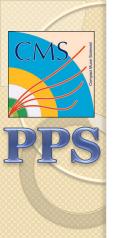
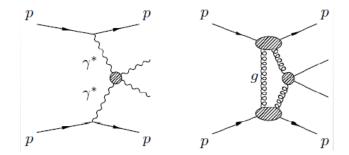


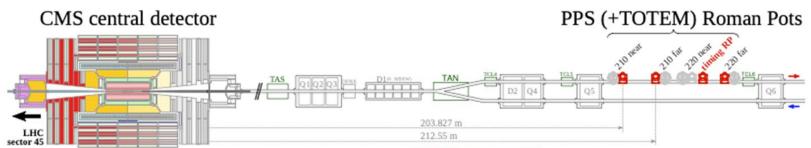
Proton reconstruction with the CMS Precision Proton Spectrometer and outlook for a near-beam spectrometer at HL-LHC


Fabrizio Ferro – INFN Genova

On behalf of the CMS collaboration

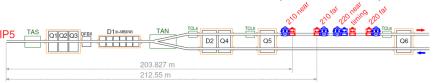


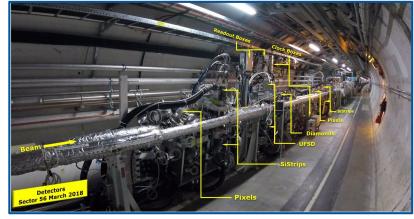
DIS2021, 12-16 Apr 2021, Stony Brook University, (Virtual World)

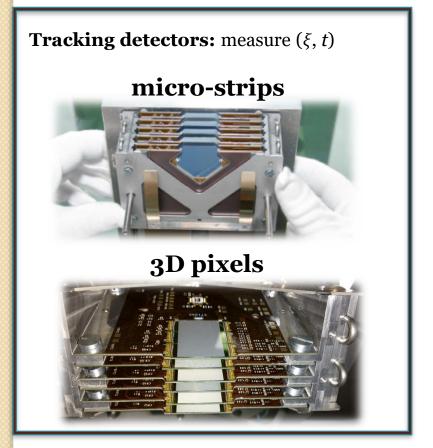


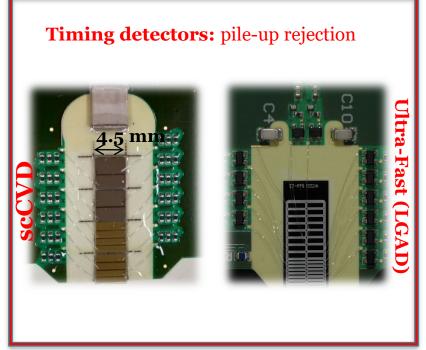
CMS Precision Proton Spectrometer

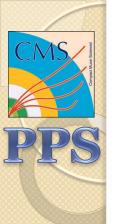
- ✓ Precise kinematics measurement of the scattered protons from IP5 (CMS) in a very forward region in LHC high luminosity conditions
- ✓ Study of physics events where at least one proton survives the interaction


✓ Protons with small momentum loss are bent and propagate through the LHC magnetic fields. Near-beam detectors far from IP to maximize low- ξ (ξ = Δ p/p) acceptance (detectors at ~1.5 mm from the beam, without disturbing LHC operations)

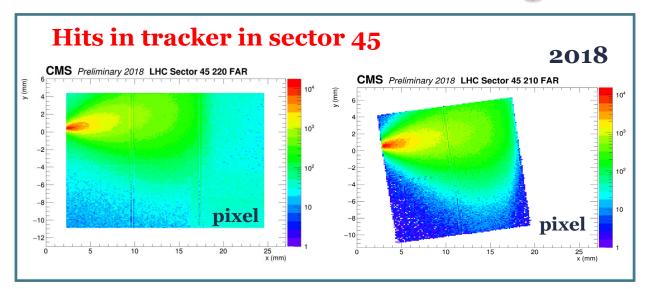

LHC sector 56




PPS experimental setup in Run2

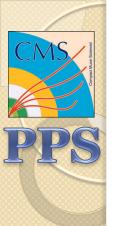


PPS detectors in horizontal pots TOTEM strip trackers in vertical ones (used also for PPS alignment)

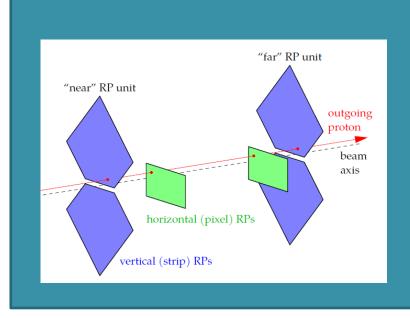


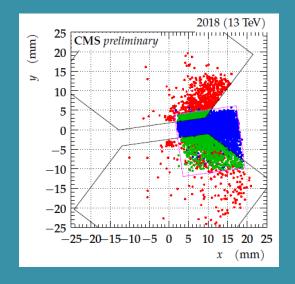
Proton reconstruction at a glance

Hit reconstruction

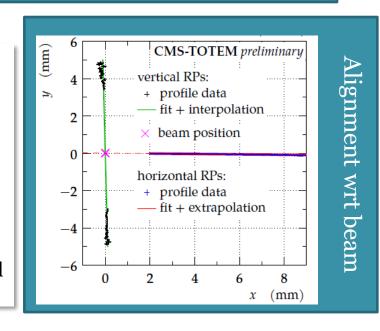

Local alignment (among detectors)

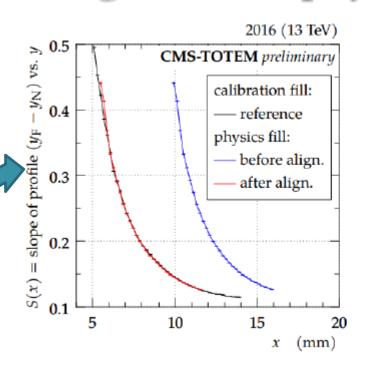
Track reconstruction

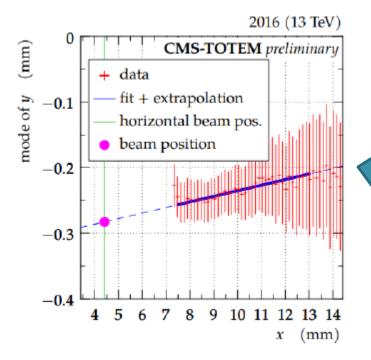


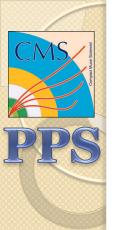

Global alignment (with beam)
Optics knowledge

• Proton kinematics $(\xi = \Delta p/p)$


Alignment in special runs


ocal Alignment


- Both TOTEM vertical and PPS horizontal RPs inserted
- Low luminosity → RPs inserted very close to beam → detector overlap
- TOTEM vertical RPs: elastic events → "absolute" alignment w.r.t. LHC beam
- Overlap area for relative alignment of horizontal RPs to verticals
- Method: minimise common track hit residuals in overlap area
- Beam position using extrapolation of vertical and horizontal track profiles



Alignment in physics fills

- Alignment of high luminosity fills to special alignment fills
- Horizontal alignment: uses specific common RP observables (patterns) in physics and alignment fills
- Alignment and physics fills: same optics required
- Relies on reproducibility of LHC optics
- Vertical alignment: extrapolation and correction at beam position

LHC optics: proton transport from IP to PPS

$$ec{d}(s) = T(s, \xi) \cdot ec{d}^*$$

Transport matrix

$$ec{d}(s) = T(s, \xi) \cdot ec{d}^*$$

$$Transport\ matrix$$
 $d = (x, \theta_x, y, \theta_y, \xi)^T$

$$Proton\ \Delta p/p$$

$$Proton\ \Delta p/p$$

$$Proton\ angle$$

$$T = \left(egin{array}{ccccc} v_x & L_x & m_{13} & m_{14} & D_x \ rac{\mathrm{d} v_x}{\mathrm{d} s} & rac{\mathrm{d} L_x}{\mathrm{d} s} & m_{23} & m_{24} & rac{\mathrm{d} D_x}{\mathrm{d} s} \ m_{31} & m_{32} & v_y & L_y & D_y \ m_{41} & m_{42} & rac{\mathrm{d} v_y}{\mathrm{d} s} & rac{\mathrm{d} L_y}{\mathrm{d} s} & rac{\mathrm{d} D_y}{\mathrm{d} s} \ 0 & 0 & 0 & 1 \end{array}
ight)$$

- The reconstruction of the proton kinematics requires the inversion of the transport matrix
- The transport matrix is built with the knowledge of the actual LHC optics

A simplified version of the inversion equations (using most relevant terms)

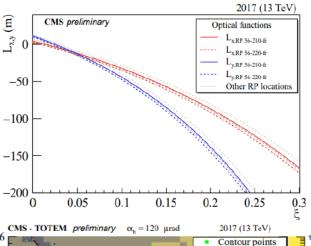
$$x = v_{x}(\xi) \cdot x^{*} + L_{x}(\xi) \cdot \theta_{x}^{*} + D_{x}(\xi) \cdot \xi$$

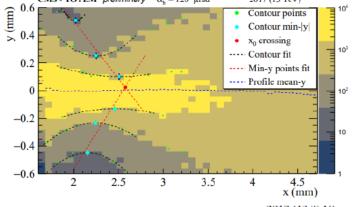
$$y = v_{y}(\xi) \cdot y^{*} + L_{y}(\xi) \cdot \theta_{y}^{*} + D_{y}(\xi) \cdot \xi$$

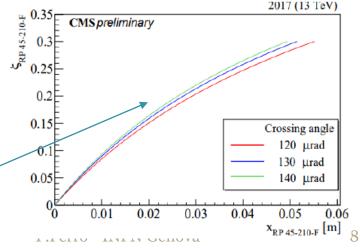
$$Dispersions$$

Data driven optics calibration

Effective lengths L_x , L_y calibrated using constraints from data and calculated at each detector station. L_y calibrated with elastic events (ξ =0) in alignment fills.


MAD-X model predicts ξ_o where $L_y = o$ Corresponding focal point x_o measured in RPs


$$D_x = x_0 / \xi_0$$

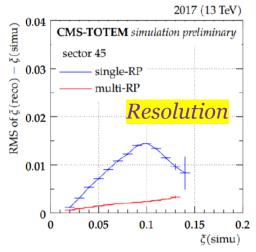

Interpolation among different crossing angles used by LHC

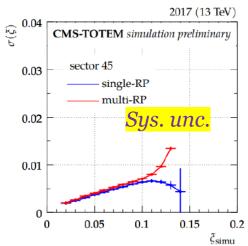

$$\xi(\alpha, x) = \xi_{120}(x) + \frac{120 - \alpha}{120 - 140} \cdot (\xi_{140}(x) - \xi_{120}(x))$$

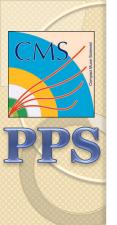
x-to-ξ curves

Proton kinematics reconstruction

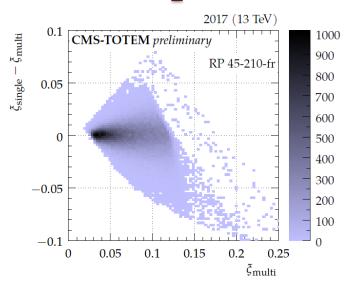
Single-RP method

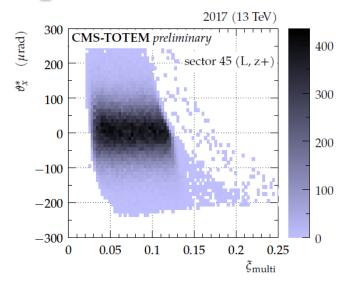

 $x = v_x(\xi) \cdot x^* + L_x(\xi) \cdot \theta_x^* + D_x(\xi) \cdot \xi$ $y = v_y(\xi) \cdot y^* + L_y(\xi) \cdot \theta_y^* + D_y(\xi) \cdot \xi$

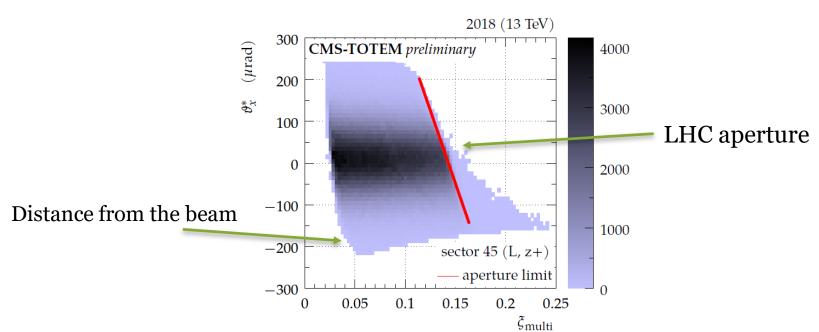

- $\xi \approx x/D_x$
- Utilize the information from a single pot
- Non linearities with x-to-ξ curves
- Smearing from proton scattering angles \rightarrow limited resolution $\sigma(\xi)$
- Robust and "simple" systematic uncertainty model

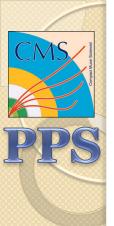

Multi-RP method

$$\underline{\textit{Minimization of}} \qquad \chi^2 = \sum_{q = x_{\text{N}}, y_{\text{N}}, x_{\text{F}}, y_{\text{F}}} \left(\frac{q - O_q(x^*, \theta_x^*, y^*, \theta_y^*, \xi)}{\sigma(q)} \right)^2$$

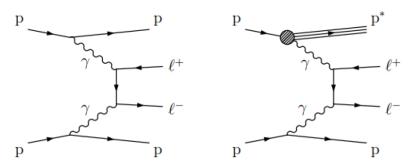

- O_{α} is the optics prediction for the coordinate, given the proton kinematics
- Combine measurements of 2 RPs to disentangle ξ and θ_x
- Non linearities considered in functions $O_q:L_{x,y}(\xi)$ and $v_{x,y}(\xi)$
- Significantly improves resolution $\sigma(\xi)$
- Assumes careful calibration, more complex systematic uncertainty model



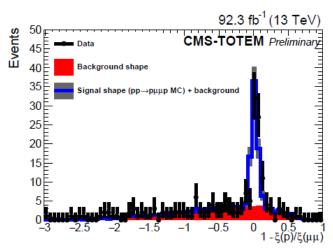




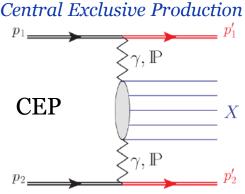
Control plots and acceptance



Validation with di-muon control sample

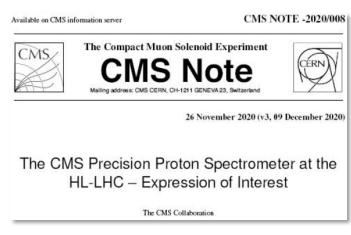


Correlations between fractional momentum loss reconstructed from di-muon pair $\xi(\mu\mu)$ vs that measured with proton(s) $\xi(p)$ in data. **Signal on the diagonal as expected.**


Correlation peak width consistent between data and simulation: well described resolution.

Peak position at o as expected.

PPS in Run3 and HL-LHC

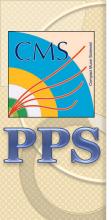


PPS will take data in **Run3** with an upgraded setup

- 2 tracking pots per side with movable pixel detectors
- 2 timing pots per side with diamond detectors
- Detector installation scheduled for October 2021
- $^{\circ}$ Physics goal: improve statistics of CEP in the same mass range of Run2 350 GeV < $\rm M_{X}$ < 2 TeV

CMS has presented an **Expression of Interest for a PPS at HL-LHC.** Well recieved by LHC-Committee.

TDR(s) phase starting, more collaborators are welcome.


https://cds.cern.ch/record/2750358

A major upgrade needed:

- New tracking and timing detectors
 - High radiation levels and μ~200
- New insertion positions in LHC (at ~200m and ~400m)

Physics goals:

- dramatically improve statistics of CEP
- extend the mass range to
 - 130 GeV < $M_X <$ 2.7 TeV Depending on • 40 GeV < $M_X <$ 2.7 TeV setup

PPS@HL-LHC: physics motivations, SM

Cross sections in two main scenarios

fiducial cross section [fb]					
Process	all stations		m w/o~420		
	${ m I\!P} - { m I\!P}$	$\gamma - \gamma$	$\mathbb{P} - \mathbb{P}$	$\mid \gamma - \gamma \mid$	
jj	$\mathcal{O}\left(10^6\right)$	60	$\mathcal{O}\left(10^4\right)$	2	
W^+W^-		37		15	
$\mu\mu$	_	46	_	1.3	
$egin{array}{c} \mu\mu\ { m tar{t}} \end{array}$	_	0.15	_	0.1	
H	0.6	0.07	0	0	
$\gamma\gamma$		0.02	_	0.003	

QCD

- Systematic study of screening effects in central exclusive di-jet production
- Exclusive bb production: dominant background for exclusive Higgs

Electroweak

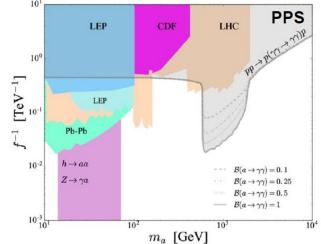
• Complete the study of pllp and pVVp exclusive production with a sizable number of events with 2 protons in acceptance

Top

• Di-top mass resolution of ~few GeV, probe near threshold production of exclusive ttbar

Higgs

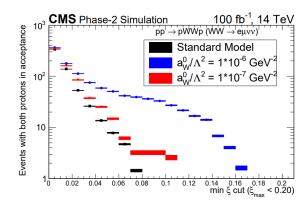
- Cross section estimates vary by an order of magnitude due to the lack of knowledge of screening effects
- Measurement of the central exclusive production of the Higgs boson is possible only with all stations (no acceptance w/o 420 m)

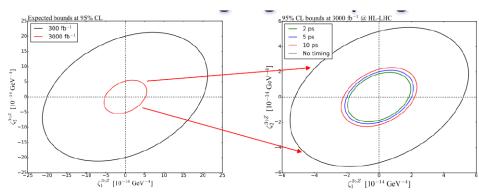

PPS@HL-LHC: physics motivations. BSM

Axion like particles

- High mass reach
- CEP via γ fusion (γγ collider)

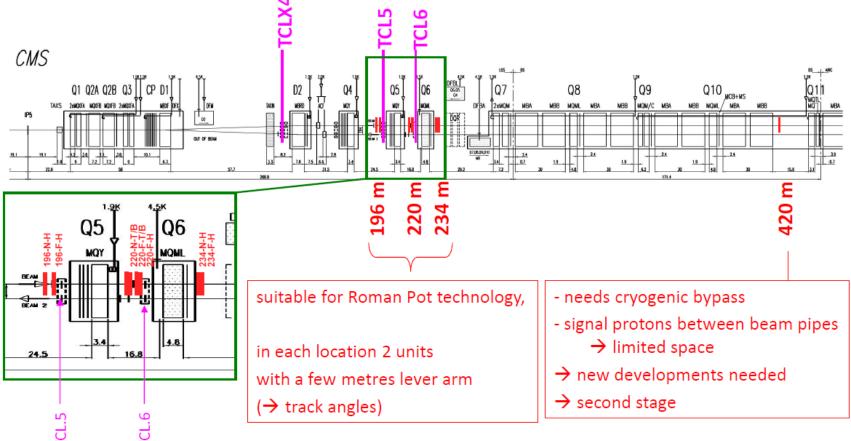
SUSY searches


- High mass reach
- Di-slepton production in CEP: direct measurement of di-slepton mass

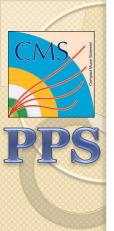


$$pp \to \widetilde{\ell}\widetilde{\ell} \to \ell\ell\widetilde{\chi}_1^0\widetilde{\chi}_1^0$$

Anomalous gauge couplings


- Exclusive WW production sets stringent upper limit on the anomalous quartic gauge coupling operators
- $\gamma\gamma\gamma$ Z coupling can be probed in $\gamma\gamma \rightarrow Z\gamma$ channel search.

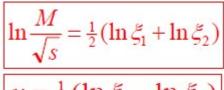
PPS@HL-LHC: proposed layout

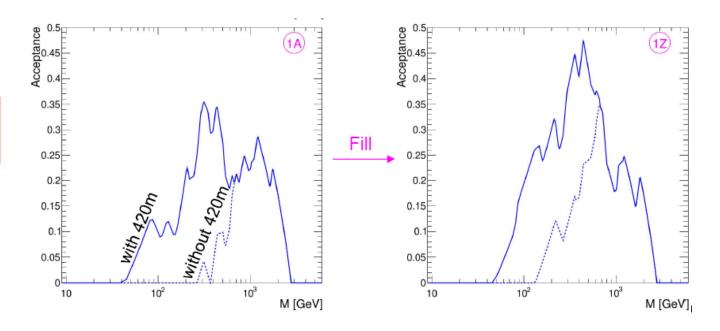

Next step: TDR(s):

First priority: detector vessel (warm stations), machine integration, services

Staged approach: 420 m station in a second step

Detector technologies to be chosen.


Possibly use synergy with existing CMS subdetectors


PPS@HL-LHC: mass acceptance

Mass acceptance depending on LHC optics and detector locations

Vertical Crossing-Angle						
Station	$ \xi_{\min} $	$ \xi_{\mathrm{max}} $	M_{\min} [GeV] @ y = 0	$M_{\text{max}} [\text{GeV}] @ y = 0$		
196 m	0.0786 - 0.0856	0.1967	1100.87-1197.80	2754.27		
$220\mathrm{m}$	0.0371 - 0.0381	0.0688	519.89-533.18	962.70		
$234\mathrm{m}$	0.0189 - 0.0095	0.0263	264.96-132.80	368.11		
$420\mathrm{m}$	0.0031 - 0.0034	0.0116	43.38 - 47.04	162.66		

$$y = \frac{1}{2} (\ln \xi_1 - \ln \xi_2)$$

Summary

- The proton reconstruction performed by the Precision Proton Spectrometer detector in CMS has been described in detail
- PPS has successfully taken data during LHC Run2 and will take data in Run3
- The perspective for a PPS also in the High Luminosity phase of LHC has been discussed

See also K.Shchelina's talk on PPS physics performance.

References

- Proton reconstruction with the Precision Proton Spectrometer in Run 2. - CMS DP 2020-047
- CMS and TOTEM Collaborations, "CMS TOTEM Precision ProtonSpectrometer," CERN LHCC 2014 021
- The CMS Precision Proton Spectrometer at the HL-LHC -- Expression of Interest, CERN-CMS-NOTE-2020-008