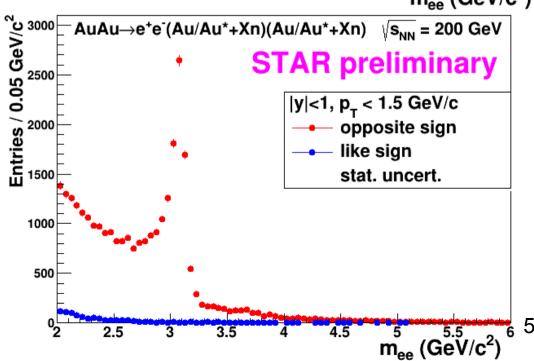
Back-to-back showers in BEMC

Data sets: 2015 p \uparrow Au, L = 140 nb⁻¹ 2016 AuAu, L = 12 nb⁻¹

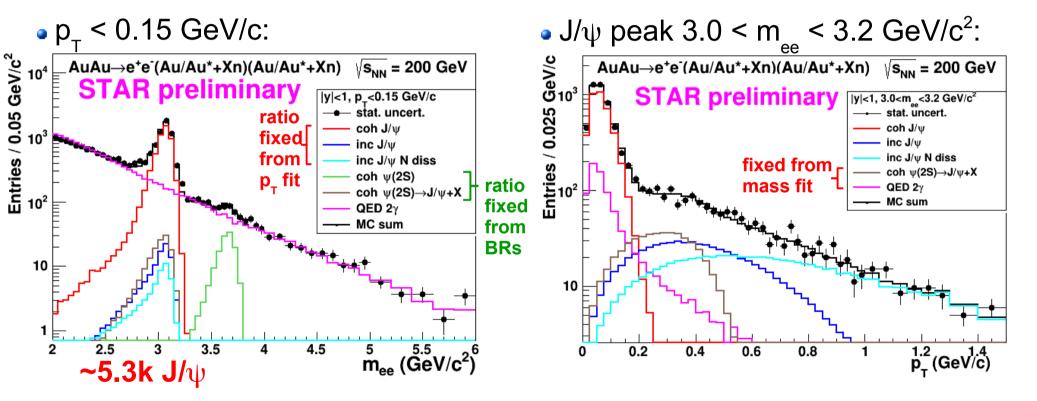
veto BBC (reject hadronic central collisions)

 Au+Au: BEMC 'active', also require 2-6 hits in TOF p↑+Au: reject nuclear breakup, veto ZDCs Offline selection:


- Reject high activity events (# TOF hits, # BEMC showers)
- 2 tracks match BEMC showers, vertex in the STAR center
- Tracks well reconstructed, dE/dx select ee, reject hadron pairs

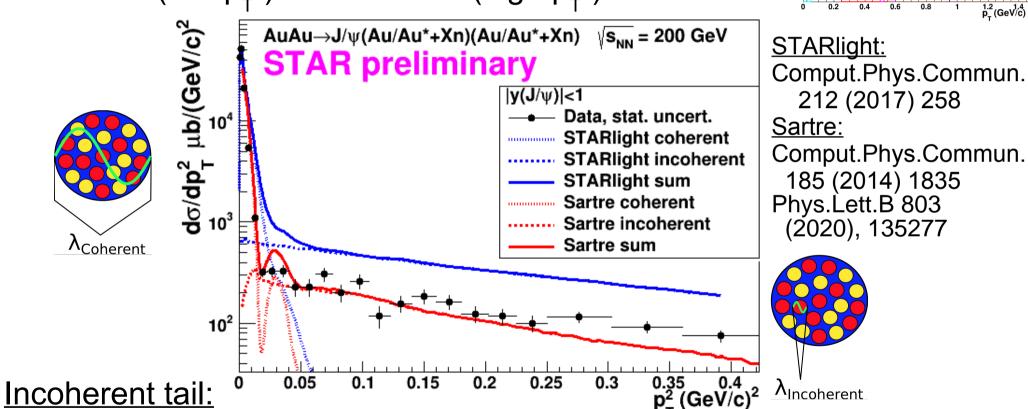

Au+Au: data features

- \bullet p_T vs. m_{ee} for opp. sign pairs:
- High stat. features clear:
 - coherent J/ ψ @ low p_T & rad. tail lower m_{ee}, higher p_T
 - incoherent J/ψ @ high p_¬
 - QED 2γ continuum @ low p₋


- Small like sign contamination, mostly @ low m_e
- Take as combinatoric bkg.: final distributions = opposite sign - like sign

UPC procs→data comparison: m

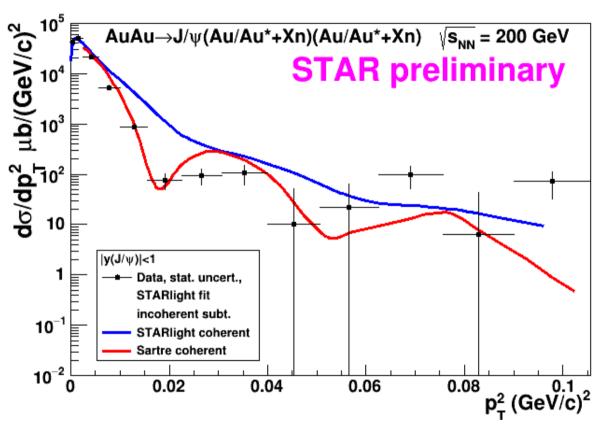
- UPC processes (slide 3) generated w/ STARlight, modifications:
- processes → STAR simulation → templates; fit sum to data

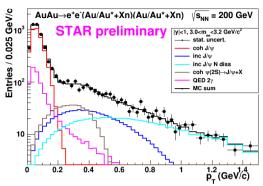


- Good description of data: VM peaks & rad. tails; 2γ shape ~3 orders mag. in σ J/ ψ p_{τ} coherent/incoherent components
- Use templates for: background subtractions, acceptance corrections

$J/\psi p_{-}^{2}$ |t| distribution

AuAu→e⁺e (Au/Au*+Xn)(Au/Au*+Xn) √s_{nn} = 200 GeV


- Subtract non-direct J/ ψ components (2 γ , feeddown)
- Cross section: $d\sigma/dp_{\tau}^{2}$ $(p_{\tau}^{2} \sim |t|)$
- 2 components clear, data & models: coherent (low p_τ²) & incoherent (high p_τ²)



- Data ~40% STARlight, simple model inadequate
- Sartre close in magnitude
- Highest p_T^2 data rise faster than models: inelastic $\gamma+p\to J/\psi+p+X$? or subnucleon fluctuations, see talk T. Toll

Coherent J/ ψ p₋²~|t| distribution

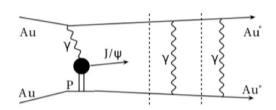
Also subtract: STARlight incoherent fit to data

- $d\sigma/dp_{\tau}^2 \sim 0$ for $p_{\tau}^2 > 0.1$ (GeV/c)²
- Total $\sigma = \int dp_{\tau}^2$

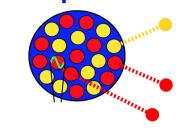
data: 219 \pm 5 (stat.) μ b

(scale uncert. ~10%)

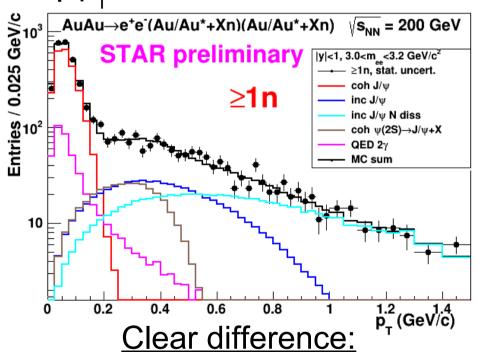
STARlight: 285 μb

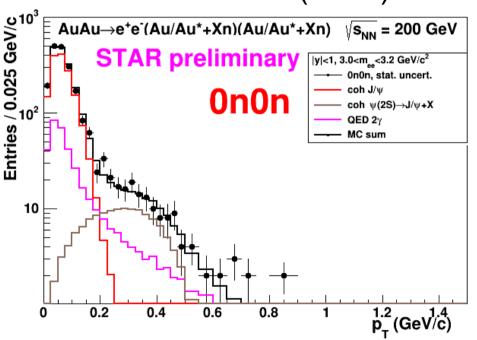

Sartre: 222 µb

- Data/STARlight ~25%: shadowing; lowest p_T² data fall steeper
- Sartre: good description magnitude & shape @ lowest p_T²
- Both models \sim data magnitude in higher p_{τ}^{2} tail
- Diffractive dips in Sartre \to smeared by UPC γ p_T in STARlight data do not distinguish


Nuclear dissociation ↔ J/ψ p₋

2 mechanisms nuclear dissociation


 Coulomb excitation: coherent & incoherent

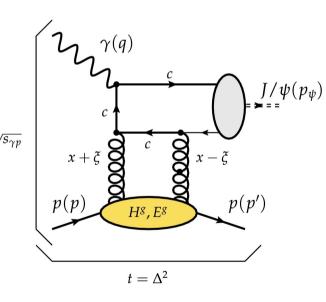


Incoherent w/ breakup:

- ZDCs each side: tag ≥1 neutron with ~ nucleon beam energy (100 GeV)
- J/ ψ p₋: at least 1 n either side vs. no neutrons either side (0n0n)

- High p_T incoherent usually produces neutron
- Relevant @ EIC: coherent/incoherent VM tagging compare models e.g. BeAGLE https://wiki.bnl.gov/eic/index.php/BeAGLE

Generalized Parton Distributions


- GPDs: Correlated quark momentum and helicity distributions in transverse space
- Access to: 3D imaging of proton q & g orbital angular momentum $L_a \& L_a$
- GPDs for each q, g: $H^{q,g}/E^{q,g}(x, \xi, t)$ conserve/flip nucleon helicity
- The GPDs E^{q,g} related to orbital angular momentum

Photoproduction w/ polarized protons

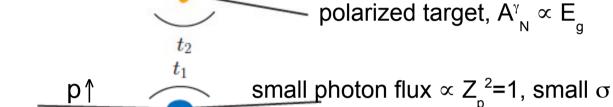
 Target particle transversely polarized proton p↑: J/ψ photoproduction $d\sigma/d\phi \propto 1 + A_{N}^{\gamma} \cos(\phi)$

 φ = azimuthal angle around beam axis

• A
$$_{
m N}^{\gamma}$$
 calculable with GPDs*:
$$A_N^{\gamma} \propto p_T \cdot \frac{{
m Im}(H^g \cdot E^{g*})}{|H^g|^2}$$

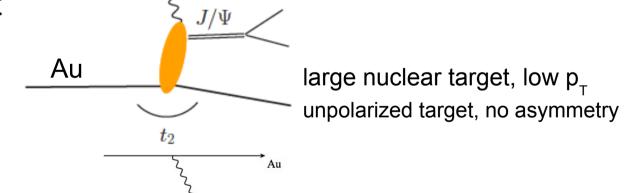
- $A_N^{\gamma} \propto E^g \Rightarrow$ sensitive to gluon orbital angular momentum L_g
- Unique RHIC capability: polarized protons, p↑Au run in 2015
- *J.P. Lansberg, L. Massacrier, L. Szymanowski, J. Wagner, Phys.Lett. B793 (2019) 33-40) 10

UPC processes in p↑+Au


Au

p↑

 $J/\psi \rightarrow e^+ + e^-$


 $\gamma p \uparrow J/\psi$ photoproduction:

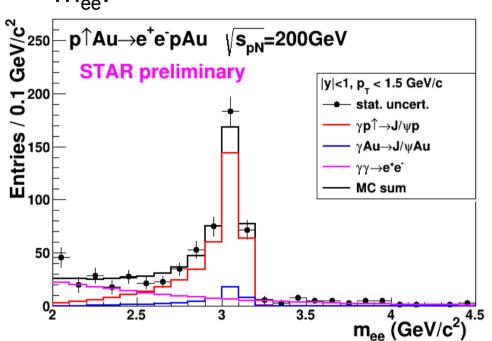
 Au photon source, p↑ target dominant process

 γ Au J/ ψ photoproduction:

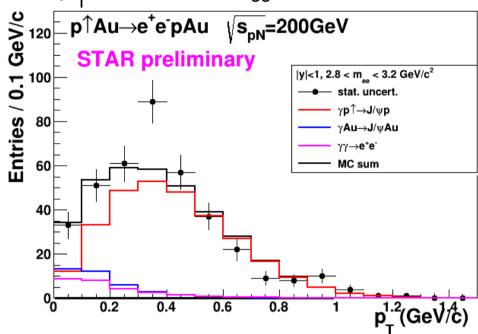
p↑ photon source, Au target

large photon flux $\propto Z_{\Delta II}^{2}$

small nucleon target, high p₊


Also:

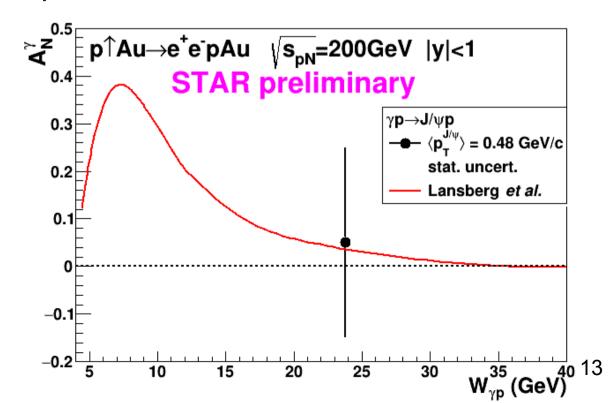
Continuum e⁺e⁻ QED 2-γ process


 ψ (2S) & inelastic incoherent processes seen in Au+Au: not discernible w/ statistics this data sample

UPC procs → p↑+Au data

- As for Au+Au fit sum MC templates to data:
- m_{ee}:

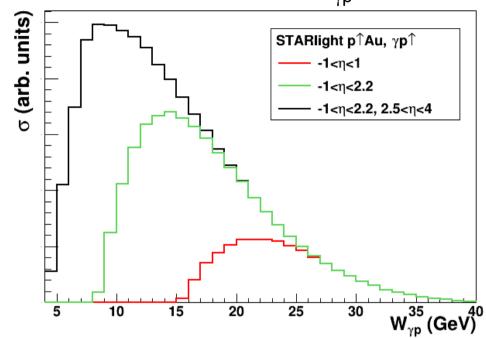
• p_{τ} for 2.8 < m_{ee} < 3.2 GeV/c²:

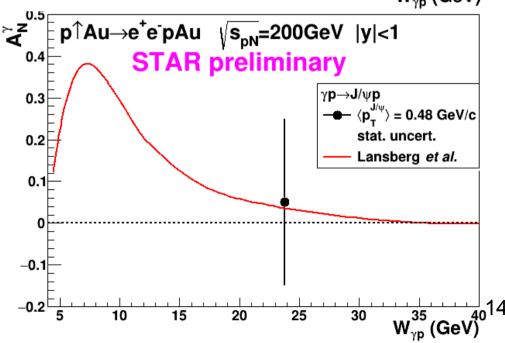

- Fit data to sum J/ψ (γp↑ & γAu) and QED 2γ
- m_{ee} : good description all features: J/ ψ peak location, width & rad. tail QED 2γ continuum
- p_⊤: γp↑ @ high p_⊤ ~ AuAu incoherent, γAu @ low p_⊤ ~ AuAu coherent
- Want A^γ_N for γp↑ process; γAu & 2γ background @ low p_T, cut out
- For A_N^{γ} : 0.2 < p_T < 1.5 GeV/c, purity = 92%

UPC J/ψ A^γ_N

- Signal range (2.8<m $_{\rm ee}$ <3.2 GeV/c 2 , 0.2<p $_{\rm T}$ <1.5 GeV/c), count events for: p↑ beam spin up/down, J/ ψ cos(φ) >0 or <0 (total 231 events)
- Correct for: purity = 92%, p↑ beam polarization ⟨P⟩ = 61.3%
- Result:

$$A_N^{\gamma} = 0.05 \pm 0.20$$
 @ $\langle W_{\gamma p} \rangle = 23.8$ GeV, $\langle p_T \rangle = 0.48$ GeV/c $W_{\gamma p} = \gamma p$ c.m. energy


- Null result, but proof of principle this measurement
- Lansberg et al. have curve \(\rho_T \) = 0.7 GeV/c,
 remade for 0.48 GeV: (J. Wagner, private communication)
- Can see what's needed to test such models:
 - higher statistics
 - lower W_{vp}
- Future @ RHIC?



Future: UPC J/ψ A^γ,

Soon: 2017 √s=510 GeV p↑+p↑, analysis starting, but W_{γp}~40 GeV

- These analyses used central STAR -1<η<1
- Already in STAR:
 iTPC tracking,
 endcap EMC triggering
 1<η<2.2
- Coming soon 2021+ STAR Forward Upgrade w/ tracking & calorimetry 2.5<η<4
- Future RHIC p↑+Au runs 2022+: measure @ lower W_{vp}
 - higher cross section (stats.)
 - larger A^{γ}_{N}
- Should be sensitive to e.g. Lansberg et al. models

Summary UPC J/ψ

UPC in 200 GeV Au+Au

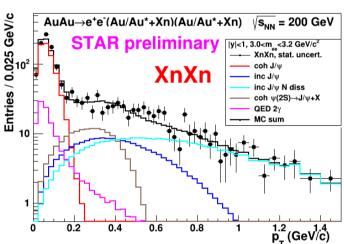
- Large statistics, J/ψ processes observed:
 coherent, incoherent elastic & inelastic; also QED 2γ
- Sartre model good description J/ψ coherent & incoherent elastic
- Future RHIC Au+Au runs 2023 & 2025:
 7× statistics & extended kinematic range

UPC in 200 GeV polarized p↑+Au:

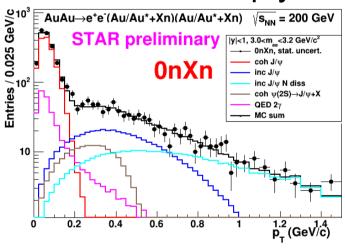
- Observed J/ψ in γp↑ & γAu, QED 2γ
- Proof of principle: measurement of A^γ_N ∝ E^g ~ gluon L_g
 null result here, but:
- Future RHIC p↑+Au run 2024:
 9× statistics & extended kinematic range ⇒ sensitive to A^γ_N

Promising outlook for future RHIC runs

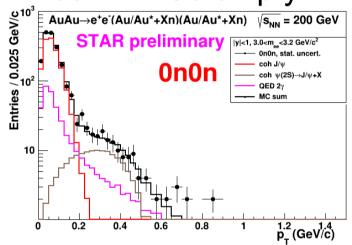
"The STAR Beam Use Request for Run-21, Run-22 and data taking in 2023-25",


- The STAR experiment. https://drupal.star.bnl.gov/STAR/starnotes/public/sn0755

Extras

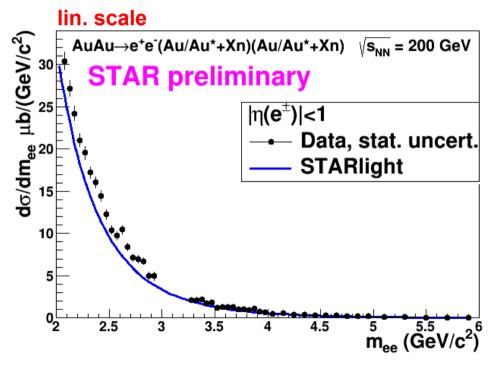

Au+Au: p_T for 3 ZDC categories

Shown w/ vertical scale same range 10³:


≥1n both ZDCs:

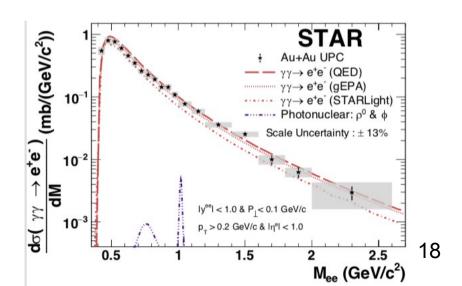
≥1n one ZDC, other ZDC empty:

• both ZDCs empty:

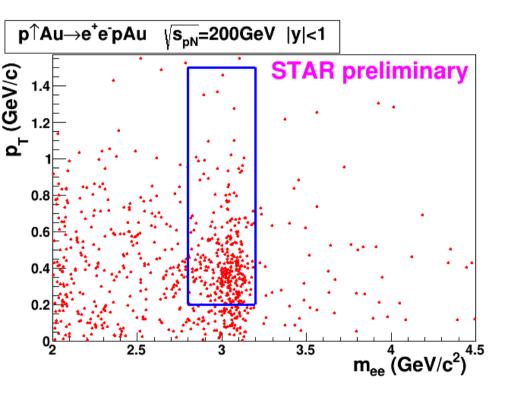


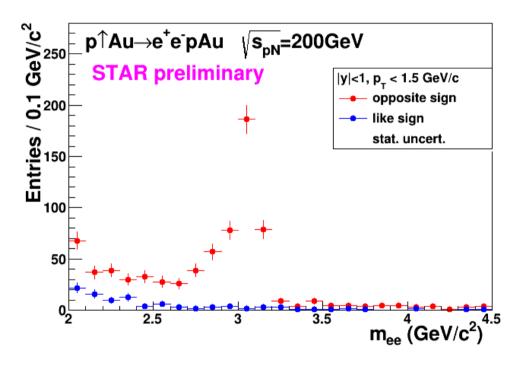
- Coherent peak always present & prominent regardless of neutrons: Coulomb dissociation
- Incoherent components only present when some neutrons
 - → fit consistent with zero for 0n0n


$\gamma + \gamma \rightarrow e^+ + e^-$


Free byproduct these data: $d\sigma/m_{ee}$ for $\gamma+\gamma\rightarrow e^{+}+e^{-}$

- STARlight: describes shape over 3 orders magnitude in σ
- Data σ ~15% > STARlight:
- STARlight: no e⁺e⁻ inside nucleus


 Improved QED calculations agree better with data, here for lower m_a;

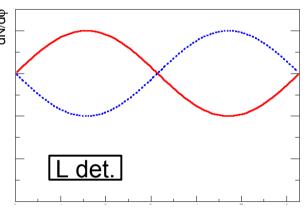


p+Au: p_T, m_{ee} distributions

• p_T vs m_{ee} for opp. sign pairs:

• m_{ee} dist. or opp./like sign pairs:

Box shows fiducial region
 For final distributions take (opposite-like) sign


for A^γ_N measurement: 2.8<m_{ee}<3.2 GeV/c², 0.2<p₊<1.5 GeV/c

Cross-ratio (for non-spin experts)

 If have one beam w/ spin up, and detectors left (L) and right (R) of beam, can measure asym. but would need to know relative acceptances of L/R detectors

L det. R det.

 If have one detector left of beam, and beam bunches w/ spin up (+) and down (-), can measure asym., but would need to know relative luminosities of +/- beams

 If have both L/R detectors and +/- bunches, acceptances and luminosities cancel out in the "cross-ratio"*:

$$\epsilon = \frac{\sqrt{N_{R+}N_{L-}} - \sqrt{N_{L+}N_{R-}}}{\sqrt{N_{R+}N_{L-}} + \sqrt{N_{L+}N_{R-}}}$$

*NIM 109 (1973) 41