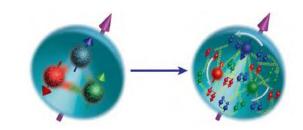
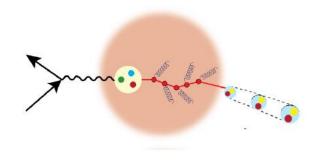

THE ELECTRON-ION COLLIDER YELLOW REPORT

Adrian Dumitru, Olga Evdokimov, Andreas Metz, <u>Carlos Muñoz Camacho</u>

> DIS2021 April 13, 2021

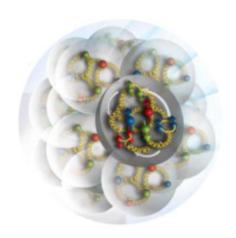

Outline


- > The Electron Ion Collider
- > Recent developments
- > The Yellow Report initiative
- > Detector requirements from physics
- > The EIC reference detector
- > Conclusion and outlook

Motivation - the EIC science program

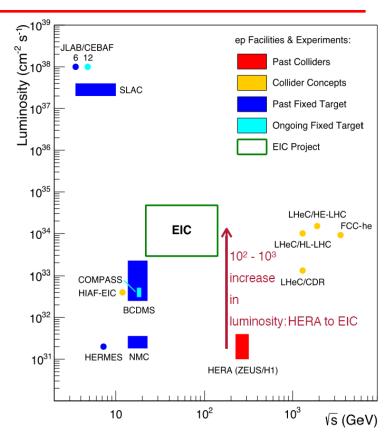
How are the sea quarks and gluons, and their spins, distributed in space and momentum inside the nucleon?

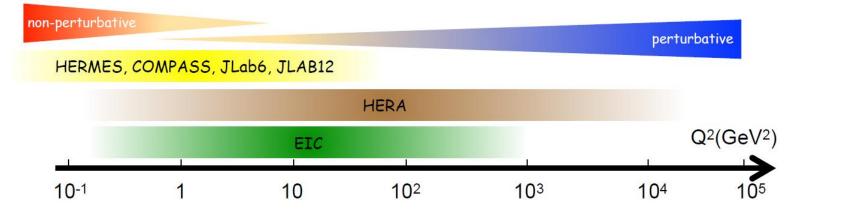
How do the nucleon properties emerge from them and their interactions?


How do color-charged quarks and gluons, and colorless jets, interact with a nuclear medium?

How do the confined hadronic states emerge from these quarks and gluons?

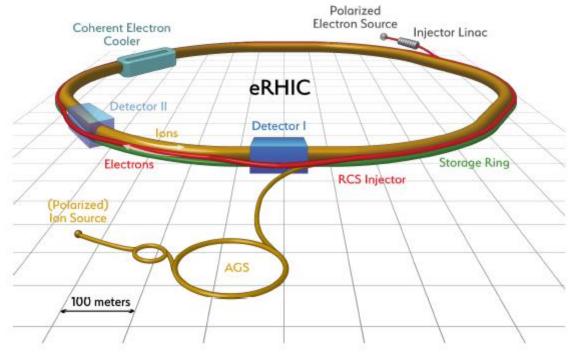
How do the quark-gluon interactions create nuclear binding?


How does a dense nuclear environment affect the quarks and gluons, their correlations, and their interactions?


What happens to the gluon density in nuclei? Does it saturate at high energy, giving rise to a gluonic matter with universal properties in all nuclei, even the proton?

EIC machine requirements

- ➤ High luminosity: 10³⁴ cm⁻² s⁻¹
- Flexible center-of-mass energy $\sqrt{s} = \sqrt{4E_e E_p}$: wide kinematic range $Q^2 = s \times y$
- Highly polarized electron (0.8) and proton/light ion (0.7) beams: spin structure studies
- Wide range of nuclear beams (d to Pb/U): high gluon density



EIC Facility

> Highly polarized electron / Highly polarized proton and light ions /Unpolarized heavy ions

> CME: ~ 20-100GeV

➤ Luminosity: ~ 10³³⁻³⁴cm⁻²s⁻¹



- □ Polarized electron source and 400 MeV injector linac
- Polarized proton beams and ion beams based on existing RHIC facility
- □ 2 detector interaction points capability in the design

EIC development

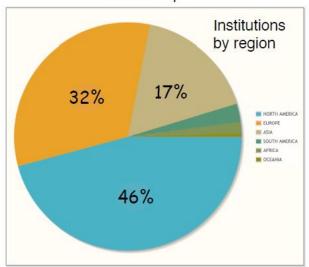
- > 2012: White paper, updated in 2014
- 2015: Long-range plan:

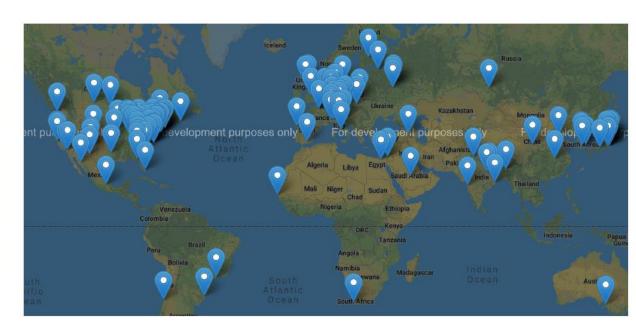
"Construct a high-energy high-luminosity polarized electron-ion collider as the highest priority for new construction"

- > 2017: Review of the EIC Science Case by the US National Academy of Sciences (NAS)
- > 2018: Report by the NAS
- > 2019: CD-0 (mission need) from the US Department of Energy
- > 2020: Site selection (Brookhaven National Laboratory)

U.S. Department of Energy Selects Brookhaven National Laboratory to Host Major New Nuclear Physics Facility

Department of Energy


Current project goal: Start of operations in ~2030

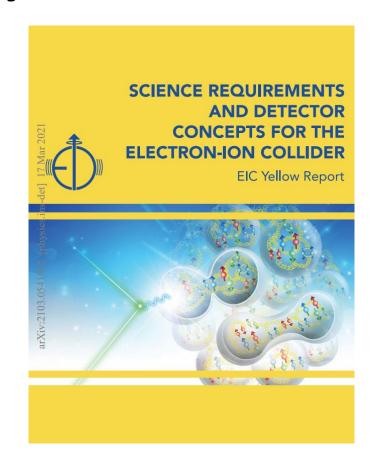

The EIC Users Group

□ EIC User Group and R&D activities

WWW-page: www.eicug.org

- EIC User Group:
 - EICUG organization established in summer 2016
 - In numbers...: 1275 members, 255 institutions in 34 countries (6 world regions)
 - □ World map:

- R&D activities:
 - □ EIC Detector R&D program operated by BNL with ~\$1M / year
 - □ EIC Accelerator R&D with ~\$7M / year


The Yellow Report Initiative

The purpose of the Yellow Report Initiative is to advance the state and detail of the documented physics studies (White Paper, INT program proceedings) and detector concepts in preparation for the realization of the EIC.

- Work started in January 2020
- > Report released in March 2021: arXiv:2103.05419
- > Enormous community effort: 902 pages, 415 authors, 151 institutions

Organization:

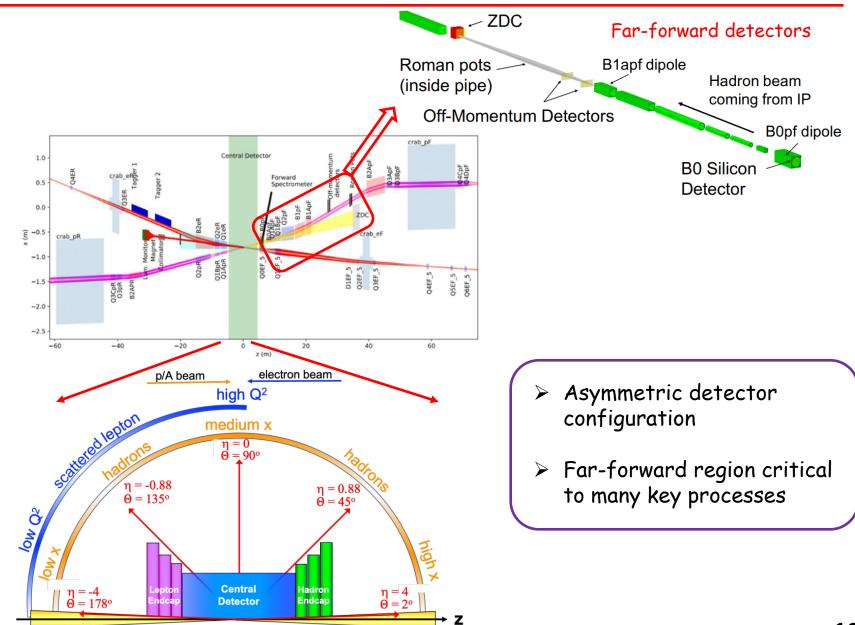
- Physics Working Group
 - > Inclusive Reactions
 - > Semi-inclusive Reactions
 - Jets & Heavy Quarks
 - Exclusive Reactions
 - Diffractive & Tagging
- Detector Working Group
 - > Tracking
 - > PID
 - Calorimetry
 - > Far-forward detectors
 - > DAQ/Electronics
 - Central Detector/Integration & Magnet
 - Forward Detector/IR integration
 - > Polarimetry/Ancillary detectors
 - > Detector Complementarity

The Yellow Report Outline

Volume I: Executive Summary

Volume II: Physics

- > The EIC Physics Case
- > EIC Measurements and Studies
- > Detector Requirements


EIC YELLOW REPORT Volume II: Physics

Volume III: Detector

- > Detector Challenges & Performance Requirements
- > Detector Aspects
- > The Case for Two Detectors
- Integrated EIC Detector Concepts
- > Detector R&D Goals and Accomplishments

EIC detector layout

Central detector

WG 1 - Inclusive reactions: physics topics

Gold nucleus

EPPS16*

Х

Х

Global properties and parton structure of hadron: unpolarized & polarized PDFs

nCTEQ15wz

1.6

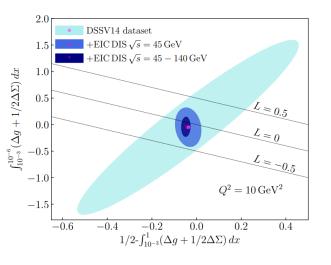
0.0

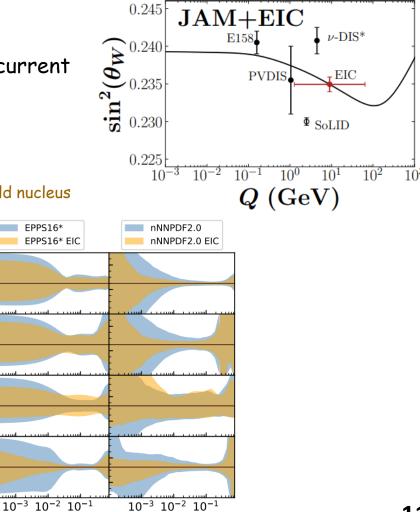
1.6 δū/ū .0 .0

s/sg 0.0

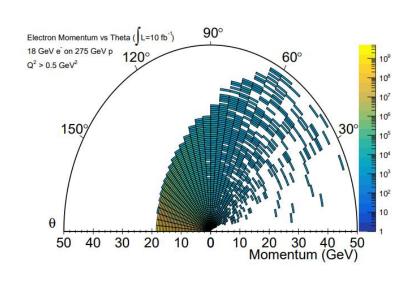
b/bg 0.0

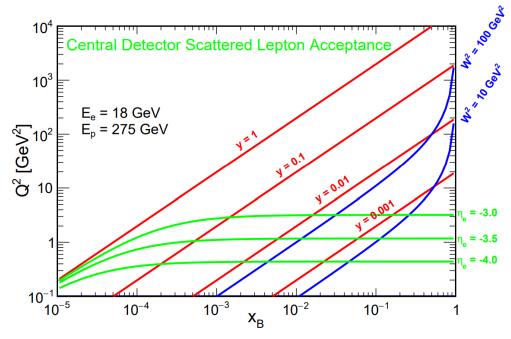
δυ/υ 80 80

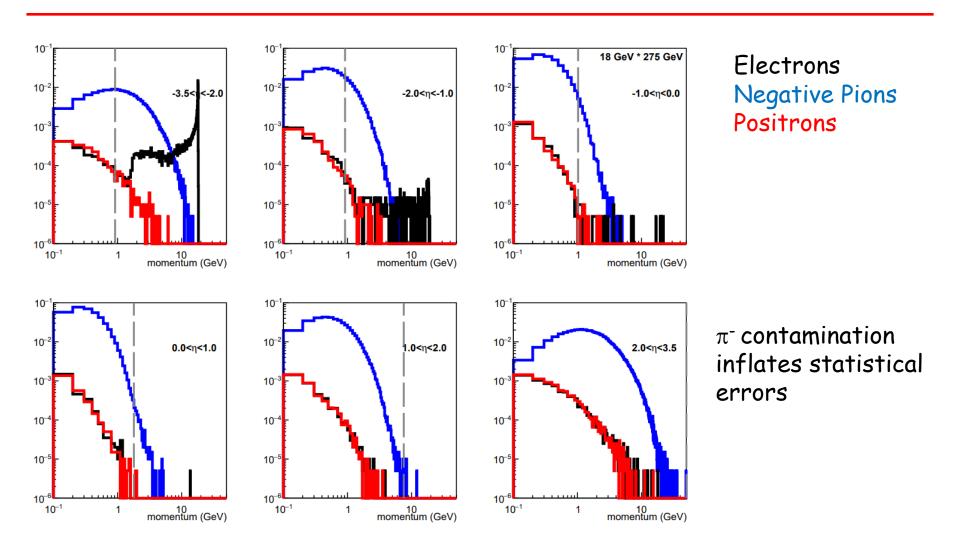

nCTEQ15wz EIC


 $Q^2 = 1.69 \text{ GeV}^2$

 $10^{-3} \ 10^{-2} \ 10^{-1}$

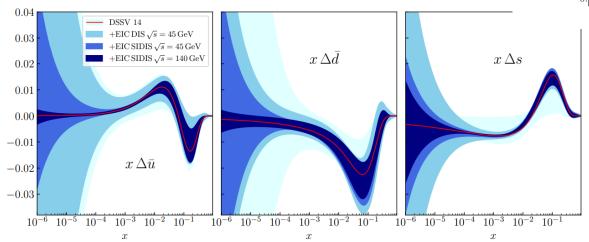

Х

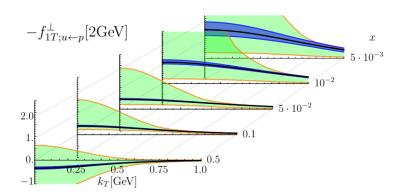

- Nuclear medium: nuclear PDFs
- Multi-parton correlations: twist-3 PDF $g_{\tau}^{q}(x)$
- Electroweak and BSM physics: weak neutral current measurements

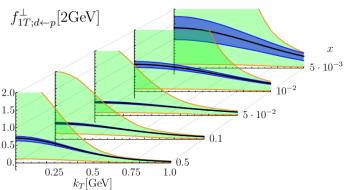

WG 1 - Inclusive reactions: acceptance

pQCD: Q²> 1 GeV² & W²>4 GeV² \rightarrow -3.5< η <3.5 coverage sufficient

WG 1 - Inclusive reactions: PID

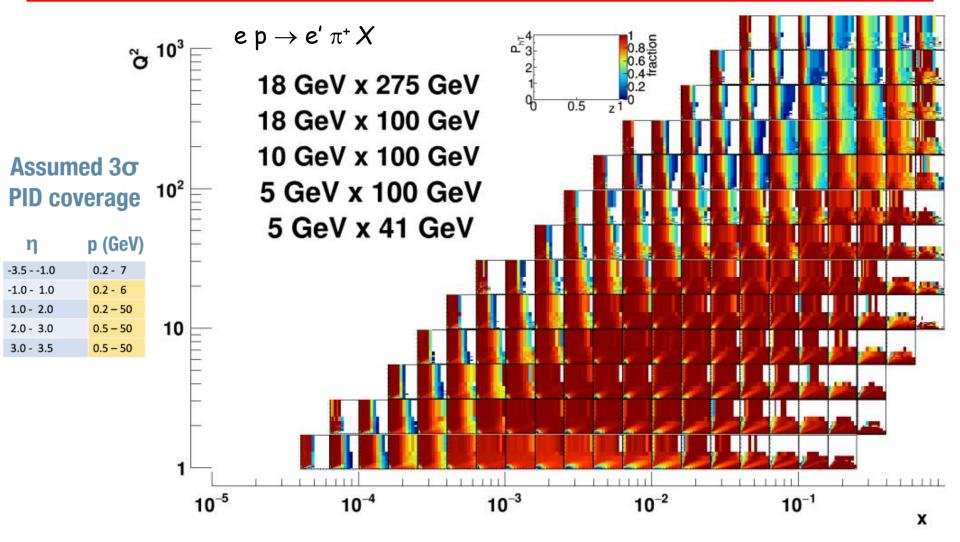


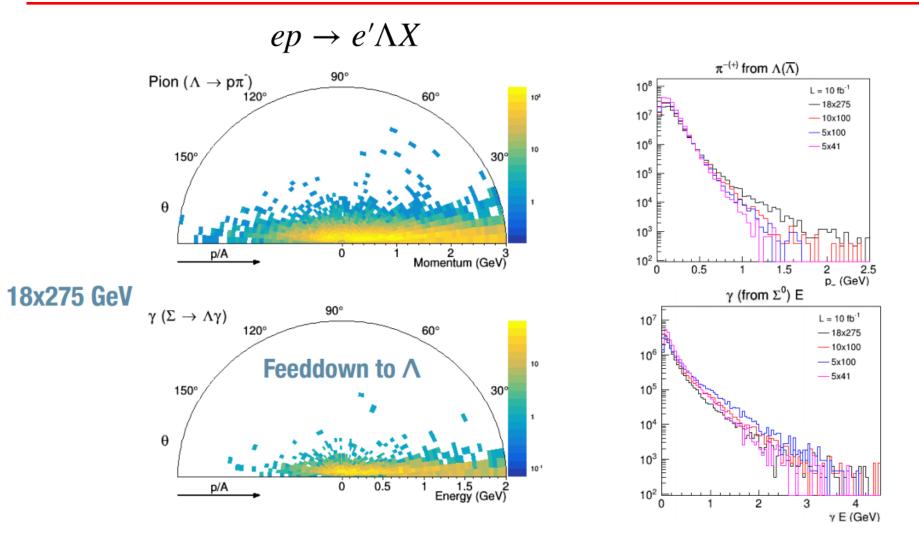

Tightest constraint on PID from parity violating asymmetries A^{e-}_{PV}


10⁴ π - suppression required

WG 2 - Semi-inclusive reactions: physics topics

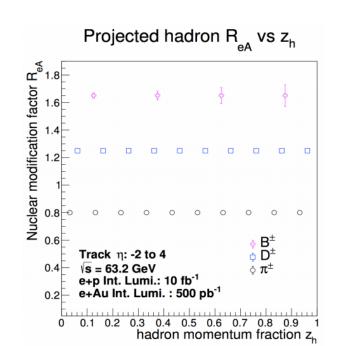
- > Sea quark PDFs
- > Sea quark helicities
- 3D Imaging of the nucleon and nuclei: TMDs
- Photoproduction mechanisms for X,Y,Z states in ep & eA
- > X,Y,Z state spectroscopy

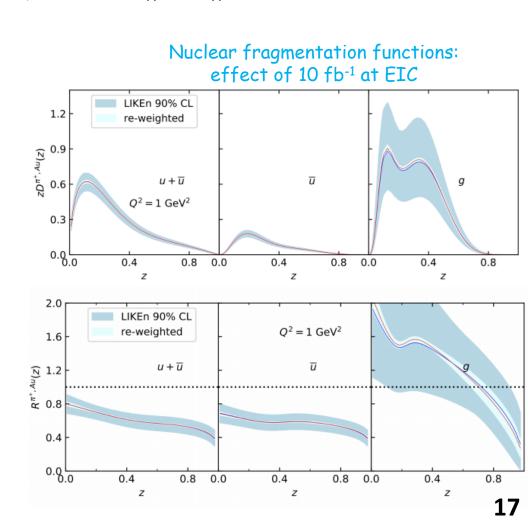



Quark Sivers and Collins measurements

WG 2 - Semi-inclusive reactions: Hadron PID

- \rightarrow High z/p_T limited in some cases by barrel PID p<6 GeV
- > Impact at intermediate x-Q2 compensated by different beam energies, when using existing models for TMD extraction

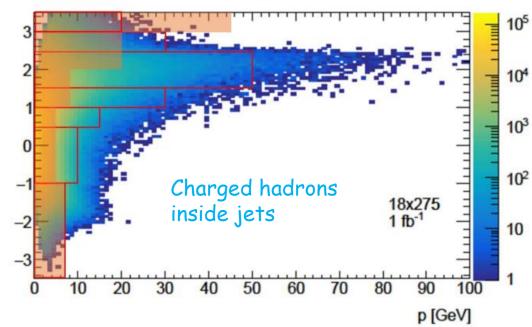

WG 2 - Semi-inclusive reactions: Minimum p_T



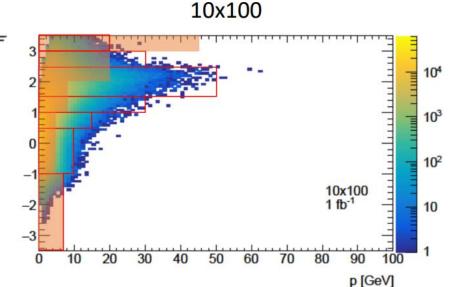
- \triangleright 100 MeV p_T detection required for efficient Λ detection
- > Σ feeddown rejection requires Ey>200 MeV for η <3 and Ey>400 MeV for η >3

WG 3 - Jets and Heavy Quarks: physics topics

- > Helicity dependence in charm production
- > Particle propagation through matter
- > Hadronization in the vacuum and in the nuclear medium
- Quarkonia
- Gluon saturation
- Jet production in polarized DIS
- Jet-based TMD measurements



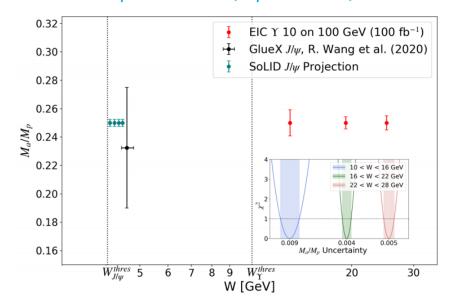
WG 3 - Jets and Heavy Quarks: PID

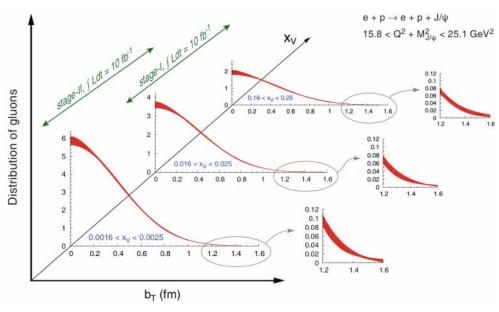

PID Momentum Coverage

Eta Range	Default Momentum Coverage	Requested Momentum Coverage				
-3.5 < η < -1.0	≤ 7 GeV	Same				
-1.0 < η < 0.0		- 10 C V				
0.0 < η < 0.5	≤ 5 GeV	≤ 10 GeV				
0.5 < η < 1.0		≤ 15 GeV				
1.0 < η < 1.5	40.0-W	≤ 30 GeV				
1.5 < η < 2.0	≤ 8 GeV	250 CoV				
2.0 < η < 2.5	< 20 OeV	≤ 50 GeV				
2.5 < η < 3.0	≤ 20 GeV	≤ 30 GeV				
3.0 < η < 3.5 ≤ 45 GeV		Can tolerate ≤ ~20 GeV				

18x275

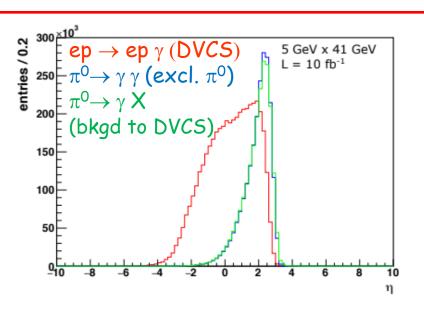
Reduction of particle momenta at highest (and lowest) eta are due to jet radius

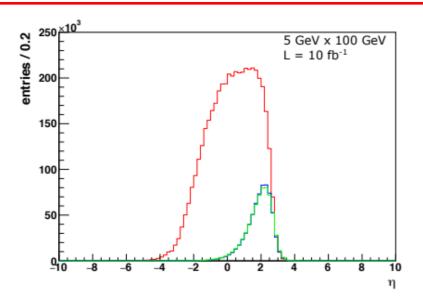


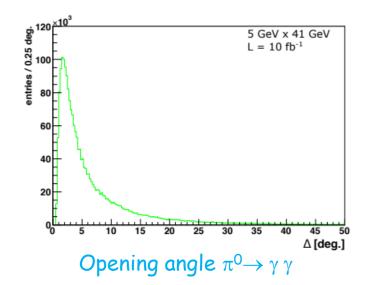

Hadron PID required up to large values of momenta

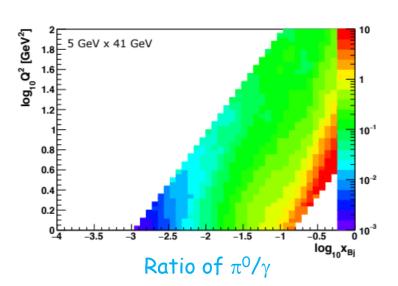
WG 4 - Exclusive reactions: physics topics

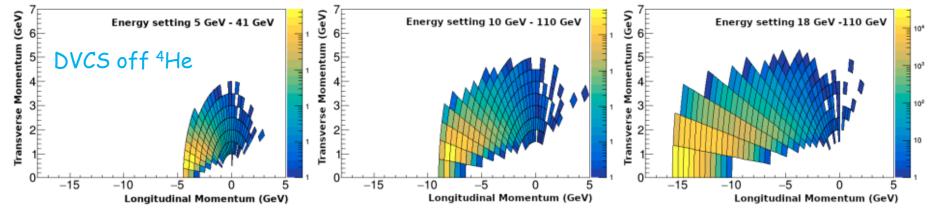
- > 3D imaging of the nucleon and nuclei: GPDs
- > Origin of nucleon mass
- Wigner functions


Trace anomaly contribution to the proton mass (Y production)

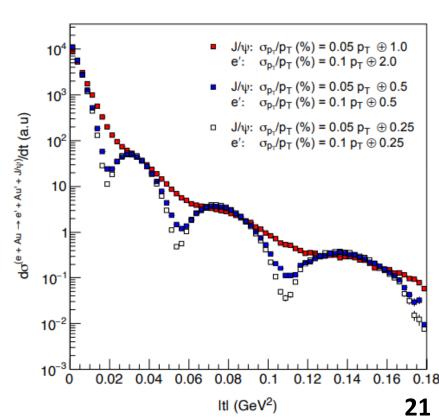



Gluon 3D imaging from J/ψ production

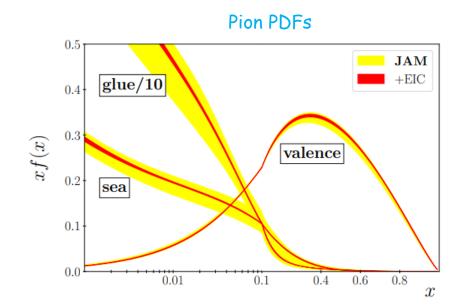

WG 4 - Exclusive reactions: ECAL granularity



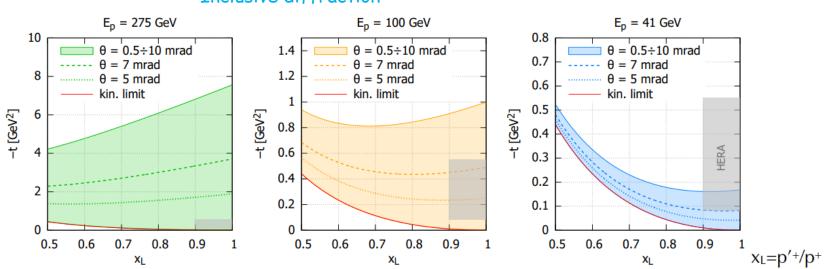
Separation of photons from π^0 decays is crucial for DVCS



WG 4 - Exclusive reactions: far-forward acceptance

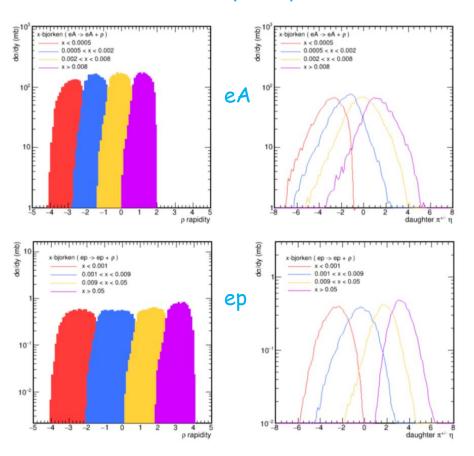


- Excellent hermeticity required: -4<η<4 in central detector</p>
- p_T measured at Roman Pots down to 0.2 GeV required for DVCS (even less for exclusive vector meson production)
- \triangleright High resolution tracking: $\sigma_{pT}/p_T(\%)$ < 0.05 p_T ⊕ 0.5
- Muon detection useful for vector meson production and Time-like Compton Scattering (combinatorial background reduction)
- Photon detection in ZDC required to suppress incoherent processes

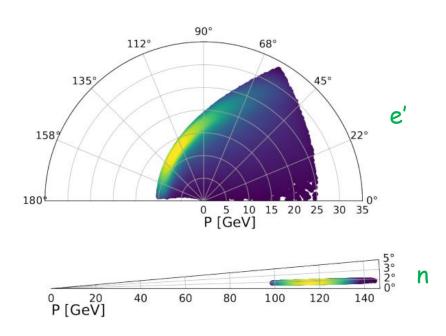


WG 5 - Diffractive & Tagging: physics topics

- > Meson structure
- > Structure of light nuclei
- > Short-range correlations

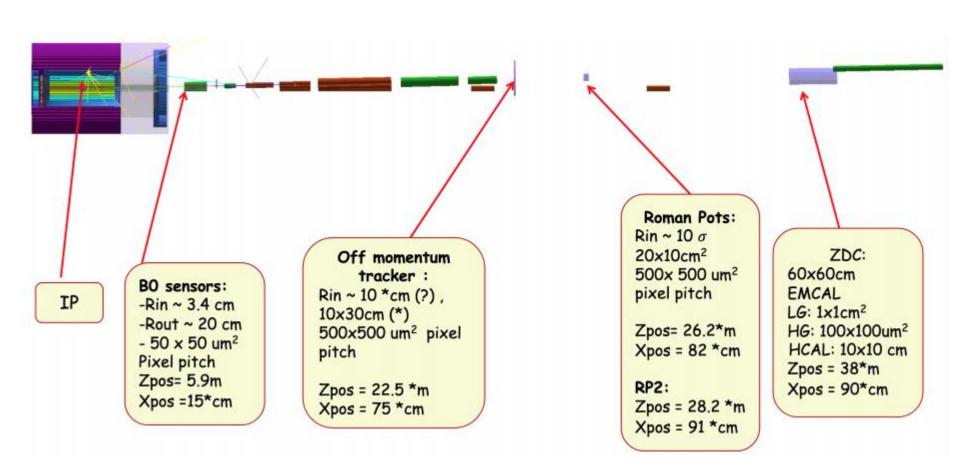

Inclusive diffraction

HERA range


WG 5 - Diffractive & Tagging: hermeticity

Coherent ρ photoproduction

Sullivan process for pion structure:


$$e + p \rightarrow e' + X + n$$

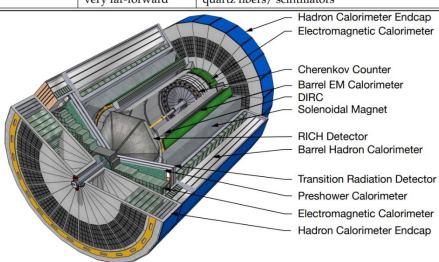
- \triangleright Pseudorapidity coverage directly matches into x_B acceptance
- > Separating coherent & incoherent reactions require detection of low enegy photons (>50 MeV) from some nuclear deexcitations

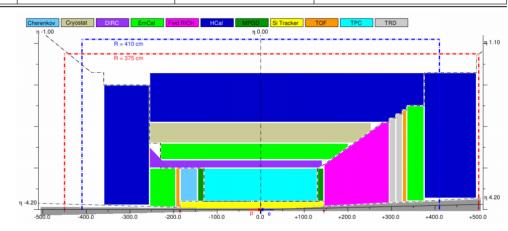
WG 5 - Diffractive & Tagging: far-forward region

Detailed acceptance and resolution requirements driven by meson structure physics:

Summary of requirements

_	η Nomenclature		Tracking			Electrons and Photons		π/K/p PID		HCAL		Muons				
η			Min p _T	Resolution	Allowed X/X ₀	Si-Vertex	Min E	Resolutio n σ _E /E	PID	p-Range (GeV/c)	Separation	Min E	Resolution σ _E /E	WIGOTIS		
-6.9 — -5.8			low-Q² tagger		δθ/θ < 1.5%; 10-6 < Q ² < 10-2 GeV ²											
•••	↓ p/A	Auxiliary	etectors Instrumentation to													
-4.5 — -4.0	ψ p., τ	Detectors														
-4.03.5			separate charged particles from γ											~50%/√E+6%		
-3.5 — -3.0									2%/√E+							
-3.0 — -2.5					σ _p /p ~ 0.1%×p+2.0%	σ _{xy} ~30μm/p	σ _{xy} ~30μm/p _T + 40μm	-	(1-3)%							
-2.5 — -2.0					Backwards Detectors				чории							~45%/√E+6%
-2.0 — -1.5			Detectors	Delectors	σ _p /p ~ 0.05%×p+1.0%		σ _{xy} ~30μm/p _T + 20μm		7%/√E+	π suppression ≤ 7 GeV/c	≤ 7 GeV/c	≤ 7 GeV/c				
-1.5 — -1.0									(1-3)%							
-1.0										up to 1:10 ⁴						
-0.5 — 0.0		Central	etector Barrel	100 MeV π 135 MeV K	$\sigma_p/p \sim 0.05\% \times p + 0.5\%$	~5% or less		MeV				-				
0.0 — 0.5		Detector									≤ 10 GeV/c			, ~85%/VE+7%	Useful for bkg, improve resolution	
0.5 — 1.0											≤ 15 GeV/c					
1.0 — 1.5									(10-12)%/		≤ 30 GeV/c					
1.5 — 2.0					σ _p /p ~ 0.05%×p+1.0%		σ _{xy} ~30μm/p _T +		√E+(1-3)%							
2.0 — 2.5			Forward Detectors	Forward Detectors				20μm			3σ e/π	≤ 50 GeV/c			~35%/√E	
2.5 — 3.0									σ _{xy} ~30μm/p _T + 40μm				≤ 30 GeV/c	1		
3.0 — 3.5					σ _p /p ~ 0.1%×p+2.0%		σ _{xy} ~30μm/p _T + 60μm				≤ 45 GeV/c					
3.5 — 4.0			Instrumentation to													
4.0 — 4.5			separate charged particles from γ													
	↑e	Auxiliary Detectors														
> 6.2	25.5000	2500015	Detectors	Proton Spectrometer		σ _{intrins ic} (t)/ t < 1%; Acceptance: 0.2< p _T <1.2 GeV/c										


Summary of requirements


- \triangleright Hermeticity: -4 < η < 4 in the central detector is crucial (exclusive & diffractive channels)
- Momentum resolution in central region:
 DIS and SIDIS channels that use the hadronic state to reconstruct kinematics
- > Miminum p_T: 100 MeV for pions, 135 MeV for kaons
- \triangleright Vertex resolution: driven by heavy flavor reconstruction (σ_{xy} ~20 μm /p_T ⊕ 5 μm)
- \triangleright Electron ID: π suppression of 10⁴ for eg. PVDIS. 3σ e/ π separation for spectroscopy
- γ detection threshold: driven by need to separate coherent/incoherent in vector meson production
- > Hadron ID: required over a large momentum range for SIDIS/TMD measurements
- \triangleright ECAL: 10-12%/ $\sqrt{E}\oplus 1$ -3% in central region for jets, 1-2%/ $\sqrt{E}\oplus 1$ -3% at backwards rapidities (DIS electron reconstruction)
- > HCAL: 50%/√E⊕10% (jets), with a minimum threshold of 500 MeV

In addition: far-forward requirements mentioned before

The EIC reference detector

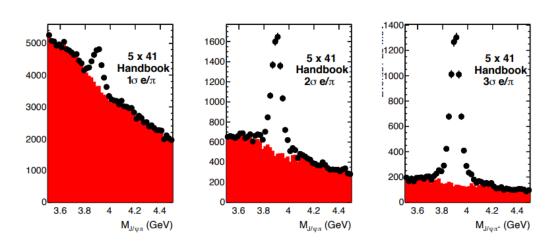
system	system components reference detectors detectors, alternative options considered by the community						
	vertex	MAPS, 20 um pitch	MAPS, 10 um pitch				
tracking	barrel	TPC	TPC ^a	MAPS, 20 um pitch	MICROMEGAS ^b		
tracking	forward & backward	MAPS, 20 um pitch & sTGCs ^c	GEMs	GEMs with Cr electrodes			
	very far-forward	MAPS, 20 um pitch & AC-LGAD ^d	TimePix (very far-backward)				
	& far-backward						
	barrel	W powder/ScFi or Pb/Sc Shashlyk	SciGlass	W/Sc Shashlyk			
	forward	W powder/ScFi	SciGlass	PbGl	Pb/Sc Shashlyk or W/Sc Shashlyk		
ECal	backward, inner	PbWO ₄	SciGlass				
	backward, outer	SciGlass	PbWO ₄	PbGl	W powder/ScFi or W/Sc Shashlyk ^e		
	very far-forward	Si/W	W powder/ScFi	crystals ^f	SciGlass		
	barrel	High performance DIRC & dE/dx (TPC)	reuse of BABAR DIRC bars	fine resolution TOF			
	forward, high p	double radiator RICH (fluorocarbon gas, aerogel)	fluorocarbon gaseous RICH	high pressure Ar RICH			
h-PID	forward, medium p	double facilition Ricif (fluorocarbon gas, aeroger)	aerogel				
	forward, low p	TOF	dE/dx				
	backward	modular RICH (aerogel)	proximity focusing aerogel				
	barrel	hpDIRC & dE/dx (TPC)	very fine resolution TOF				
e/h separation	forward	TOF & areogel					
at low p	backward	modular RICH	adding TRD	Hadron Blind Detector			
HCal	barrel	Fe/Sc	RPC/DHCAL	Pb/Sc			
	forward	Fe/Sc	RPC/DHCAL	Pb/Sc			
licai	backward	ckward Fe/Sc		Pb/Sc			
	very far-forward	quartz fibers/ scintillators					

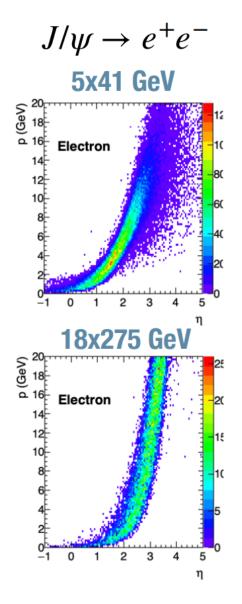
Conclusion and Outlook

- ✓ The EIC User Group initiated an enormous effort during 2020 to define the requirements of a future EIC detector
- ✓ The EIC Yellow Report released last month details the studies that led to the
 outline of a "Reference Detector" that will address the physics of the future EIC

Back up

Processes	Inclusive	Semi-Inclusive	Jets,	Exclusive	Diffractive,		
Topics	11101101110		Heavy Quarks	2110101110	Forward Tagging		
Global properties	incl. SF	h, hh	jet, Q	excl. $\mathbf{Q}\overline{\mathbf{Q}}$	incl. diffraction,		
& parton structure	mei. Sr	11, 1111	Jet, Q	exci. Q Q	tagged DIS on D/He		
Multidimensional			jet, di-jet,	DVCS,			
		h	$_{ m jet+h},$	$\mathbf{DVMP},$			
Imaging			$\mathbf{Q},\mathbf{Q}\overline{\mathbf{Q}}$	elast. scattering			
	incl. SF	h, hh	jet, di-jet,	coh. VM,	diffr. SF, incoh. VM,		
Nucleus			$Q, Q\overline{Q}$	di-jet, h , hh ,	di-jet, h , hh ,		
			य, यय	$\mathrm{D}/\mathrm{He}\;\mathrm{FF}$	nucl. fragments		
Hadronization		h, hh,	jet, Q, $Q\overline{Q}$				
Hadromzation		$_{ m jet+h}$	Jet, Q, QQ				
Other fields	incl. SF with e^+ ,	charged curr. DIS,		_elast	_diffr		
Other heids	$\sigma_{\gamma A}^{ m tot}$	$\sigma_{\gamma A o h X}$		$\sigma_{\gamma A}^{ m elast}$	$\sigma_{\gamma A}^{ m diffr}$		


Table 6.1: Relationship between the EIC science topics (rows) and the categories of measurements (columns). Measurements already discussed in the White Paper [2] or the NAS Report [1] are highlighted in red. Various additional measurements and physics ideas that have emerged since are also included in this table, but the table is not meant to be exhaustive. "Other fields" refers to neutrino, cosmic-ray and high-energy physics. The acronym "SF" refers to structure function, "FF" to form factor, "h" to identified hadrons, Q to heavy quarks; $Q\overline{Q}$ to heavy-quark bound states (quarkonium), and "VM" to vector mesons.


WG 2 - Semi-inclusive reactions: Electron PID

$$\gamma p \rightarrow Z_c^+ n, \ Z_c^+ \rightarrow J/\psi \pi^+$$

Central detector coverage impacts acceptance at lower energies

> 3σ e/ π separation for η >1 required to achieve desired purity

